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Abstract:    Many graphics and computer-aided design applications require that the polygonal meshes used in geometric com-
puting have the properties of not only 2-manifold but also are orientable. In this paper, by collecting previous work scattered in the 
topology and geometry literature, we rigorously present a theoretical basis for orientable polygonal surface representation from a 
modern point of view. Based on the presented basis, we propose a new combinatorial data structure that can guarantee the property 
of orientable 2-manifolds and is primal/dual efficient. Comparisons with other widely used data structures are also presented in 
terms of time and space efficiency. 
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INTRODUCTION 
 

Polygonal surface has become ubiquitous due to 
its efficient representation of highly detailed geomet-
ric objects with arbitrary topological type. In 
real-world simulation and analysis, a 3D physical 
object is modelled as a closed subset in ú3 bounded by 
a connected, compact and orientable 2D manifold. 
For algorithmically describing orientable 2-manifold 
polygonal surfaces, the practical data structure should 
not only easily check manifold property and topo-
logical consistency, but also provide time and space 
efficiency for necessary topological operations.  

Smooth 2-manifold surfaces are well studied in 
differential geometry literature (do Carmo, 1976). 
However, topological investigations on polygonal 
models are more scattered in the topology and ge-
ometry literature (Cooke and Finney, 1967; Fomenko 
and Kunii, 1997; Giblin, 1981; Gross and Tucker, 
1987; Sieradski, 1992) and harder to locate. The work 
is aimed at collecting these scattered polygonal 

modelling work and presenting a rigorous theoretical 
basis for orientable polygonal surface representation 
from a modern point of view.  

Many data structures have been proposed to al-
gorithmically manipulate polygonal models. How-
ever, surprisingly, the only data structure we know so 
far that can guarantee 2-manifold property is the 
doubly linked face list (Akleman and Chen, 1999). In 
this paper, based on the proposed theoretical basis, we 
also present a new manifold-guaranteed data structure 
for comparison with most widely used data structures 
in terms of time and space efficiency. 
 
 
PRELIMINARIES  
 

An n-dimensional manifold (n-manifold for 
short) is a second countable, Hausdorff space in 
which each point has an open neighborhood ho-
meomorphic to ún. Manifolds are particularly nice 
topological spaces. If the neighborhood of each point 
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in such a topological space T is homeomorphic either 
to ún or to the n-dimensional half-space Hn, Hn={(x1, 
x2, …, xn)∈ún|x1≥0}, then T is an n-manifold with 
boundary. The boundary of T, denoted as ∂T, is the set 
of points with a neighborhood homeomorphic to Hn. 
The complement T−∂T is called the interior of T, 
denoted by Int(T). 
Definition 1    Compact and connected 2-manifolds 
are called surfaces. 

Let Φ be a closed, non-self-intersecting path in a 
surface S. Imagine one bug starting out at any point on 
Φ with a choice of orientation and carrying this ori-
entation with it around Φ once. When it comes back 
to the starting point, if the chosen orientation is re-
versed, Φ is called an orientation-reversing path. A 
closed path that does not have this property is called 
an orientation-preserving path. A surface is orientable 
if every closed path in it is orientation-preserving; 
otherwise, the surface is nonorientable. 

Given a topological space T, a k-cell c, k≥0, is a 
subspace of T whose interior is homeomorphic to úk 
and whose boundary is ∂c=Cls(c)−Int(c), where 
Cls(c)=∩{B⊂úk|c⊆B and B is closed} is the closure 
of c. In particular, a 0-cell is called a vertex, a 1-cell 
an edge, a 2-cell a face (or a polygon) and a 3-cell a 
polyhedron. Denote the dimension of a k-cell c by 
dim(c)=k. 
Definition 2    A cell d-complex (M, C) of a 
d-manifold M is a finite collection { }

Ci i IC c ∈=  of 

cells whose union is M such that (Cooke and Finney, 
1967; Sieradski, 1992) 

(1) ∀i∈IC, ∂ci is either empty or the union of 
cells from C; 

(2) ∀i, j∈IC, i≠j, Int(ci)∩Int(cj)=∅; 
(3) ∀i, j∈IC, i≠j, if ci∩cj≠∅, then ci∩cj is the 

union of cells from C; 
C is called a subdivision of M. 
Given two cells ci, cj∈C, if ci⊆∂cj, ci is called a 

subcell of cj. Two cells ci, cj are incident if either 
ci⊆∂cj or cj⊆∂ci. If ci⊆∂cj and dim(cj)−dim(ci)=1, 
write .i jc c≺  Two cells cα, cβ are adjacent if either 

(1) dim(cα)=dim(cβ)=0 and, ∃cγ, dim(cγ)=1, such 
that α γc c≺  and ,β γc c≺  or 

(2) cα∩cβ ≠∅. 
Note that (1) adjacent relation includes incident 

relation; (2) incident relation is a strict partial order-

ing of C while adjacent relation is not. 
If all k-cells in (M, C) are restricted to be the 

convex hull of a collection of k+1 affinely inde-
pendent points, the resulting special cell complex is 
called simplicial complex (Giblin, 1981). 

