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Abs t rac t  In this paper an efficient framework for the creation of 3D digital content with point sampled ge- 
ometry is proposed. A new hierarchy of shape representations with three levels is adopted in this framework. 
Based on this new hierarchical shape representation, the proposed framework offers concise integration of various 
volumetric- and surface-based modeling techniques, such as Boolean operation, offset, blending, free-form defor- 
mation, parameterization and texture mapping, and thus simplifies the complete modeling process. Previously to 
achieve the same goal, several separated algorithms had to be used independently with inconsistent volumetric 
and surface representations of the free-form object. Both graphics and industriM applications are presented to 
demonstrate the effectiveness and efficiency of the proposed framework. 
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1 I n t r o d u c t i o n  

Three dimensional (3-D) geometric models have 
been widely used for many years for engineering 
simulation and visualization. Nowadays with the 
decreases in the cost of commodity computers and 
the increases of Internet bandwidth, complex free- 
form models are made accessible to a much larger 
audience; the potential of using these models is ex- 
panded beyond now the well established game mar- 
ket to new applications ranging from virtual muse- 
urns to e-commerce. 

Traditionally parametric surfaces such as ten- 
sor product B-spline patches are the most adopted 
form for free-form shape modeling [1] and the 
generalization of non-uniform rational B-splines 
(NURBS) is considered as the de facto CAD stan- 
dard. Recently with the advances in 3-D digi- 
tal photography and scanning technology, complex 
free-form models become ubiquitous through the 
processing of large sets of point samples. 

In this paper we study multiresolution free form 
models represented by sets of points which we re- 
ferred to as point sampled geometry [2]. Since point 
sets are discrete in nature while physical objects to 
be described must have connected volume bounded 
by continuous surfaces, to build an efficient frame- 
work to process point-sampled geometry, we have 

to answer the following questions. 

1) Which mathematic form the point sampled 
geometry should be represented in? For example, 
a parametric surface, or an implicit surface, or else 
that  is continuous and approximates/interpolates 
the set of points. 

2) Given a specified mathematic form, how to 
render/visualize the point-sampled geometry effi- 
ciently? For example, any rendering scheme that  
supports real-time shape editing (or modification). 

3) Does that  chosen mathematic form support 
various shape editing operations? If it does, can 
those operations be efficiently implemented? 

In this paper we propose a general framework 
for multiresohition free-form modeling in point 
sampled geometry with the answer to the above 
three questions. This paper, which is condensed 
from the first author's dissertation [2], is organized 
as follows. The related work is presented in Section 
2. A new hierarchy of shape representations that  
is adopted in the proposed framework is presented 
in Section 3. The necessary transformation pro- 
cedure among the proposed shape hierarchy with 
an associated geometric modeling/editing toolbox 
is presented in Sections 4 and 5. In Section 6 we 
present both industrial and graphical applications 
to demonstrate the effectiveness and efficiency of 
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the proposed framework. Finally our concluding 
remarks are presented in Section 7. 

2 P r e v i o u s  W o r k  

2.1 Su r f ace  Reconstruction Techniques 

The complexity of geometric model is deter- 
mined by the mathematic form in which the shape 
is represented. A large variety of shape represen- 
tations is summarized in [3] and can be noticeably 

classified into three major categories | piecewise 
linear, parametric and implicit representations. 

The piecewise linear surface reconstruction 
techniques, e.g., the Delaunay triangulation al- 
gorithm [4], usually require strict sampling criteria 
on point sets and do not work well at sharp features 
such as creases and cusps. The parametric meth- 
ods are primarily developed to reconstruct surfaces 
with prescribed topological types[ 5] , mostly homeo- 
morphic to an open disc, and thus user intervention 
is inevitable for setting up patch net work for sur- 
faces of arbitrary topological type. The implicit 
methods build a 3-D scalar field f over the object 
space and the underlying surface is represented by 
an isosurface f = c, where c is a suitable level set 
value. Owing to this implicit representation, the 
implicit surfaces put no restrictions on the object 's 
topological type. State-of-the-art implicit mod- 
els include radial basis functions [6], moving least 
squares methods [T ] and level set methods [s] . 

