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Abstract The computation of exact
geodesics on triangle meshes is
a widely used operation in computer-
aided design and computer graphics.
Practical algorithms for computing
such exact geodesics have been
recently proposed by Surazhsky et
al. [5]. By applying these geometric
algorithms to real-world data, degen-
erate cases frequently appear. In this
paper we classify and enumerate all
the degenerate cases in a systematic
way. Based on the classification, we

present solutions to handle all the
degenerate cases consistently and
correctly. The common users may
find the present techniques useful
when they implement a robust code
of computing exact geodesic paths on
meshes.
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1 Introduction

An exact geodesic between two points in a 2-manifold
mesh is a union of line segments within the mesh, which
connects the two points and is locally length-minimized.
The computation of exact geodesic paths on triangle
meshes is a widely used operation in computer-aided de-
sign and computer graphics.

In [5], a practical implementation of the DGP algo-
rithm in [3] is proposed for computing exact geodesics
from a source point to one or all other points efficiently.
In the worst case the DGP algorithm has complexities of
O(n2) space and O(n2 log n) time, while in practice the
algorithm is observed to run in subquadratic time.

The implementation in [5] can be regarded as a generic
algorithm, i.e., it is guaranteed to be correct with a generic
situation, but how to handle degenerate cases is not re-
ported. In this paper we enumerate all the degenerate
cases risen from implementation in [5] and show that in
most cases with arbitrarily shaped triangles, the degener-
ate cases frequently appears. An example is illustrated in
Fig. 1. The mesh used in Fig. 1 has 2000 faces, 6000 edges
and 1028 vertices. The triangles in the mesh are arbitrarily

shaped, including both obtuse and acute triangles. Given
a prescribed source point, there are totally 8807 cases han-
dled, in which 2583 cases are degenerate, about 29.33%.
Some degenerate cases are illustrated later in Sect. 3.1.

In geometric computation, degenerate cases will in-
crease the instability of the generic algorithm. Theoretic-
ally, degenerate cases can be handled by using the sym-
bolic perturbation scheme [1]. Though it is a powerful
tool, this scheme may not be applicable in the computa-
tion of exact geodesic paths. First, symbolic perturbation
requires exact arithmetic, with which many users are not
familiar. Second, using symbolic perturbation does not
solve the degenerate case itself, but an arbitrarily chosen
nearby general case. Topology-oriented implementation is
another way to handle degenerate cases [4]. However, it
only guarantees to output a topology-consistent solution,
which may not be the desired topology-correct one.

In this paper, to develop a robust and fast exact
geodesic algorithm, we present a systematic solution to ef-
ficiently handle all the degenerate cases with floating point
computation [6]. By doing so, geometric predicates are
treated consistently and thus the implemented algorithm is
robust.
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Fig. 1. Geodesic computation with a prescribed source point; points
on the mesh are colored according to the geodesic distance to the
source point

2 Review of the exact geodesic algorithm

We follow the notation in [5] to quickly review the DGP
algorithm [3]. Shortest paths on mesh are rays emanat-
ing from the source vertex along tangent directions. Inside
a triangle, a shortest path must be a straight line. When
crossing an edge, a shortest path must be a straight line
when the previous face is unfolded into the plane con-
taining the next face. The only vertices (geodesic vertices
below) that a shortest path can pass through are either
boundary vertices or the vertices whose total surround-
ing angle is larger or equal to 2π. The basic idea of
the DSP algorithm is to partition each mesh edge into
a set of intervals (see Fig. 2). Each interval is encoded
by a 6-tuple (b0, b1, d0, d1, σ, τ). The terms b0, b1 are
parameters measuring distance along the edge. The un-
folded position s of the geodesic vertex is encoded by its
distances d0, d1 to the interval endpoints. A binary direc-
tion τ is used to specify the side of edge on which the

Fig. 2. A 6-tuple representation
(b0, b1, d0, d1, σ, τ) of the inter-
val

Fig. 3a–c. Interval propagation. a One new in-
terval created. b Two new intervals created.
c One new normal interval and two additional
intervals (in red) created

source lies. The term σ is the length of the path from s
back to the source vs .