Given a d-manifold M, the dual of a complex (M, 
C) is another complex (M, C*) for which there exists a 
one-to-one mapping Ψ from C to C* such that  

(1) the image of a k-cell in C under Ψ is an 
(d−k)-cell in C*, and  

(2) Ψ preserves the adjacent relationship, i.e., 
cells Ψ(cα) and Ψ(cβ) are adjacent in C* if and only if 
cα and cβ are adjacent in C. 
 
 
ORIENTABLE POLYGONAL SURFACE REP-
RESENTATION 
 

Analogous to the general 2-manifold definition 
in Section 2, we give below a definition on polygonal 
models and rigorously affirm its manifoldness prop-
erties.  
Definition 3    An extended cell complex model (S, C) 
is a cell 2-complex which satisfies  

(1) for every 2-cell cf in C, cf is locally homeo-
morphic to planar convexity with internal angles 
strictly less than π; 

(2) for every 0-cell cv in C, the union of all the 
2-cells in C that are incident to cv is homeomorphic to 
a two-dimensional disk. 

In the above definition, we restrict the internal 
angles of any convex 2-cell to be strictly less than π, 
such that the each vertex in C has degree of at least 3. 
The original cell complex presented in Definition 2 
does not guarantee a manifold structure, e.g., consider 
two tetrahedra joined at a common vertex v (Fig.1a): 
the object is obviously non-manifold with a singular 
point v, while its structure satisfies Definition 2. To 
exclude this case, we set Condition (2) in Definition 3: 
this condition enforces the manifold propertyeach 
point of a surface has an open neighborhood ho-
meomorphic to ú2on the cell complex model 
(Fig.1b). 
Lemma 1    Given a subdivision C of a closed surface 
S depicted by an extended cell complex model (S, C), 
any two distinct faces in C either (1) are disjoint, or (2) 
have one vertex (0-cell) in common, or (3) have two 
vertices (0-cell) and one edge (1-cell) joining them in 
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common; and the vertices, edges and faces in C sat-
isfy (1) each face is bounded by at least three edges; 
(2) each edge has exactly two incident faces; (3) each 
vertex has degree of at least 3. 

Moreover, the graph constituting of vertices and 
edges in C is a simplicial 1-complex. 
 
 
 
 
 
 
 
 
 
 
Proof    It suffices to investigate all (but few) con-
figurations that may possibly violate Lemma 1. First, 
by Definition 2, the configurations shown in Figs.2a 
and 2b cannot form cell complexities. By Condition 
(2) in Definition 3, the configuration in Fig.2c cannot 
occur neither. Then the only possible configuration 
that could violate the combinatorial conditions in 
Lemma 1 is shown in Fig.2d in which two 1-cells e1 
and e2 both belong to the boundaries of 2-cells f1 and 
f2, respectively. Let p1∈e1 and p2∈e2, and let l be the 
line segment joining p1 and p2 (Fig.2e). Since both 
2-cells f1 and f2 are convex, l⊂f1 and l⊂f2; such a case 
can only occur when the case in Fig.2a is satisfied, a 
contradiction. That proves the combinatorial condi-
tions stated in Lemma 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For the simplicial graph statement, the proof 
directly follows from its definition: a graph is called 
simplicial if it has no self-loops (i.e., an edge joining a 
vertex to itself) or multiple edges (i.e., two vertices 
connected by more than one edge). Self loops and 
multiple edges are not accepted in our statement since 
planar convex 2-cells only admit line segments as 
compatible 1-cells. That completes the proof. 
Theorem 1    All the polygonal surfaces represented 
by extended cell complex models (S, C) are 
2-manifold. 
Proof    A geometric object in ú3 is 2-manifold if and 
only if each point of the object has an open 
neighborhood homeomorphic to ú2. Given a surface 
S⊂ú3 represented by an extended cell complex model 
(S, C), all the points p∈S can be classified into three 
cases: 

(1) p∈Int(cf): the point p lies in the interior of 
some face (2-cell) cf∈C; 

(2) p∈Int(ce): the point p lies in the interior of 
some edge (1-cell) ce∈C; 

(3) p=cv: the point p coincides with some vertex 
(0-cell) cv∈C. 