2.2 Rendering and Multiresolution 
Techniques 

In aforementioned three surface representations, 
piecewise linear (polygonal) surfaces axe the most 
efficient representation for rendering: currently 
the triangle is the only surface patch that  is di- 
rectly supported by computer graphics hardware 
and even by most software rendering methods [9]. 
Usually parametric surfaces and implicit surfaces 
(including CSG and voxel representations) axe con- 
verted into polygonal meshes prior to rendering. 

It is often a desirable feature inherent in a ren- 
dering system to have a constant frame rate, e.g., 
real-time rendering in the context of interactive 
graphics often requires 30 frames per second (fps) 
or higher. This can be achieved if the objects are 
represented in a multiresolution fashion. Multire- 
solution modeling techniques construct a hierarchy 

of details {W ~ W I , . . . }  over a base domain V ~ to 
describe a geometric object V J = V ~ @ W ~ | --- 
in such a way that is particulaxly suitable for data  
compression, progressive transmission, and control- 
lable level-of-details rendering. Two classes ex- 
ist for mesh multiresolution modeling. The first 
class is typified by the progressive mesh [1~ that 
works with irregular meshes and the second works 
with semi-regulax meshes [11]. Though the first 
class can handle meshes with arbitrary connectiv- 
ity, the nestedness property V ~+1 = V i • W i of 
the sequence of approximate spaces in the stan- 
dard wavelet theory can no longer be maintained 
any more. As a result, extra information must be 
stored and, the analysis and synthesis operators 
are not uniquely determined. The multiresolution 
techniques can be used not only for rendering but 
also for shape editing. 

2.3 Shape Editing Operations 

Towards a complete geometric toolbox for shape 
editing, the nine operations in Table 1 are widely 
used [12]. Their implementation efficiency and per- 
formance depend on which shape representation is 
used; the remarks are also summarized in Table 1. 

T a b l e  1. Shape  Edi t ing  O p e r a t i o n s  ia a Comple t e  
Toolbox for Geometr ic  Model ing  and  The i r  Perfor- 
mance  under  Three  Shape  Represen ta t ions  

P a r a m e t r i c  Implici t  Polygonal  
surf .  surf.  surf.  

1 Local  shape  de fo rmat ion  x/ x x 
2 Global  shape  deformat ion  x/ v / x 
3 Boolean operation x ~/ x 
4 Blending  x v / x 
5 Offset x/ ~/ x 
6 Me tamorphos i s  x/ x/ x 
7 Level-of-details v / x x/ 
8 Texture mapping ~/ x x 
9 Render ing  x x x/ 

3 N e w  H i e r a r c h y  o f  P o i n t - B a s e d  Shape 
Representation 

We propose a framework for free-form object 
modeling with a new hierarchy of shape represen- 
tations for point-sampled geometry. The frame- 
work processes geometry in three stages. By going 
through these stages the represented shape is re- 
fined and the advantages inherent in different tra- 
ditional shape representations, i.e., parametric, im- 
plicit and piecewise linear representations, are ex- 

(!)There are  two m a i n  types  of  modelers ,  sol id-based and  surface-based.  Here we consider sur face-based  modelers .  Note  
t ha t  in our classif icat ion,  the  implicit  represen ta t ion  has  a na tu r a l  link to sol id-based models.  
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ploited in the proposed framework to achieve max- 
imum efnciency. 

W'e propose to use the following hierarchy of 
point-based shape representations in our frame- 
work for free-form object modeling. 

Level I. The shape is described as a set of un- 
structured sample points S = (sl, s2,..., s~). Ge- 
ometrically the shape is discretized as a set of sam- 
ples (cf. Fig.l(a)). 
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Fig.l. Proposed hierarchy of shape representation. (a) Sam- 

ple points S. (b) Hermite samples H ---- (S,N). (c) Two 

different triangulations with the same samples S, only the 

right one satisfies the normal constraints. 