Given an interval I on an edge e0, its distance field is
propagated across an adjacent face to define new poten-
tial intervals on the two opposing edges e1, e2 (see Fig. 3).
Three general cases exist for interval propagation. Accord-
ing to different cases, different new intervals are formed
on the opposing edges. If intervals already exist on the
opposing edges, the new interval may intersect some old
ones. If two intervals intersect with a nonempty region δ,
a quadratic equation

A p2 + Bp+C = 0 (1)

is solved to determine a new position p ∈ δ such that the
updated ranges of the two intervals I and I ′ are (b0, p) and
(p, b′

1), respectively.
Starting from the source point, the DSP algorithm

propagates distance information in a continuous Dijkstra-
like fashion. When new intervals are created, they are
placed in a priority queue sorted by minimum distance
back to the source. When an interval is popped from the
queue, interval propagation is performed in one of the
three cases shown in Fig. 3. The reader is referred to [5]
for a full description of this algorithm.

3 Degenerate cases

In the exact geodesic algorithm [5], two types of degenera-
cies occur in interval propagation:
1. Degeneracies on geometric intersection. These degen-

eracies arise from the determination of intersection
region between the wedge and the line segments e1
and e2 (see Figs. 3 and 4).

2. Degeneracies on geodesic discontinuities. Due to the
numerical errors in floating point computations, the so-
lution of Eq. 1 often generates small gaps or overlaps
between the newly resulted intervals; this gives rise
to geodesic discontinuities along the intervals on the
edge.

3.1 Degeneracies on geometric intersection

Basically, there are five degenerate cases in this class, as
shown in Fig. 4:
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Fig. 4. Degenerate cases on ge-
ometric intersection; the shaded
area indicates the wedge range
of b0 → s → b1

1. The position of s lies on edge e0. This case can happen
if the interval is created on e1 in the case of Fig. 3c.

2. Three points s, b0, v1 are in a straight line. This makes
the new interval on the edge e1 disappear in the case of
Fig. 3b.

3. Three points s, b1, v1 are in a straight line. This is
a symmetric case of Case 2.

4. Four points s, v0, b0, v1 are in a straight line. This also
means that points v0 and b0 coincide. In this case, the
new interval on e1 in the case of Fig. 3b must be treated
as the new interval on e1 in the case of Fig. 3c.

5. Four points s, v1, b1, v1 are in a straight line. This is
a symmetric case of Case 4.

Notice that there are some degenerate cases composed
of several basic cases. For example, referring to Fig. 4,
if three points s, b0, v0 coincide, the basic degenerate

Fig. 6. The flowchart of the decision system to handling degeneracies on geometric intersection

Fig. 5. Degeneracies on geodesic
discontinuities

cases 1, 2, and 4 occur simultaneously. Different degen-
erate cases must involve different procedures to process.
Treating degenerate cases in random order will result in
catastrophic failures in the algorithm. In Sect. 4.1, we
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present a concise decision procedure to properly handle all
the degenerate cases.

3.2 Degeneracies on geodesic discontinuities

After the determination of intersection region between
wedge b0 → s → b1 and edges e1, e2, new intervals are
created (see Fig. 5). Suppose that a new interval I ′ with
range (I ′.b0, I ′.b1) is created on edge e on which there
already exists a set of intervals I = {I0, I1, · · · } sorted
by positions on edge, I i−1.b1 ≤ I i .b0 < I i .b1 ≤ I i+1.b0.
If the intervals I ′ and I i ∈ I have a nonempty intersec-
tion region δ = I ′ ∩ I i , a quadratic equation needs to be
solved to determine the minimal distance for points in δ
and update the intervals I ′ and I i along edge e. Letting
Iupdated = {I0, I1, · · · } be the set of updated intervals on e,
four degenerate cases may occur:
1. Tiny intervals appear in I .
2. Two consecutive intervals in I intersect.
3. Two consecutive intervals in I separate by a tiny gap.
4. The geodesic distances at the common endpoint of two

consecutive intervals are not the same.
Theoretically, if exact arithmetic is used, these cases will
not happen or can be regarded as errors. However, in prac-
tice, when float point computation is used and numerical
errors are unavoidable, these cases do occur and we regard
them as degenerate cases. The solution to handle these de-
generacies is presented in Sect. 4.2.