By Definition 2, the configuration in Fig.2a 
cannot exist in a cell complex and then every point in 
Case (1) has a local open neighborhood homeomor-
phic to ú2. By Lemma 1, each edge in a cell complex 
has exactly two incident faces and then every point in 
Case (2) has two local neighborhoods in the corre-
sponding two incident faces each of which is ho-
meomorphic to H2 and whose union is homeomorphic 
to ú2. By Condition (2) in Definition 3, every point in 
Case (3) has a local open neighborhood homeomor-
phic to ú2. That completes the proof. 
Corollary 1    Let a surface S of a constant genus g be 
represented by an extended cell complex model (S, C). 
Then the numbers of vertices, edges and faces in C are 
pairwise linearly proportional. Furthermore, the 
storage of any combinatorial data structure based on 
one adjacency relationship has the same storage 
bound Θ(n), where n is the number of elements in C. 
Proof    Let nV, nE, nF denote, respectively, the num-
bers of vertices, edges and faces in C. The Poincare 
formula gives 
 

V E F 2 2 ,n n n g χ− + = − =  
 

where χ is the Euler characteristic. Given g being a 

(a) (b) 

v 

p p 

Fig.1   Manifoldness of extended cell complex model 
(a) A dangling vertex; (b) Polygonal disk 

Fig.2  Proof of Lemma 1 
(a)~(e) All possible non-manifold configurations 

(a) (b) 

(d) 

(c) 

(e) 

e2 
e1 

f1 

f2 

p1 
p2 

l 
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constant, so is χ. By Lemma 1, 2nE≥3nF and 2nE≥3nV. 
Then a simple calculation shows that  
 

V E V

V F V

3 3 3 ,
2
1 2 2 .
2

n n n χ

n χ n n χ

 ≤ ≤ −

 + ≤ ≤ −


 

 
That completes the proof. 
Definition 4    A local orientation in a 2-cell is de-
fined by specifying a direction of rotation about its 
barycenter (Fig.3a). Two 2-cells fi and fj sharing a 
common edge e are said to be coherently oriented if 
the two sides of e have opposite directions in fi and fj 
(Fig.3b). 
 
 
 
 
 
 
 
 
 
 
Definition 5    A refinement of a 2-cell f is con-
structed by (Fig.3c) 

(1) creating one 0-cell vf inside f, 
(2) creating one 0-cell ve on each 1-cell ,e f≺  

and 
(3) connecting vf by new edges to every 0-cell 

(both old and new) on ∂f. 
Since f is convex, such a refinement is always 

geometrically valid. If f is oriented, then each newly 
created 2-cell by refinement has an induced orienta-
tion from f (Fig.3c). 
Theorem 2    A polygonal surface S represented by an 
extended cell complex model (S, C) is orientable if 
and only if all the 2-cells in C can be assigned an 
orientation in such a way that any two 2-cells sharing 
a common edge are coherently oriented. Otherwise, S 
is non-orientable. 
Proof    By definition, a surface S is orientable iff all 
closed paths in it are orientation-preserving. Let Φ be 
an arbitrary closed path in S. Denote by Y the set of all 
2-cells in C intersected by Φ and denote by n the 
number of 2-cells in Y: if Φ overlaps some edge 

(1-cell) in C, any one of two 2-cells incidents to that 
edge counts. After sufficient refinements, without 
loss of generality, suppose each 2-cell in Y contains a 
single connected piece of Φ. 

First, we assert that the 2-cells in Y can be or-
dered in such a way that fi shares a common edge with 
at least one of the 2-cells {f1, …, fi−1}, 2≤i≤n. To 
prove this assertion, index any 2-cell in Y by f1 and set 
Y=Y−f1; then choose any 2-cell in Y as f2 that shares an 
edge with f1 and set Y=Y−f2. Keep running this proc-
ess by choosing any 2-cell as fi that shares an edge 
with some cell in {f1, …, fi−1} and setting Y=Y−fi. If 
this process stops with Y≠∅, then we have two non-
empty sets of 2-cells Y1={f1, …, fk} and Y2={fk+1, …, fn} 
such that no 2-cells in Y1 have an edge in common 
with any 2-cell in Y2. If any 2-cell in Y2 shares a vertex 
v with some 2-cell in Y1, denote the set of all 2-cells in 
C incident to v by Starf(v)={f: f∈C, dim(f)=2 and v⊂∂f} 
(Fig.4). Let Y=Y∪Starf(v) and restart the process. If 
the whole process again stops with Y≠∅, then we 
have two nonempty sets Y1 and Y2 such that no any 
2-cell in Y1 have an edge or a vertex in common with 
any 2-cell in Y2. By Lemma 1, Y1 and Y2 are two 
disjoint nonempty sets and thus yield a partition of Φ; 
a contradiction to the fact that Y=Y1∪Y2 contains a 
connected, closed path Φ. 

 
 
 
 
 
 
 
 
 

 
Now, for any given closed path Φ in S, let 

Y={f1, …, fn} be the set of finite 2-cells in C inter-
sected by Φ and according with the order that fi shares 
a common edge with at least one of the 2-cells in 
{f1, …, fi−1}, 2≤i≤n. The ordering in Y fuses the local 
coherent orientation in each fi∈Y into a global one. In 
other words, since each 2-cell in Y contains a single 
connected piece of Φ, induced by orientation in each 
cell of Y, the pieces of Φ are coherently oriented. Thus, 
any closed path in S is orientation-preserving and the 

(a) (b) (c) 

ve 

vf 

Fig.3  Local coherent orientation and 2-cell refinement 
(a) Local orientation in a 2-cell; (b) Coherent orientation 
of an edge; (c) 2-cell refinement 

Starf(v) 

Υ∪Starf(v) 

v 

Fig.4  Proof of Theorem 2 
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surface S is orientable. That proves the sufficient 
condition of Theorem 2. 