Level 2. The shape is described as a set of sam- 
ples each associated with a normal (such data is 
called surfel in computer graphics [13] or called Her- 
mite data [I] in computer-aided geometric design), 
H = ( S ' , N )  = {(x~,y~,z~,nx~,ny~,nz~)l i  ~ # S ' } ,  
el. Fig.l(b).  It has been observed (cf. [14]) tha t  
the normal plays an important  role on sharp fea- 
ture identification, see also Fig.l(c) for an illustra- 
tion. Note that  each sample (x~ ,y i , z i )  associated 
with its normal (nx i ,  ny~, nzi  ) indicates the tangent 
plane to the underlying surface at point (xi, yi, zi). 
Then geometrically the shape can be interpreted as 
a local combination of these tangent planes, which 
offers a C~ representation of the shape. 

Level 3. The shape is described as a set of 
s tructured samples (cf. Fig.l(c)),  i.e., a mesh 
M = (V,K),  where V E R 3 is the set of point 

positions used to determine the geometric realiza- 
tion of 7V_f, and K encodes the model's structure in- 
formation serving as the topological realization of 
7Yr. The formal definition of _~ will be presented in 
Subsection 5.2. In the framework we build a mul- 
tiresohition model by keeping refining a base mesh 
as to be presented in Section 5. By using appropri- 
ate refinement rules, it is possible to offer a continu- 
ous model of higher order than C o for the underly- 
ing shape, e.g., the Loop scheme and the Catmull- 
Clark scheme are the generalizations of C 2 quar- 
tic triangular B-spline and tensor-product bicubic 
spline, respectively [15] . 

In [2], it is shown that under certain conditions 
these three level shape representations are equiva- 
lent in a measure induced by two-sided Hausdorff 
distance. We say the shape representation is re- 
fined, when we transform the shape representation 
from Level 1 to Level 3 via Level 2, since Level 3 
representation provides all the information explic- 
itly and Level i representation encodes most infor- 
mation implicitly. The following arguments are in 

order. 

Assume floating-point (4 bytes) and unsigned 
integer (2 bytes) values are used. For Level I rep- 
resentation, each sample requires 3 • 4 -- 12 bytes. 
For Level 2 representation, each sample requires 
2 • 3 • 4 -- 24 bytes. For Level 3 representation, by 
Euler's formula V-E+F --- 2, a 2-manifold triangle 
mesh (3F ~ 2E) with n vertices contains m ~ 2n 
triangles. If the simplest indexed mesh represen- 
tation is used, 3 • 4 • n --- 12n bytes are required 
for the geometry encoding (i.e., the geometric po- 
sitions of the vertices) and 3 • 2 • m -- 6m 
12n bytes are required for the topology encod- 
ing (i.e., each triangle referencing three vertices). 
The other popular data structures for 2-manifold 
meshes such as winged-edge, half-edge and double- 
edge structures [16] require much more memory for 
the topological information. Obviously the choice 
of a shape representation is a compromise between 
memory requirements and performance gains, since 
the more explicit information is stored, the more 
memory is required, but the much faster the access 
to the required information. 

In the proposed framework for point-sampled 
geometry, we start with Level 1 shape represen- 
tation and we choose to end with Level 3 repre- 
sentation as the output for visualization with the 
following due considerations. 

I) The pure point-based representation is only 
competitive when describing a free form model 
with both uniformly-sized and highly-detailed 
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geometry[ ~a]. If the model has a large flat or 
smooth patches of low curvature variation, polyg- 
onal models can be more compact and faster to 
draw. Moreover, in the case tha t  the spacing 
of samples is large compared to screen pixel size, 
polygons offer higher visual quality, especially near 
sharp edges and corners. 

