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Abstract:    Recently unstructured dense point sets have become a new representation of geometric shapes. In this paper we 
introduce a novel framework within which several usable error metrics are analyzed and the most basic properties of the pro-
gressive point-sampled geometry are characterized. Another distinct feature of the proposed framework is its compatibility with 
most previously proposed surface inference engines. Given the proposed framework, the performances of four representative 
well-reputed engines are studied and compared. 
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INTRODUCTION 
 

With the recent advances in 3D digital photog-
raphy and scanning technology, unstructured dense 
point sets sampled from the surfaces of physical ob-
jects have become a new representation of geometric 
shapes. The shape thus specified is usually referred to 
as point-sampled geometry (Amenta and Kil, 2004; Liu 
et al., 2004; Pauly et al., 2003; Zwicker et al., 2002), 
in which two key techniques are involved: 

(1) The raw point data P is discrete in nature 
while the physical objects to be described must have 
connected volumes bounded by continuous surfaces. 
Then, how to infer a continuous surface representa-
tion S(P) from P (Fig.1a)? 

(2) To achieve high geometric fidelity, the point 
data output from physically sampling processes usu-
ally consists of a large number of points. Then, given 
any suitable surface inference engine S(P), how to 
simplify the original point data or convert it into a 
progressive representation that is often desired by 
downstream graphics and visualization applications 
(Fig.1b)? 

In this paper we propose a simple and powerful 

framework that works with most previously proposed 
surface inference engines and outputs a progressive 
representation of point-sampled geometry. We first 
develop a promising progressive model and identify 
the inherent problems to be solved in Section 2. In 
Section 3, we present the proposed framework, ana-
lyze several usable error metrics and characterize the 
most basic properties of the progressive point-sam-
pled geometry. The efficiency of any particular sur-
face inference engine depends to a large extent on the 
type of data involved. Given the proposed framework, 
empirical studies are conducted and presented in 
Section 4 to evaluate the efficiency of four well-re-
puted surface inference engines. Finally our con-
cluding remarks are presented in Section 5. 
 
 
PROGRESSIVE MODEL AND PROBLEM 
SPECIFICATION 
 

In real world scenarios, sample point data often 
suffer from two flaws: noise and undersampling. In 
our study (Liu, 2003), instead of solving all problems 
once, we stratify the problems in point-sampled ge-
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ometry: here we consider the given point data P to be 
unstructured, free of noise and sufficiently sampled. 
Each point pi∈P is associated with a unit normal 
vector ni. 

Let P′⊆P. Given any well-defined surface in-
ference engine, two surfaces S(P) and S(P′) can be 
inferred. To measure the difference between S(P) and 
S(P′), we use an error metric d(,) induced from an 
error norm ||⋅|| (to be defined), such that d(S(P), 
S(P′))=||S(P)−S(P′)||. Denote the cardinality of a set X 
as #X. We say, a best approximation to P of order m, 
subject to the norm ||⋅||, is a subset P′⊆P which satis-
fies 
 

arg min{|| ( ) ( ) ||: , # }.
P

P S P S P P P P m
′′

′ ′′ ′′ ′′= − ∀ ⊆ =  

 
A progressive sequence of P is then an ordered set of 
subsets {P0,P1,…,P} with orders {#P0,#P0+1,…,#P}, 
each of which is the best approximation to P with the 
specified order. 

In practice, finding a truly progressive sequence 
of  a  large  set  P  by  exhaustive  searching  is  unac- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ceptable. Therefore, heuristics have to be used. In 
(Pauly et al., 2002), three heuristics, i.e., clustering, 
iterative simplification and particle simulation, are 
analyzed and quantitatively compared. In this work, 
we propose a progressive model with the following 
greedy heuristic. 

Given a norm ||⋅||, a point set P and a subset P′, a 
point pk∈P′ is called the finest detail point in P′ if it 
satisfies 
 

arg min{|| ( ) ( \ ) ||, }.
pi

k i ip S P S P p p P′ ′= − ∀ ∈  

 
We start from the original set P, initialize P′=P and 
recursively extract the finest detail points di from P′. 
Let the process be terminated at a certain subset P0. 
During the process, a sorted set D={…,di,di+1,…} of 
finest detail points is readily obtained. Then P is de-
composed into two parts (P0,D) where P0 encapsu-
lates a basic shape of P and D encodes the detail parts 
of S(P) point by point. A distinct feature of this 
greedy strategy is, while (P0,D) offers a richer pro-
gressive representation of S(P),  both  representations  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.1  Progressive point-sampled geometry; the original Virgin Mary data are stored in external memory and is

preprocessed by applying the dual Hermite downsampling scheme in (Liu et al., 2003) to fit in main memory.
(a) A continuous surface inferred from 109408 ponits; (b) Progressive refinement 

Pt. Num.: 14.795 54.321 80.620 

(a) (b) 
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(P0,D) and P have the same storage since D is just a 
re-ordering of P\P0. Now the questions are 

(1) What is the general form of the error norm ||⋅|| 
for progressive point-sampled geometry? 