To prove the necessary condition of Theorem 2, 
suppose the required orientation in Theorem 2 cannot 
be assigned, i.e., at least two 2-cells sharing a com-
mon edge are not coherently oriented. Let Φ be any 
closed loop which intersects both 2-cells and is con-
tained completely inside these two 2-cells. It is im-
mediately seen that Φ is an orientation-reversing path 
so that S is nonorientable. 

Fig.5 illustrates two examples of orientability 
validation of a cylinder and a Mobius band by ap-
plying Theorem 2. The classification theorem for 
surfaces (Giblin, 1981; Sieradski, 1992) shows that 
all non-orientable surfaces contain at least one copy 
of the Mobius band and the surfaces that do not con-
tain any copy of the Mobius band are orientable.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A NEW COMBINATORIAL DATA STRUCTURE  
 

By Corollary 1, any combinatorial representa-
tion based on any one of vertex, edge and face lists 
would have the same storage bound. Note that in the 
cell complex model, vertices and faces are inter-
changeable since they are dual to each other and both 
are connected by edges. In this section, we propose a 
new combinatorial data structure that uses a quadedge 
list as the core. 

For each edge of the polygonal surface, to offer 
direct access to local orientation information, akin to 
the half edge data structure (Mantyla, 1988), the edge 
is split into two directed counterparts: with each so 
directed as to indicate a coherent orientation (Defini-
tion 4) in one of its two incident faces. By duality, in 
the proposed edge list, each edge record is thus rep-

resented by a quadruple edge structure (Fig.6) whose 
C definition is 

 
struct Edge { 

QuarterEdge    *QE[4]; 
Edge    *nxte; 
Edge    *pree; 

}; 
 
 
 
 
 
 
 
 
 
 
 
 

Refer to Fig.6. Each quarter edge is also linked 
to its previous and next quarter edge to offer a simple 
and clear solution to the local traversal problem: 
 

struct QuarterEdge { 
void    *data; 
QuarterEdge    *nxtqe; 
QuarterEdge    *preqe; 

}; 
 

The data pointer is reserved to store any surface 
properties to the quarter edge. As a short summary, 
the first advantage of the proposed data structure is its 
conceptual simpleness and ease of implementation; 
i.e., it can be implemented with a single doubly con-
nected edge list. See Fig.7 for an illustration. 
Definition 6    The proposed primal/dual efficient 
representation (PDER for short) for describing the 
extended cell complex models is a single doubly 
connected edge list. Each edge entity consists of four 
quarter edges and each quarter edge is ordered as 
illustrated in Figs.6 and 7, i.e., fields QE[0], QE[2] 
refer to one (say, primal) structure and fields QE[1], 
QE[3] refer to the dual structure. 

The PDER structure is similar in spirit to the 
quad-edge data structure proposed in (Guibas and 
Stolfi, 1985). Below is a side by side comparison to 
most existing well-known data structures with which 
we show that our proposed structure has the following 
distinct features: (1) direct access to both  primal  and 

a 

a 

a 

a 

Cylind 

Moblus 

Fig.5  Orientability of a cylinder and non-orientability
of a Mobius band 

f1 

f2 

v1 v2 

f1 

f2 

v1 v2 
[1] 

[2] 
[3] 

[0] 

Fig.6  Quarter edge ordering: vertices and faces are 
represented by loops in the proposed PDER 
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dual topological information; (2) sufficiency to rep-
resent orientable 2-manifold surfaces; (3) time and 
space efficiency. 

 
Primal/dual efficiency 

To provide a uniform view to both primal and 
dual structures, PDER does not have additional vertex 
and face lists; instead, both vertices and faces of the 
surface are represented in PDER by closed loops in 
the edge lists. This point is best illustrated by Fig.7. 
By Corollary 1, the numbers of vertices, edges and 
faces are linearly proportional. Then a linear scan 
over all quarter edges, with one more bit for each 
quarter edge to indicate the check status, is sufficient 
and necessary to identify all vertices and faces (dual 
vertices). Thus we have  
Lemma 2    Given a PDER for a surface S, it takes 
Θ(n) time to identify all vertices and faces (dual ver-
tices) in S, where n is the number of edges in S. 

Since PDER does not distinguish vertices and 
faces, both vertex and face can be geometrically re-
alized with the following geometric element: 

 
struct GeomElement { 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

float    p[3]; 
QuarterEdge    *qe; 

}; 
 
For vertices, p[3] specifies the point coordinate 

(x, y, z). For faces, p[3] specifies the normal vector nx, 
ny, nz) (If the plane does not pass the origin, the vector 
n normalizes the plane equation (p−o)·n=0 by oxnx+ 
oyny+oznz=1; otherwise, the magnitude of the vector is 
scaled to be 1000). Note that point and face are dual to 
each other through the plane equation nx·x+ny·y+ 
nz·z−1=0. The pointer qe in the GeomElement struc-
ture points to an arbitrary incident quarter edge of the 
corresponding loop in the edge list. 