4 Handling degenerate cases

In geometric algorithms, testing degenerate cases relies
heavily on the incidence decisions such as whether a point
lies on a line or two points coincide [2]. Incidence deci-
sions contribute to geometric predicates. A predicate is
a numerical primitive computation whose value impacts
the flow of control of an algorithm. To evaluate predicates
with float point computation, we present a systematic so-
lution in the following subsections. The pseudo-code of
the overall algorithm is as follows:

Algorithm 1.
1. Initialize a priority queue Q with a given

source point in the mesh;
2. while Q is not empty
2.1. pop off the top element q from Q;
2.2. establish the local system as shown in Fig. 3
> based on q = (b0, b1, d0, d1, σ, τ);
2.3. find the intersection of the wedge b0 → s → b1

and e1, e2; handle the degeneracies using the
solution presented in Sect. 4.1;

2.4. update intervals on e1, e2 and Q using the
solution presented in Sect. 4.2;

2.5. if new intervals created
2.5.1. add them into Q.

4.1 Handling degeneracies on geometric intersection

Suppose that we implement the vector operation in a C++
class. Given a point (or a vector) p, p.x, p.y, p.z retrieve
its three coordinates. The term p.length() returns the value
of the vector length, p ·q returns the value of the inner
product of two vectors p, q, p ×q returns the vector of
the cross product of p, q, abs(c) returns the absolute value

Table 1. Degeneracies tests on all the examples; the degeneracy
rate is measured by dividing the degenerate cases resulted from
geometric intersection over all the cases

Model Face num. All cases Degeneracy rate

Fig. 7a 2000 8807 29.33%
Fig. 7b 5000 23 221 31.13%
Fig. 8 47 415 194 851 33.25%
Fig. 9a 12 436 49 697 32.40%
Fig. 9b 11 000 49 028 29.22%
Fig. 9c 11 774 63 992 27.96%
Fig. 9d 12 000 49 621 31.41%
Fig. 9e 21 152 82 397 35.27%

Fig. 7. An exact geodesic path over the head model with two dif-
ferent resolution meshes; the colored distance field is shown in
Fig. 1
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of c. Denote the machine precision by ε (see Fig. 3). The
following rules consist of incidence decisions:

– If (s −b0).length() < ε, points s and b0 coincide.
– If (s −b1).length() < ε, points s and b1 coincide.
– If abs(((s − b0)× (b0 − v1)).z) < ε, three points s,

b0, v1 lie on a straight line.
– If ((b1 − s)× (v1 −b1)).z > ε, the vertex v1 lies to the

right of the wedge and the new interval will be on the
e1. That means case a in Fig. 3 occurs.

– If ((b0 − s)× (v1 −b0)).z < −ε, the vertex v1 lies to the
left of the wedge and the new interval will be on the e2.

– If ((b0 − s) × (v1 − b0)).z > ε and ((b1 − s) ×
(v1 −b1)).z < −ε, the vertex v1 lies inside the wedge
formed by two rays b0 − s and b1 − s. That means
case b in Fig. 3 occurs.

Given the above rules, our goal is to design a decision
procedure that reduces all possible decisions to a set of as
few as possible predicates, which also guarantee to out-
put a consistent and correct decision on choosing the order
of different degenerate cases. We present such a nontrivial
decision tree in Fig. 6. Given the rules of incidence deci-
sions and the decision tree as shown in Fig. 6, the code
that can robustly and consistently handle all the degener-
ate cases in this class is readily built.

4.2 Handling degeneracies on geodesic discontinuities

Here we present a robust solution to handling degenera-
cies on geodesic discontinuities. The presented solution
may seem unnecessarily complicated at first glance. How-
ever, it not only gives us a concise way of programming,
but also makes verification and error estimation possible
and easy to realize at each step by providing a determin-
istic status to check. The pseudo-codes handling degen-
eracies on geodesic discontinuities (see Step 2.4 in Algo-
rithm 1) are as follows:

Algorithm 2.
1. for all I i ∈ I
1.1. let interb0 = max{I i .b0, I ′.b0}, and

interb1 = min{I i .b1, I ′.b1};
1.2. if interb0 < interb1
1.2.1. if I i .b0 < interb0
1.2.1.1. separate I i at interb0;
1.2.1.2. let I i

new = (I i .b0, interb0) and
I i = (interb0, I i .b1);

1.2.1.3. insert I i
new into I ;

1.2.2. if interb1 < I i .b1
1.2.2.1. separate I i at interb1;
1.2.2.2. let I i

new = (I i .b0, interb1) and
I i = (interb1, I i .b1);

1.2.2.3. insert I i
new into I ;