(2) What are the basic conditions that should be 
satisfied by the proposed norm ||⋅||? 

(3) What are the basic geometric characteristics 
of the proposed norm ||⋅||? 
 
 
FRAMEWORK 
 

To measure the difference between two point- 
sampled surfaces, a widely accepted metric [e.g., in 
(Pauly et al., 2002)] is to up-sample the two surfaces 
and measure the difference by the two-sided Haus-
dorff distance. In our setting, since the original point 
data P is free of noise, dense, and sufficiently sampled, 
we expect the engine S to interpolate P as well as any 
P′⊆P; accordingly we propose to measure the dif-
ference with the following general q-norm: 

 
1/

1
\

|| ( ) ( ) || | ( , ( )) | ,
i

q

q
q i

p P P

S P S P dist p S P≥
′∈

 
′ ′− =   

 
∑  (1) 

 
where function dist(pi,S(P′)) reports an error distance 
measure between a point pi and the surface S(P′). If 
the engine S approximates P′, we simply replace the 
term pi∈P\P′ by pi∈P in Eq.(1). To study the basic 
properties inherent in this norm, in the following we 
consider different types of surface inference engines. 
 
Surface inference engines 

Many engines exist in literature on continuous 
surface inference from dense point sets; among which 
we analyze three well-known classes. The first class 
includes the triangulation techniques (Amenta et al., 
1998; Edelsbrunner and Mucke, 1994; Liu and Yuen, 
2003) that locally connect the data points into a 
globally structured formtriangle meshes. Two 
major characteristics are inherent in the triangulation 
techniques. First, triangle meshes can only accom-
modate piecewise linear, i.e., C0-continuous, surfaces. 
Second, triangulation techniques interpolate point set 
P and thus, only work for noise-free data and require 
strict sampling criteria. There are several possible 
formalizations of the sampling criteria among which 

two representatives are proposed in (Amenta and 
Bern, 1999; Cheng et al., 2004). 

The second class fits parametric surfaces to the 
sample points. NURBS surfaces are most commonly 
used. Either interpolation or approximation can be 
realized by parametric surface fitting. So far paramet-
ric surfaces are best suited for describing shapes with 
prescribed topological type, mostly homeomorphic to 
an open disc (Weiss et al., 2002). This gives a very 
serious limitation to shape that a single parametric 
patch can model. For shapes with complex topological 
types, automatic surface fitting with tight tolerances is 
a difficult task and user interaction is often required to 
setup a net of reasonable patches (that are usually 
rectangular) with mounting which needs to maintain 
continuity across the patch boundaries. 

The third class describes point-sampled geome-
try as level sets of a scalar field defined in Rd. The 
scalar field can be determined by a differentiable 
function F:Rd→R and the level set of F correspond-
ing to a real value c∈R is the set of points 
{p∈Rd|F(p)=c}. If d=3 (resp. 2), the level set is 
known as a level surface (resp. level curve). In graphics 
and vision applications, F is usually restricted to al-
gebraic functions and c a regular value of F, i.e., the 
gradient vector does not vanish at all points of F−1(c). 
Since the scalar field representation puts no restric-
tions on the shape’s topological type (ref. Figs.1a and 
2a), it has been widely used for modeling shapes with 
both complex topology and rich geometric details. 
State-of-the-art level set models in graphics and vi-
sion applications are motivated by the latest results in 
approximation theory that takes moving least squares 
(MLS) methods (Levin, 1998; 2003) and radial basis 
function (RBF) methods (Lazzaro and Montefusco, 
2002; Wendland, 2005) into consideration. 

In this work, since we are particularly interested 
in graphics and vision applications with complex 
geometric models, in the following, we concentrate 
on the level set models. 

 
Algebraic vs geometric error distance functions 

To use the general norm in Eq.(1), we need to 
define the function dist(pi,S(P′)) which reports an 
error distance measure between a point pi and the 
surface S(P′). One natural choice of the error distance 
is the shortest Euclidean distance between point pi 
and the surface S(P′). In the context of level set 
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models, this distance is known as the geometric dis-
tance (Sullivan et al., 1994). In general, the true 
geometric distance cannot be computed in closed 
form so that in practice, the geometric distance is 
found by solving a nonlinear least squares estimation 
problem that usually requires the closest point in S(P′) 
to be computed iteratively for every query point pi. 
Standard methods such as Levenberg-Marquardt 
method and variants of Newton’s method would be 
appropriate. 