To geometrically realize both primal and dual 
structures of S, two lists of GeomElements are pro-
vided: 

(1) One is for primal structure with geometric 
elements one-to-one corresponding to loops formed 
by the fields QE[0] and QE[2] in the QuarterEdge 
elements; 

(2) The other is for dual structure with geometric 
elements one-to-one corresponding to loops formed 
by the fields QE[1] and QE[3] in the QuarterEdge 
elements. 

qe5,3 

qe5,0 qe5,1 

v3 

v2 

v4 v1 

f4 

f2 

qe5,2 

e5 

qe4,1 
v4 
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v2 

v4 

v3 v1 

f1 

f4 
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e3 

v1 

v4 
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f1 

f3 
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e2 
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v4 

v3 
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f1 
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e1 
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e1 
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Fig.7 The proposed combinatorial structure implementing a tetrahedron model 
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Let QE[j] in the ith Edge element be denoted by 
qe[i][j]. To traverse between primal and dual struc-
tures, let each 2-cell in the surface be oriented in a 
counterclockwise sense and let qe[i][0~3] be ordered 
as shown in Fig.8. Define CCW_Rot() function as 

 
CCW_Rot(qe[i][j])=qe[i][j+1 mod 4] 

 
 
 
 
 
 
 
 
 
 

The loop shown in Fig.8, i.e., 
 

qe[p][0]→qe[q][0]→qe[q][1]→qe[p][3]→qe[p][0] 
 
that traverses from primal structure to dual structure, 
and then back to primal structure, can be carried out 
by the pseudo-code: 
 

CCW_Rot(CCW_Rot(qe[p][0]→nxtqe)→nxtqe) 
 
Manifoldness and orientability validation 

The proposed PDER can be regarded as a special 
case of the quad-edge data structure (Guibas and 
Stolfi, 1985) since both are primal/dual efficient (and 
then both are edge-based) for representing surfaces. 
However, the quad-edge data structure is intention-
ally designed for non-orientable 2-manifold surfaces: 
in its associated edge algebra, in addition to the Rot 
function that is similar to our CCW_Rot() function, 
another important function Flip is defined to traverse 
between two possible local orientations around an 
edge. In contrast, our proposed PDER focuses on 
orientable surface representation with time and space 
efficiency. Consider the set Ξ of the following 
well-known data structures for polygonal surfaces: 
the incident graph (Edelsbrunner, 1987), the index 
mesh used in VRML format, the face adjacent graph 
(Ansaldi et al., 1985), the winged-edge data structure 
(WE) (Baumgart, 1972), the doubly connected edge 
list (DCEL) (Preparata and Shamos, 1985), the 
half-edge data structure (HE) (Mantyla, 1988), the 

doubly connected half-edge structure (DCHE) (de 
Berg et al., 1997). 
Theorem 3    Given a surface S with n faces, its ori-
entability and topological validity can be verified in 
Ο(n) time with Ο(n) storage. Furthermore, if S is 
orientable and topologically valid, all the data struc-
tures in Ξ representing S can be converted into PDER 
format in Ο(n) time with Ο(n) storage. 
Proof    The proof consists of three parts. First all the 
data structures in Ξ are transformed into a canonical 
form in Ο(n) time with Ο(n) storage. Then we present 
an algorithm with Ο(n) time and Ο(n) storage to 
convert the canonical form into a DCHE with mani-
foldness and orientability validation. The algorithm 
returns TRUE value if the conversion is successful, 
otherwise it reports FALSE. Finally the DCHE is 
converted into PDER format in Ο(n) time with Ο(n) 
storage.  

First it is easily seen that given any edge-based 
data structure, a linear scan with one more bit for each 
(half-)edge to indicate the check status can convert it 
into the indexed mesh data structure (If the model has 
dangling edges, it cannot be represented by an in-
dexed mesh structure; in such a case, the manifold-
ness validation will be reported to have failed). Note 
that 

(1) given a half edge, we build up its incident 
face by tracing with the nxt pointers and, the vertex 
indices in the resulting face record is ordered to in-
dicate the orientation information; 

(2) by going through all the half edges in each 
face, all the edges in the edge list are exactly checked 
twice. 

By Corollary 1, this procedure obviously takes 
Ο(n) time with Ο(n) storage. 

Second, we present an algorithm below that 
converts the indexed mesh structure into a DCHE. 
The algorithm reports TRUE if the conversion is 
successful, otherwise it reports FALSE. 
 

Algorithm: indexed_mesh_to_DCHE 
Input: A indexed mesh (F, V) 
Output: A Boolean value: if the value is TRUE, then the 

conversion is successful and a doubly connected half-edge 
structure (E, V) is also output. 
 