2) The triangle can serve as a basic surface 
primitive to adaptively approximate smooth free 
form geometry and the triangle is currently the only 
surface patch that  is directly supported by indus- 
trial computer  graphics hardware. 

4 S h a p e  T r a n s f o r m a t i o n  f r o m  Leve l  1 t o  
L e v e l  2 

There are two steps for shape transformation 
from Level 1 to Level 2: 

S t e p  1. G i v e n  a se t  o f  s a m p l e s  S = ( s ~ , s ~ , . . . , s ~ ) ,  
Vsi 6 S, estimate an initial normal n(si)  from a local 
neighborhood of si. 

Step 2. Consistently orient the normal field at- 
tached to S such that the surface orientation is cor- 
rectly indicated. 

A 2D example illustrating these two steps is 
shown in Fig.2. More 3D examples illustrating the 
hole filling effect are presented in [2]. To algorith- 
mically realize these two steps, a variant[ ~4] of the 
algorithm proposed in [17] with a new adaptive in- 
fluence radius for hole filling is briefly summarized 
as follows. 

For each sample point si ~ S, k sample points 
nearest to si, denoted by Nbhd(sl),  are collected 
by applying an opt imal  k-nearest-neighbor search 
algorithm with a range tree structure[ Lq. From 
Nbhd(s~), a tangent plane Tp(si) = (s~, n(s~)) is 
indicated by solving a least squares fitting prob- 
lem, where n(s i )  is a unit normal vector asso- 
ciated to si. To determine the underlying sur- 
face orientation at the position of each sample 
point, Vsi ~ S, each point sj ~ Nbhd(s~) is con- 
nected to point s~. This  results in a directed graph 
G = (V,E).  Each edge (s~,sj) ~ E in G is as- 
signed a cost I 1 - n ( s i )  T .n(sy)l .  Starting at an ar- 
bi t rary vertex, the min imum spanning tree (MST) 
is extracted from the weighted graph G using the 
Prim's  algorithm wi th  a Fibonacci heap as its pri- 
ority queue [~s]. The  MST is Ktrther traversed in 
a depth-first search to  propagate the orientation. 
Then the following steps are taken to numerically 
determine a scalar field which assigns to an arbi- 
t rary  point p ~ R ~ a value f (p) :  

1) find the sample point sk ~ S nearest to p; 
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2) if point p lies in a local region around sk, 
i.e., lip - s~lI2 ~ r, where r is a user-controlled in- 
fluence radius, t h e n / ( p )  = ( p  - s~) T-  n ( s , ~ )  and 
V / ( p )  = n(sk) ;  

s) e l s e / ( p )  = o o .  

We note that  the above scalar field representa- 
tion (induced from Level 2 shape representation) 
has a natural  extension suitable for implementa- 
tion in an out-of-core fashion; this characteristic is 
extremely useful when the input data  (in Level 1 
representation) has a huge number of samples tha t  
cannot be processed in the ~ore memory as a whole. 
See [19] for full details about  this extension. 

o o o 
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(a) (b) 
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Fig.2. 2D example  for shape t r ans fo rmat ion  from Level 1 

to Level 2. (a) Non-uniform samples.  (b) Tangen t /no rma l  

vectors determinat ion.  (e) Normal  field before orientat ion.  

(d) Normal  field after or ientat ion . (e) Two scalar fields 

for curve generat ion with user-contro[ied adapt ive  influence 

radius. 

4.1 Influence Radius Sett ing Strategy 

Recall tha t  in the above scalar field generation, 
the influence radius r controls the extent of the 
tangent plane at each sample point (cf. Fig.2(e)). 
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In real-world data the sample points seldom com- 
pletely and uniformly cover the entire object, e.g., 
some portions of the physical surface are inacces- 
sible to the sensor. To cope with non-uniform and 
incomplete data, we use an adaptive influence ra- 
dius r. In our implementation, the radius r can be 
set either automatically or interactively: 

�9 Automatic settin 9. When we search Nbhd(si) 
for each sl E S, we set r at si to be the minimum 
value of radius with which a sphere centered at si 
contains Nbhd( si ). 