Computationally, it is often more desirable to 
use the algebraic distance defined as the scalar field 
value F(pi) at pi, where the continuous level surface M 
is inferred by F(p)=0, ∀p∈M. Computing algebraic 
distance is usually fast. However, whether linear or 
nonlinear, it is well known that the evaluation based 
on the algebraic distance introduces serious bias since 
it does not reflect the geometric relationship between 
the data point pi and the surface S(P′) (Sullivan et al., 
1994; Taubin, 1991). Our experimental results shown 
in Fig.2b also demonstrate this characteristic. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the presented framework, we propose a fast 
and practical solution that uses a first order approxi-
mation to compute the geometric distance. In our 
setting, each point pi∈P is associated with a normal 
vector ni. Given that the data P is uniform and suffi-
ciently sampled, we define a first order approximation 
of the geometric distance from a query point x∈R3 to 
the level surface S(P) as follows. 

We find the nearest neighbor pnn(x) in P for any 
inquiry point x∈R3. Then the first order approxima-
tion of the geometric distance is defined as 
 

nn( ) nn( )_ ( , ( )) ( ) .x xgeom dist x S P x p n= − ⋅     (2) 

 
See Fig.3 for an illustration. To use the above geo-
metric distance approximation, for any progressive 
approximation S(P′), P′⊆P, we need to maintain a 
uniform and sufficient sampling of S(P′). The up-
sampling scheme with the uniform particle simulation 
proposed in (Pauly et al., 2002) can be applied here. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2  Comparison of algebraic and geometric distances. (a) A continuous surface interred from a set of 3600
points by level set models; (b) Offset surfaces generation by using algebraic distance; (c) offset surfaces
generation by using geometric distance 

Negative offet Positive offet 

Negative offet Positive offet 
(b) 

(c) 

(a) 
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Basic properties of error norm (1) 
Definition 1    A point-sampled shape space of order n 
is a set P of n sample points. Given a surface infer-
ence engine S, a shape space is normed if for any 
subset (or subspace) P′⊆P there is a real number 
designated by ||P′||q, q≥1, where 
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\

|| || || ( ) ( ) ||

        | _ ( , ( )) | .
i

q q

q

q
i

p P P

P S P S P

geom dist p S P
′∈

′ ′= −

 
′=   

 
∑

  (3) 

 
Definition 2    Given a normed shape space P, a sur-
face inference engine is called advanced if it satisfies 
the strong triangle inequality 
 

|| || min{|| || ,|| || },q q qP P P P′ ′′ ′ ′′∪ <           (4) 

 
where P′≠P″ are two arbitrarily nonempty subsets of 
P. 

In the above definition, the operator “∪” be-
haves like “+” in the vector space. This definition 
makes sense since intuitively P′∪P″ contributes more 
points and thus should infer a better approximate 
shape than the shape inferred by either P′ or P″. The 
normed shape space so defined satisfies the following 
algebraic properties: 
Lemma 1    Let P be an arbitrary normed shape space 
associated with an advanced surface inference engine. 
The norm defined in Eq.(3) satisfies the following 
properties: 

(1) ||P′||q≥0 (positivity) 
(2) ||P′||q=0 if P′=P″ (semi-difiniteness) 
(3) ||P′∪P″||q≤||P′||q+||P″||q  (triangle inequality) 

where P′, P″⊆P. 

We omit the simple proof of Lemma 1 here. In 
the following, we show that all the norms defined by 
Eq.(3) are in a sense equivalent. 
Theorem 1    If ||⋅||α and ||⋅||β, α, β≥1, are two arbitrary 
norms defined on a shape space P, then ∀P′⊆P, we 
have 
 

1 || || || || || || ,P P m P
m

β
α β αα

′ ′ ′≤ ≤  

 
where m=#(P\P′). 
Proof    If q=∞, then 

\|| || max | _ ( , ( )) | .
ip P P iP geom dist p S P′∞ ∈′ ′=  
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Thus 
1/ 1/|| || || || || || ,P m P m Pβ β

β α∞′ ′ ′≤ ≤  
and 

1/ 1|| || || || ( ) || || .P P m Pα
β α

−
∞′ ′ ′≥ ≥  

 
That completes the proof.  

Note that given a fixed m>1, if α, β>>1, then 
,  1m mβα →  and the lower and upper bounds in 

Theorem 1 become tighter. 
 