1.      E←∅; 
2.      for each face f in F do 
2.1.        if f has less than three vertices 

v1 v2 ep 

eq 
[1] 

[2] 
[3] 

[0] 

3 2 

1 0 
3 

2 

1 0 

Fig.8  Counterclockwise orientation for CCW_Rot()
function 
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2.1.1.        return FALSE; 
2.2.        Build half edges tracing f with induced orientation  

from f; 
2.3.        Insert the newly created half edges into E; 
2.4.       Attach the pointer pointing to the address storing f to 

each of its incident vertices; 
3.      for each half edge e in E do 
3.1.        if e→twin is not filled in 
3.1.1.        Mark by “0” all the faces attached to the vertex  

e→strv; 
3.1.2.        Mark by “0” all the faces attached to the vertex  

e→nxv→strv; 
3.1.3.        Collect all the faces with mark “1” from the faces  

attached to e→strv; 
3.1.4.        if the number of faces with mark “1” is not equal to 2 
3.1.4.1.          return FALSE; 
3.1.5.        ftwin←one of the two faces with mark “1” that is not  

e→face; 
3.1.6.        Search in the half edges tracing ftwin and find e′  

whose vertex e′→strv is equal to e→nxt→strv; 
3.1.7.        Set e→twin=e′ and e′→twin=e; 
4.      for each vertex v in V do 
4.1.        Find an incident half edge e of v in any one of its  

attached faces; 
4.2.        e′=e; 
4.3.        Start from e′, traverse the half edges around v via  

e′→twin→nxt; 
4.4.        if the above process stops by e′ back to e 
4.4.1.        return TRUE; 
4.5.        else 
4.5.1.        return FALSE; 
 

The above algorithm is self-explanatory and we 
only highlight the following several points. For topo-
logical validity, the combinatorial conditions in 
Lemma 1 are checked in Steps 2.1, 3.1.4 and 4.3. Step 
4 also takes responsibility for manifoldness and ori-
entability validation. For manifoldness validation, 
Step 4 checks Condition (2) in Definition 3, e.g., if the 
model shown in Fig.1a is read in, it cannot pass this 
step due to the dangling vertex in-between. For ori-
entability validation, by Theorem 2, if any two faces 
(2-cells) cannot be assigned a coherent orientation, 
for any vertex incident simultaneously to these two 
faces, the orientability test in Step 4 cannot be passed. 

In Algorithm indexed_mesh_to_DCHE, most 
storage is allocated at Step 2.4 in which each face is 
assigned to all its incident vertices. Since for a given 
face fi the number=

if
v of its incident vertices is equal 

to the number 
if

e  of its incident edges, by Lemma 1, 

the total storage allocated is then 

E
1 1

2 ,
i i

n n

f f
i i

v e n
= =

= =∑ ∑  

 
where nE is the number of edges in the surface S. Thus 
the storage bound is Θ(n), where n is the face number 
in S. For time complexity, the most timing-consuming 
parts in Algorithm indexed_mesh_to_DCHE is in 
Steps 3.1.1.~3.3.3. and 4.3. In these steps, for each 
given vertex all its incident faces need to be traversed. 
By duality, it equals that for each given face, traverse 
all its incident vertices. Thus exactly the same as the 
storage bound calculation above, the time complexity 
is Ο(n). 

Finally we show that the DCHE can be con-
verted into PDER format in Ο(n) time with Ο(n) 
storage. It is readily seen that the DCHE can be con-
verted into the primal structure in PDER indicated by 
quarter edge fields QE[0], QE[2] and their associated 
loops. To identify the dual structure in PDER by 
filling in quarter edge fields QE[1] and QE[3], we use 
the primal-dual-primal loop shown in Fig.8 as the 
compatible condition, i.e., the directions in the fields 
QE[1] and QE[3] are specified by satisfying the 
compatible condition: 

 
q[p][0]=CCW_Rot(CCW_Rot(qe[p][0] 

→nxtqe)→nxtqe) 
 
This process is easily shown to take Ο(n) time with 
Ο(n) storage. That completes the whole proof. 
Corollary 2    Given a polygonal surface (S, C) stored 
in a PDER format as defined in Definition 6, the 
surface S is topologically valid and orientable if and 
only if for every quarter edge qe[p][q], 

(1) the loop indicated by qe[p][q] is closed, and 
(2) the following compatible condition is satis-

fied: 
 

qe[p][q]=CCW_Rot(CCW_Rot(qe[p][q] 
→nxtqe)→nxtqe). 

 
Space efficiency and scalability 

PDER mainly uses pointers to represent the 
combinatorial structure of a surface. Suppose that an 
instantiation of PDER is stored in core memory and a 
32-bit platform is used. Typically a pointer is repre-
sented by an address of physical memory which is 
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again represented by an unsigned integer stored in a 
single machine word. Since a 32-bit platform has a 
word size of four bytes, both a pointer and a pointer to 
a pointer can be assumed to take four bytes. 