�9 Interactive setting. Users can interactively 
control the output shape by assigning different 
values of influence radii to different regions (cf. 
Fig.2(e)). Note that user intervention is inevitable 
in the ambiguous situation that either there is in- 
deed a hole or that  hole should be closed. 

4.2 V o l u m e t r i c - B a s e d  S h a p e  E d i t i n g  
O p e r a t o r s  

At this stage the scalar field based shape repre- 
sentation is best suitable for implementing the fol- 
lowing volumetric-based shape editing operators. 

Table 2. Boolean Operators on Two Objects A 
and B, Represented by Scalar Fields fA and fB, Re- 
spectively, with Positive Outside and Negative Inside 
Values 
Action Boolean operation Implementation 
Copy Intersection: A N B Max(fA, fB) 
Paste Union: A U B Min(fA,fB) 
Cut Difference: A\B Max(/A, --fs) 

Table 3. Implicit Blending Operators ['~~ 

611 

Boolean operators on two objects A and B, rep- 
resented by scalar fields fA and f s ,  respectively, 
are summarized in Table 2. Implicit blending op- 
erators that  takes as its argument a list of ob- 
jects { f l ( x ) , . . - ,  fk(x)} are summarized in Table 
3. Offset surfaces are defined as a locus of the 
points which are at constant distance d along the 
normal from the generator surface. In the scalar 
field representation, the offset surface with distance 
d of an isosurface f ( x )  = 0 is simply character- 
ized by f (x )  = d. A metamorphosis that  contin- 
uously/smoothly transforms one shape f~(x) = 0 
into another f2(x) = 0 can be efficiently achieved 
by ft(m) = f l (x )  + tf2(x) = 0, where t is an arti- 
ficial time. All of these operators are implemented 
and the examples illustrating each of them are pre- 
sented in [2]; among them one offset surface exam- 
ple is shown in Fig.3. 

LL 

= ~ X  ~ Linear blending: 

B(fl(m),...,fm(m))---- 
k 

f~  ( ~ )  - 

t Hyperbolic blending: 

y = l / x  @ B(fl(m) .... ,fm(m))= 
k 

i = 1  

Super-elliptic blending: 

! ~/(1-x)2+(1-y)~ = i  B(A(~), A(~,))= 

t 

Fig.3. Bubble the Santa Claus. One offset surface rendered 
as semitransparent surface is combined with the original 
model to give the effect. 

5 S h a p e  T r a n s f o r m a t i o n  f r o m  Level  2 
t o  Level  3 

Here we present a deformable method to polygo- 
nize the scalar field induced from the Level 2 shape 
representation to obtain a Level 3 shape represen- 
tation. As already alluded in Section 2, the Level 
3 representation is adopted in our framework as 
output for efficient rendering. The proposed de- 
formable polygonization method recursively refines 
a base mesh to produce a detailed semi-regular 
mesh, as presented in details below. Due to the 
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natural hierarchical structure with the regular re- 
finement, the semi-regular meshes are usually more 
efficient than the irregular meshes to describe the 
objects (ef. Fig.4). 

base mesh which will greatly simplify the complete 
pipeline of free form object modeling. An example 
is shown in Fig.6. 

Fig.4. A spherical object represented with irregular meshes 
generated by the marching cubes algorithm (the top row) 
and semi-regular meshes generated by the proposed de- 
formable method (the bottom row) with different resolu- 
tions, respectively. 

5 . 1  B a s e  M e s h  G e n e r a t i o n  

The base mesh used in the proposed framework 
satisfies the following two criteria: 

I) The base mesh is homeomorphic to the iso- 
stucface and is a good approximation of the isosur- 
face; 

2) All the vertices of the base mesh belong to 
the isosurface. 

Two strategies are used in the framework for 
base mesh generation. 