Implementation issues 
Recall that in Section 2, we define a progressive 

model with greedy heuristic by recursively extracting 
the finest detail points from a point set P. To imple-
ment this model, we need to choose an advanced 
surface inference engine and a norm with a specified 
constant q. 

Given a point subset P′, the desirable surface 
inference engine should provide points on surface 
S(P′) that are fast and stable such that the uniform 
upsampling of S(P′) for geometric distance calcula-
tion (ref. Eq.(2)) can be achieved quickly. This would 
require that the surface inference mechanism satisfies 
a local fitting property: recently proposed MLS en-
gine (Alexa et al., 2003) based on Levin’s projection 
operator (Levin, 1998; 2003) and engines (Lazzaro 
and Montefusco, 2002; Ohtake et al., 2003; Renka, 
1988) based on the partition of unity method fall into 

geom_dist(x,S(P)) 

X 

S(P) 

Fig.3  Computation of the first order approximation
of geometric distance in R2 
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this scope. We emphasize that one distinct feature of 
the presented framework is its compatibility with all 
these surface inference engines. Since the perform-
ance of different engines depend to a large extent on 
the type of data involved, among these four 
well-reputed engines, the best one for a class of se-
lected datasets is found in the next section by em-
pirical studies. 

In the proposed progressive model, to algo-
rithmically determine the finest detail point from a 
subset P′⊆P, for every point pi∈P′, we calculate the 
error measure ||P′\pi|| with a chosen norm and attach it 
to pi as a key value. By sorting P′ into a queue with 
the key values, the finest detail point in P′ is readily 
obtained at the top of the queue with the minimal key 
value. Due to the local fitting property inherent in the 
surface inference engine, extracting one point pi from 
the queue only locally affects key values in a small 
number of points that are neighbors of pi in P′. By 
reassigning the key values and updating the positions 
of these points in the queue, the recursive extraction 
of finest detail points is efficiently done. The only 
thing left now is to choose a norm with a specified 
constant q in Eq.(3). 

Consider the case of removing one point p from 
a subset P′⊆P. To evaluate the norm ||P′\pi||, instead 
of calculating all #(P\(P′\pi)) items inside the sum-
mation of Eq.(3), an efficient way is to update the 
value ||P′\pi|| from ||P′||. Due to local fitting property, 
this update can be done efficiently by re-evaluating 
the geometric distances of a few neighboring points of 
p in P\P′. For this updating, if we choose any norm 
with q≠∞, we need to record all the values 
|geom_dist(pj,S(P′))|, ∀pj∈P\P′. Since by Theorem 1 
all the norms are equivalent in a topological sense, we 
propose to use q=∞ norm, i.e., ||P′||∞= 

\
max | _ ( , ( )) |:
i

ip P P
geom dist p S P

′∈
′  by using this norm, 

we only need to record one maximal value 

\
max | _ ( , ( )) |
i

ip P P
geom dist p S P

′∈
′  for S(P′). 

 
 

EMPIRICAL STUDIES OF FOUR SURFACE IN-
FERENCE ENGINES 
 

In the presented studies, we examine the per-
formances of four well-reputed surface inference 

engines by using the proposed framework with a class 
of selected point models used in (Liu, 2003) in which 
four of them shown in Fig.4.  

The selected geometric data have the following 
characteristics: 

(1) All the data exhibit complex geometric shape 
with both complex topological types and geometric 
fine details; 

(2) Many data exhibit many tiny planar regions, 
e.g., plenty of thin-shell structures accommodated in 
the Wecker and Jalor models in Fig.4. This type of 
data frequently arises from solid crash simulation, 
numerical fluid simulation and scientific visualization. 
We refer to this type of data as CAD-models; 

(3) Apart from CAD-models, the rest of the 
models exhibit smoothness everywhere with some 
semantic (curved) features. These semantic features 
are significant for human perception and are best 
characterized by high curvature variation. We refer to 
this type of data as graphical-models. 

The surface inference engines under investiga-
tion include 

(1) A modified quadratic Shepard’s method 
(Renka, 1988); 

(2) A compactly supported RBF method 
(Wendland, 1995); 

(3) A modified RBF Shepard’s method (Lazzaro 
and Montefusco, 2002); 

(4) A moving least-squares method (Alexa et al., 
2003) with corrected Levin’s projection operator 
(Levin, 2003). 

Note that by using the proposed framework with 
engine I, the resulting progressive model is similar to 
the MPU shape scheme proposed in (Ohtake et al., 
2003). The above four engines were implemented 
using Visual C++ platform with a 3D range tree as a 
ground data structure to support range queries and 
k-nearest-neighbors searching (Chávez et al., 2001). 
 