Let nE be the number of edges in a polygonal 
surface S. By Corollary 1, all the combinatorial data 
structures depicting S based on one adjacent rela-
tionship have the same linear storage bound Ο(nE). 
Now we consider the constant c in this linear bound 
Ο(nE)=c⋅nE for different representations. In all 
edge-based representations in Ξ, 

(1) DCEL (Preparata and Shamos, 1985) can be 
obtained from WE (Baumgart, 1972) by omitting two 
wings ccw-pre and ccw-succ; 

(2) DCHE (de Berg, 1997) can be obtained from 
HE (Mantyla, 1988) by omitting the edge list. 

Then it suffices to compare DCEL and DCHE 
with our proposed PDER. Each edge entity in DCEL 
has six pointers to (va, vb, ea, eb, fa, fb). Then DCEL 
totally needs 6×4×nE=24nE bytes. In DCHE each edge 
has two half edges and each half edge has five point-
ers to (strv, twin, face, pre, nxt). Then DCHE totally 
needs 2×5×4×nE=40nE bytes. In PDER, each edge 
entity has four pointers to quarter-edges and two ad-
ditional pointers to preqe and nxtqe stored in each 
quarter-edge record. Then PDER totally needs (4×2+ 
4+2)×4×nE=56nE bytes (The void data pointer in 
QuarterEdge is not counted in this calculation). 

Both DCHE and PDER can be scalable: the in-
ternal references by pre pointer can be hidden by 
locally rebuilding on demand with the knowledge that 
each loop formed by tracing nxtqe pointers for each 
quarter-edge is closed. By hiding the pre pointers, 
DCHE needs 2×(3+1)×4×nE=32nE bytes and PDER 
needs (4×1+4+2)×4×nE=40nE bytes. We can further 
develop a full scalar representation of PDER as ex-
ploited below. 

To support the function CCW_Rot(), we need to 
traverse the local orientation of an edge from QE[0] to 
QE[3] started from another quarter edge. We thus 
propose the following alternative structure for Quar-
terEdge: 

 
struct QuarterEdge2 { 

void     *data; 
Edge    *nxtqe_in; 
unsigned char     nxtqe_index; 

}; 
 

Then, for example, for the surface structure 
shown in Fig.7, the representation e1,0→nxtqe by 
using QuarterEdge structure is equivalently expressed 
by qe1,0→nxtqe_in→QE[qe1,0→nxtqe_index]. Ideally 
two bits are enough to represent the index set {0, 1, 2, 
3}. Since byte (8 bits) is the unit of most storage 
measurement, we choose the type of unsigned char 
that takes 1 byte to implement the index set. A similar 
argument holds for BOOL type: ideally one bit is 
enough to represent a BOOL variable, while in Mi-
crosoft Visual C++ 5.0 and later, BOOL is imple-
mented as a build-in type with a size of 1 byte. 

If further the model is static and the edge number 
is less than 65535, instead of using a doubly con-
nected list, we can use static array with pre-allocated 
memory to represent the edge list and use unsigned 
short int type (2 bytes) to refer to the edge index in a 
QuarterEdge3 structure: 

 
struct QuarterEdge3 { 

void     *data; 
unsigned short int    nxtqe_in_idx; 
unsigned char    nxtqe_idx; 

}; 
together with the edge array 
(QuarterEdge3 **)Edge=new (QuarterEdge3 *)[4]; 
(Edge *) Edgelist=new Edge[nE]; 

 
In the above minimum storage case, it is easily 

shown that totally 4×3×nE=12nE bytes are needed. In 
the case of maximum storage, the doubly connected 
edge list together with the following full expansion of 
QuarterEdge structure: 

 
struct QuarterEdge4 { 

void     *data; 
Edge    *nxtqe_in; 
unsigned char     nxtqe_index; 
Edge    *preqe_in; 
unsigned char     preqe_index; 
GeomElement    *geom; 

} 
 
is used, where the pointer geom specifies the geo-
metric realization of the loop involving this quarter 
edge that indicates either a vertex or a face. In this 
case, totally [(4+2)×4+(3×4+2)×4]×nE=80nE bytes 
are needed. Note that the adaptability of quarter edge 
structure from QuarterEdge2 to QuarterEdge4 can be 
implemented via C++ by a class hierarchy derived 
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from a base class QuarterEdge. We thus conclude 
Remark 1    The proposed PDER is scalable, i.e., its 
minimum required memory is 12nE bytes, and addi-
tional memory can be utilized up to 80nE bytes, if it is 
available, to speed up the retrieval of topological 
relationship. 

 
Time efficiency 

To evaluate the time complexity involving 
PDER, the performances in the following primitive 
operations are considered: 

(1) Adjacency relationship querieswhich is 
used for accessing the local surface topology; 

(2) A minimal and complete set of modification 
operatorswhich are used for manifold-guaranteed 
model development. 