1) Automatic setting. For objects with highly 
geometric detain and complex topological t ype , the  
required base mesh is automatically generated by 
applying the algorithm in [14] which generates an 
intermediate mesh first and then simplifies it to a 
base mesh with controllable face number and con- 
trollable triangle shape to a degree desired by users. 
See Fig.5 for an example. 

2) Interactive setting. For objects with simple 
geometry, the user simply selects very few points 
from input Level 1 point  data to create a base mesh. 
User interactivity can easily generate a good base 
mesh that satisfies the above two criteria. The key 
advantage of this interactive setting is its capac- 
ity of incorporating the  semantic features into the 

Fig.5. Semi-regular mesh reconstruction (the right) with an 
automatically generated base mesh (the left). 
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Fig.6. Interactive base mesh generation with semantic 
features [21]. 

5.2 M e s h  R e f i n e m e n t  

Basic notation. The proposed framework repre- 
sents a 2-simpliciM-mesh M by the pair (K, V). K 
is the topological realization of M, represented by 
K = (VT,  ET ,  FT) .  The 0-simplices set VT E K 
is called the vertex set; the 1-simplices set E T  E K 
is the edge set; and the 2-simplices set F T  C K 
is the face set. V E R 3 is the set of vertex posi- 
tions used to determine the geometric realization 
of mesh M. W% define ~rv(K ) as the mapping from 
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topological realization K to geometric realization 
V. Mapping ~r, is called an embedding if Try(K) is 
not self-intersecting. Only a restricted set of vertex 
positions V results in an embedding Try. To ensure 
an embedding map z%, we establish the Criterion 
1, in Subsection 5.1, for the base mesh. 

Given a base mesh that  is a good approxima- 
tion and homeomorphic to the isosurface, it is split 
and expanded recursively to form a mesh hierarchy 
fitting the isosurface. Two methods have been im- 
plemented in [2] for mesh refinement: one is based 
on a displaced butterfly subdivision scheme and the 
other is presented in details below. 

The mesh refinement starts from a base mesh, 
denoted by M ~ For a given mesh Mi(K i, Vi), the 
refinement from Mi(K i, V i) to Mi+I(K i+1, V i+1) 
consists of three sub-steps: a splitting step, a pro- 
jection step and a relaxation step. The whole re- 
finement process can be cast as a multi-scale solver 
of the energy functional E(M i) = Edist(M i) + 
Espring(Mi), where Edist(M i) = Ejdist(f~), f~ e 
FT i, and dist(fj) is the Hausdorff distance from 

point data  S (or H)  to the face f j ,  and 

3 

Espring(Mi) = E E e ' f j  He~ - -  e ~ + I N '  i e k E E T  ~ 
f~ k=l 

where ~ denotes the incident relation. 

5.2.1 Split Operators 

For triangle mesh refinement, there are usually 
three types of refinement operators (cf. Fig.7). 
Vertex and edge split operators can achieve lo- 
cal mesh refinement and face split operator refines 
mesh globally. In our system, we are particularly 
interested in the face split operator, since apply- 
ing it can create a mesh hierarchy with subdivision 
connectivity tha t  can extend naturally to a com- 
pact  and efficient multiresolution representation. 

5.2.2 Stable Normal-Guided Projection 
Operators 

The projection operator  projects each new split 
vertex in VI+I/V i into the isosurface. Given a 
mesh M i, denote the three ver tex  coordinates of 
the face f j e  F T  i as p~.k(xk,yk, zk), k = 1,2,3, 

P}k E V i, the unit-face-normal vector FNJ( j )  of 
i i v~ll, where uj = face ] j  is then uj x vj/llu j x i 

P~'2 i i i i - P j l ,  vj = P j 3 -  P~2, and the face-based 

edge-normal-vector FEN*(k)  of edge e~ E ET i 
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is ~FNi(km)/ l[~FNi(km)l l .  In certain cases, it 
is observed that  non-uniform face area will be 
propagated if projecting is kept along the direc- 
tion F E N i ( k ) .  We then propose to use an area 
weighted normal vector A W _ F E N i ( k )  as the pro- 
jection direction, which is defined as 