Parameter settings 

Each of the studied engines needs to specify 
several parameters for a given object. For faithful 
comparison, we keep as many as possible of the pa-
rameters at their original settings. For engine I, we use 
the settings in (Ohtake et al., 2003): (1) by using a 
range tree for k-nearest-neighbors searching with a 
fixed k, we can obtain the value r of radius of a 
bounding sphere for each inquiry point; (2) the support 
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radius R of the corresponding weight function is set to 
be R=1.5r. For RBF engines (including both engines 
II and III), only providing surface points with scalar 
field value zero can lead to trivial solutions; thus by 
following the settings in (Carr et al., 2001), we gen-
erate two off-surface points op±=pi±cni for each 
sample point pi with unit normal ni and c=0.1r. To 
implement engine IV, let B={x∈R3 ||x−pi||<ri, ∀pi∈P} 
be a union of open balls with radius ri centered at each 
point pi∈P to define a tubular neighborhood of P in 
R3. To calculate an MLS projection operator 
PMLS:B→B, a local reference domain (a plane if in R3) 
is determined by minimizing a non-linear energy 
functional with a non-negative weight function θ. The 
widely used weight function 

2 2/( ) e r hrθ −=  gives C∞ 
continuous MLS surfaces. As suggested in (Alexa et 
al., 2003), the parameter h is not necessarily global 
and could be adapted to the local feature size. In our 
setting, we choose h locally to be the value ri of radius 
of bounding sphere for each point pi. 

All the tests shown in this paper were performed 
on an off-the-shelf PC with 512 MB RAM and a 
Pentium III processor running at 937 MHz operated 
by  Microsoft  Windows  XP.  The  performance  of  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the four engines is evaluated based on the following 
two criteria. 

 
Time and space efficiency 

Fig.5 shows computational time and memory 
requirements for different surface inference engines. 
Two notes follows. First, the presented data is ob-
tained by our implementations of different engines 
which may not be the most optimum for code gen-
eration. Second, since the progressive models only 
need to be generated once, these generations can be 
performed in an offline mode and therefore, the next 
criterion on geometric error is more crucial. 
 
Geometric error 

Fig.6 shows the quantitative error estimates of 
four models in Fig.4 by using the proposed first order 
approximation of geometric distance in Eq.(2) and the 
error norm ||⋅||∞ in Eq.(3). 

As shown by Figs.5 and 6, we reach the fol-
lowing conclusions: 

(1) For all the cases, engine II runs the slowest 
and consumes the largest memory even with an op-
timal coding for sparse matrix solver, and has rela-
tively  inferior  reproduction  property  in  terms  of 

Fig.4  Four typical test models and their representative progressive sequences 
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geometric shape inference. Thus we would not rec-
ommend engine II as a candidate engine for progres-
sive point-sampled geometry; 

(2) For CAD-models, engine I shows good re-
production property: this can be interpreted as that the 
quadratic surface works well for approximation of 
near-planar regions. Engine I also runs the fastest and  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
is easy to implement; 

(3) For graphical-models, engines III and IV of-
fer good balance between running time and reproduc-
tion properties. In all our tests, engine IV slightly 
outperforms engine III. This result comes up to our 
expectation that moving least-squares surfaces should 
offer good approximation to C∞ smooth surfaces. 

Fig.5  Execution time (a) and memory requirement (b) for the four surface inference engines running with the
point models shown in Figs.1, 2 and 4. In these figures, time and memory axes is logarithmic. For testing on large
point models, in addition to 512 MB physical memory (RAM), the system also sets up 3.5 GB virtual memory 
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Fig.6  The geometric approximation properties of the four studied engines running with the four models are
shown in Fig.4. In all the tests, the geometric error is related to the diagonal length of the cube bounding the
model. Due to unacceptable memory requirement, engine II with Wecker and Jalor models are not tested 
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CONCLUSION 
 

In this paper, a general framework is proposed to 
address the most basic characteristics inherent in 
progressive point-sampled geometry. The proposed 
framework has the following distinct features: 

(1) A promising progressive model with devel-
oped greedy heuristic; 

(2) A general q-norm based on geometric error 
measure is proposed to quantitatively characterize the 
approximate shapes; 

(3) A first order approximation of geometric 
distance from a point to a surface is adopted to rapidly 
obtain a geometric error measure; 

(4) Practical implementation issues are ad-
dressed with the proposed error norm; 

(5) Empirical studies of four well-known surface 
inference engines are presented and quantitatively 
compared. 
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