Weiler (1985) showed that the following nine 
queries suffice for examining adjacency relationship: 

e((E)(E))find edges adjacent to e; 
e(V)find two vertices incident to e; 
e(F)find two faces adjacent to e; 
f<E>find the ordered circular list of edges 

surrounding f; 
v<E>find the ordered circular list of edges 

surrounding v; 
v<F>find the ordered circular list of faces 

surrounding v; 
f<V>find the ordered circular list of vertices 

surrounding f; 
v<V>find the ordered circular list of vertices 

surrounding v; 
f<F>find the ordered circular list of faces sur-

rounding f. 
The first e((E)(E)) query is trivial since our data 

structure is edge-based. By duality, we only need 
consider the four queries e(V), f<E>, f<V> and f<F>. 
Before answering these queries, we need to specify 
which one of two structures is primal. Without loss of 
generality, let fields QE[0] and QE[2] point to the 
primal structure. Refer to Fig.6. It is immediately 
shown that e(V) and f<E> queries are also trivial: 

e(V)the two vertices incident to e are just the 
two loops indicated by QE[0] and QE[2] of edge e; 

f(E)the ordered circular edge list of f is just the 
loop involving the input quarter edge qe. 

The rest of the two queries f<V> and f<F> need 
to jump among loops and are also easily answered: 

(1) For query f<V>, upon reordering, let f be 
specified by the loop constituting quarter edges qe[i], 
i=1, …, k, where k is the number of edges surrounding 
f. Then the loops formed by CCW_Rot(qe[i]), i=1, …, 
k, give the answer; 

(2) For f<F>, again, upon reordering, let f be 
specified by the loop of quarter edges qe[i], i=1, ⋅⋅⋅, k. 
Then the answer is obtained, for each vertex indicated 
quarter edge CCW_Rot(qe[i]) by using v<F> to trav-
erse the faces and abandon those already visited. 

For modelling/updating manifold surfaces, Ak-
leman et al.(2003) propose a minimal and complete 
set of operators which includes the following four 
primitives: 

CreateVertex(v)insert a new vertex v into a 
face f and split the face by joining v to each of the 
incident vertices of f; 

DeleteVertex(v)delete an existing vertex v 
together with all its incident edges and faces, and 
merge all its incident faces into a new one; 

InsertEdge(v1, v2, e)insert a new edge e into a 
face f by joining the vertices v1⊂∂f and v2⊂∂f; 

DeleteEdge(e)delete an existing edge e to-
gether with its two incident faces and its adjacent 
edges by shrinking e into a vertex. 

In the context of PDER, the above set corre-
sponds to the set of operators CreateLoop(l),  De-
leteLoop(l), InsertEdge(l1, l2, e), DeleteEdge(e), re-
spectively. Similar to adjacent relationship queries, it 
is not difficult to implement the above four operators 
in Ο(k) time, where k is the number of elements up-
dated. Below we implement InsertEdge for an ex-
ample. 

To implement InsertEdge, first we note that by 
duality, inserting an edge is equal to splitting a vertex. 
For simplicity, let e1, e2, e3, e4 as shown in Fig.9 be 
specified by l1, l2 and let ne be the new edge to be 
inserted. The following code is in order: 

 
void InsertEdge(e1, e2, e3, e4, ne) { 

e1→QE[0]→nxtqe=ne→QE[0]; 
ne→QE[0]→nxtqe=e2→QE[0]; 
e4→QE[2]→nxtqe=ne→QE[2]; 
ne→QE[2]→nxtqe=e3→QE[2]; 
e3→QE[3]→nxtqe=ne→QE[1]; 
ne→QE[1]→nxtqe=e1→QE[3]; 
e2→QE[1]→nxtqe=ne→QE[3]; 
ne→QE[3]→nxtqe=e4→QE[1]; 

} 
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As a summary, we have: 
Lemma 3  By using PDER, the adjacency relation-
ship queries e((E)(E)), e(V) and e(F) can be per-
formed in Ο(1) time and f<E>, v<E>, v<F>, f<V>, 
v<V> and f<F> can be performed in Ο(k) time, where 
k is the number of output elements (either edges or 
loops). Moreover, the manifold-guaranteed modifi-
cation operators CreateLoop, DeleteLoop, InsertEdge 
and DeleteEdge can be performed in Ο(k′) time, 
where k′ is the number of elements updated. 
 
 
CONCLUSION 
 

To examine the intrinsic properties of polygonal 
surfaces, such as manifoldness and orientability, in 
this paper we present the following results: (1) An 
extended cell complex model (S, C) is proposed to 
represent polygonal surfaces; (2) A reliable theoreti-
cal basis for orientable polygon surface representation 
is developed based on the proposed cell complex 
model (S, C); (3) Built upon the proposed theoretical 
basis, a new representation called PDER is proposed 
with a side by side comparison to most existing 
well-known data structures, showing that the pro-
posed PDER is conceptually simple, easy to imple-
ment, and is efficient in time and space efficiency. 
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