A W _ F E N i ( k )  _ ~-~.~=1 A~mfNi (km)  _ _  

�9 i Enm=l ' t t~,  n X Vkm �9 

Ukm X 

i lies on an open boundary, oth- where n = 1 i f e  k 
erwise n = 2, A is the triangle area and km is the 

i (cf. Fig.S(a)). index of the face incident to edge e k 

(a) (b) (c) 

Fig.7. Split operators for mesh refinement. (a) Vertex split. 
(b) Edge split. (c) Face split. 

FNi(kl) FENi(k)FN~(k2) , VENi(k) VNi(k2) 

(a) (b) 

Fig.8. Edge normal vectors. (a) Face-based. (b) Vertex- 
based. 

The projection operator projects each new split 
vertex along the ray + A W _ F E N I ( k ) ,  where k is 
the index of the edge in ET i in which the split 
vertex lies. To guarantee that  all of the new split 
vertices move to correct corresponding positions in 
the isosurface, the following normal-guided condi- 
tion needs to be satisfied: 

A W _ F E N i ( k )  i+l i+l 
�9 Y(vk ) =  ~Yf(v k ) > 0 a n d  0 

In the area of high curvature variation, dur- 
ing mesh refinement, the mapping Try(K) from the 
topological domain to the geometric domain may 
be self-intersecting. If this case is detected, we 
switch to use a more computationally expensive 
vertex-based edge-normal-vector V E N  i to cor- 
rect zrv: 

VEN~(k)  = VNi ( k l )  + VNi(k2)  
iiVN~(k~ ) + VN~(k2)l I, and 
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y N i ( k )  = Ernegbhd(k)  A~mFNi(km) 

ErneNbhd(k) AkmFNi(km) 
i where kl and k2 are indices of vertices of edge e k 

and Nbhd(k) is the 1-ring neighbors of vertex k (cf. 
Fig.8(b)). 

5.2.3 Relaxation Operator 

Though the area-weighting normal projection 
can optimize the triangle shape to some extent, 
it is necessary to apply a relaxation operator af- 
ter each projection to ensure good triangle aspect 
ratios. This can be regarded as applying internal 
forces by replacing each mesh edge with a spring. 
Guskov et a/. [22] show that  the solution to 

arg rain M, {Esprlng(Mi)} = 
3 

argmine~EET~{ E E e ~ f ~  Ilelk-eik+lll} 
f~ c F T  i k = l  

can be computed locally. To optimize the triangle 
aspect ratio, Vv[. E VT i, consider the shape cost 
function: 

sp(vt)= E II" -  ll 
jeNbhd(k) 

Minimizing this shape cost function is related to 
maximizing the area to perimeter ratios of the re- 
sulting triangles. This shape cost function can be 
reformulated as 

i i T i i Sp(v~) = ~ (~ - ~) (~ - vj) = 

jENbhd(k) 

i T  I i E [(vk) " "Vk-- 
jeNbhd(k) 

i T  i i T  i _ _  2(vk)  - vj + (~j)  �9 ~ ]  - 

Z 
jeNbhd(k) 

j6Nbhd(k) j6Nbhd(k) 

Since the function Sp(v~) is quadric, by equating its 
derivative to zero, the solution to arg min,,Sp(v~) is 

z - z  ' -i I i 1 
V k ~ Vj ~ n v j  

jegbhd(k) jeYbhd(k) jeNbhd(k) 

where n = ~Nbhd(k). 
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5.2.4 Refinement Process 

The mesh refinement process starts from the 
base mesh M ~ and recursively performs the steps 
of split, projection and relaxation to M i -~ M i+1 
until a final level J is reached. Noting that  the 
detail-size less than the sampling density cannot be 
distinguished in a point-sampled geometry, we es- 
tablish the stopping criterion for reaching the final 
level J as that ,  the Hausdorff distance from point 
set S to the mesh M J is less than the sampling 
density of S. 

One important  characteristic of the proposed 
refinement process is that ,  for each iteration, 
V i is a subset of V i+1. As a result, the se- 
quence {V ~ V 1 , . . . ,  V J} forms a nested approxi- 
mate  space of the object M J, which is crucial in our 
multiresolution modeling scheme. In Fig.9 the re- 
finement process is illustrated with the head model 
shown in Fig.6. 

(a) (b) 

(c) (d) 

Fig.9. Mesh refinement process w i t h  the  head model  in Fig.6. 

5.3 Parametric Shape Editing Operators 

Parameterization. In a wide range of impor- 
tant  applications in CAD/CAGD,  it is often de- 
sirable to construct a parameterizat ion of a highly 
detailed model over a simple parametric domain. 
If  such a parameterization can be achieved, the 
highly detailed model can be viewed as a function 
over the parametric domain and the operations of 
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shape editing/deformation (both locally and glob- 
ally) and texture mapping becomes trivial. In our 
proposed deformable polygonization method, the 
mesh refinement process creates a mesh hierarchy 
which consists of a base mesh M ~ together with 
a set of hierarchical details. The parameterizat ion 
of the detailed mesh M J over the base mesh M ~ 
can be readily obtained by the 1-4 split rules. See 
Fig.10 for an illustration. 
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parts: a base mesh M ~ and a hierarchical detail 
set. Given this multilevel form, we can easily de- 
form the model either locally or globally by de- 
forming the base mesh and adjusting the details in 
different levels. See Figs. 10 and 11 for illustrations. 

Fig.12. Texture m a p p i ~ d e l .  

wi , / 

Fig.13. Remeshing the Stanford Happy Buddha model. 
Texture mapping technique maps a two-dimen- 

sional image onto a geometric object by assigning 
a texture coordinate to each point on the object 
surface. Given a parameterization over a base do- 
main, texture coordinate assignment can be effi- 
ciently achieved with the barycentric coordinate. 
See Fig.12 for an illustration. 

Fig.ll .  Multiresolution shape deformation. 

Multiresolution shape deformation. Note that  
our Level 3 shape model is represented in two 

6 A p p l i c a t i o n s  

Two applications, one in computer graphics and 
the other from CAD industry, are presented here to 
demonstrate the effectiveness and efficiency of the 
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proposed framework. 
In computer graphics, most existing graph- 

ics models are in the form of irregular meshes 
and remeshing is an important operation that 
transforms an irregular mesh to a semi-regular 
mesh. Remeshing operation can serve as the com- 
mon ground for the following techniques: graphics 
model compression, progressive transmission, mul- 
tiresolution editing, level-of-detail rendering and 
others. By transforming irregular meshes into 
Level 2 representations and from them generat- 

ing Level 3 representation, remeshing operation can 
be easily realized in our proposed framework. See 
Fig. 13 for an illustration. 

In computer-aided design, it is interested in ob- 
taining analytic forms of the model with a high 
level structure. In our Level 3 shape representa- 
tion, given a parameterization ~r of M J over M ~ 
the mesh M J can be divided into triangular patches 
corresponding to the faces in M ~ These triangular 
patches can be further processed into a triangular 
B-spline surface [11. See Fig.14 for an illustration. 

(a) (b) (c) 

Fig.14. Smooth surface reconstruction. (a) Automatically generated base mesh from a dense range data. (b) Restructure 

the range data. (c) C 2 triangular B-spline surface. 

7 Conc lus ion  

In this paper an efficient framework for mul- 
tiresolution free form object modeling is proposed 
with a new hierarchy of shape representations for 
point sampled geometry. By transforming between 
the proposed hierarchical shape representations, 
the proposed framework offers concise integration 
of various volumetric and parametric surface-based 
modeling functions for free form object modeling, 
and thus, simplifies the complete modeling process 
and reduces the computationM cost as required by 
previous reported algorithms. 
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