2. for all I i ∈ I which completely inside I ′
2.1. update I i and I ′ by solving Eq. 1;

Fig. 8. The exact geodesics over the Max-Planck head model which
possesses different resolution over different regions. The code must
be robust against large and small triangles simultaneously existed
on a single mesh. The degeneracy rate of this model is 33.25%

3. Remove tiny intervals in I ;
4. Sew small gaps in I ;
5. In I merge neighbor intervals with the

same geodesic vertex;
6. (Optional) verification of set I if needed.
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Fig. 9. The computation of exact geodesics over
the diverse models with arbitrary triangles; the
distance fields are colored by one-to-one map-
ping the geodesic lengths to an indexed color
map

Given the newly created interval I ′ and a set of already
existing intervals I = {I0, I1, · · · } on edge e, we first pro-
cess all intervals in I such that for each interval in I , it is
either completely outside range I ′ or completely inside I ′.
This process is illustrated in Fig. 5c and Step 1 in Algo-
rithm 2 serves this need.

At Step 2 in Algorithm 2, denote the sorted sub-
set by Iinside whose elements are completely inside the
range of the new interval I ′. We update intervals in Iinside
in turn. Given I i ∈ Iinside and I ′, a quadratic equation
is solved. According to the solution, I i = (I i .b0, I i .b1)
may disappear or shrink into a smaller interval I i

new =
(I i

new.b0, I i
new.b1). In the latter case, we divide intervalI ′ =

(I ′.b0, I ′.b1) into two parts, i.e., I ′
new = (I ′.b0, I i

new.b0)

and I ′ = (I i
new.b1, I ′.b1), and insert I ′

new into I . Then we
continue to process I i+1 with I ′ until all elements in Iinside
are processed.

Finally, we obtain an updated interval set I . It is not
difficult to check that given the above rules, the elements
in I cannot intersect with each other. Due to numerical
computation, tiny intervals and small gaps may occur (see
Fig. 5d and Steps 3, 4, and 5 in Algorithm 2). The follow-
ing rules handle these degeneracies:
1. Detect and remove tiny intervals. ∀I i ∈ I , if I i .b1 −

I i .b0 < ε, merge I i with I i−1 or I i+1;
2. Detect and sew small gaps. If I i+1.b0 − I i .b1 < ε, let

I i+1.b0 = I i .b1 be the midpoint of the original I i+1.b0
and I i .b1.



Handling degenerate cases in exact geodesic computation 667

3. Merge intervals with the same source point. For
any pair I i and I i+1, let the unfolded position of
geodesic vertex be si and si+1, respectively. If
(si − si+1).length() < ε, merge intervals I i and I i+1.

The biggest advantage of Algorithm 2 is that every step is
predictable and thus code verification is easy to check.

5 Results

By handling all the degenerate cases consistently and
correctly, the implementation of the exact geodesic al-
gorithm [3, 5] is very robust. In this section, we present
some test examples with the models of various distribu-
tions of triangles. In each example, the small green sphere
indicates the position of the prescribed source point with
which a distance field is built and colored by computing
the length of geodesic paths from the source to all other
points on meshes. By tracing the gradient of the distance
field, a geodesic path from the source to a destination point
on mesh is also shown in each example. In all examples
shown here, the degeneracy rate is measured by the per-
centage of degenerate cases over all the cases. Table 1
summarizes the degeneracy tests on all the examples.

In Fig. 7, a head example with two different resolution
models is presented. Both models consist of irregular tri-
angles. On both models, the source and destination points
are the same and the geodesic paths connecting them are
shown. In Fig. 8, the test is performed on the Max-Planck
head model. This model possesses different mesh reso-
lution over different regions. On this model, a geodesic
path crossing regions of different resolutions is shown.
These two examples show that (1) the smaller the trian-
gles are, the more degenerate cases occur, and (2) the more

irregular the triangle distribution is, the more degenerate
cases occur.

We also test the implementation on a diversity of
models with arbitrary triangles. Five typical examples are
shown in Fig. 9. These examples show that real-world data
is likely to contain a large number of degeneracies. By
providing a concise and consistent solution to all the de-
generate cases, the users may find the technique presented
in this paper useful when he/she implements a robust code
to compute an exact geodesic over triangle meshes.

6 Conclusions

Geometric algorithms are sensitive to degeneracies arising
from special positions of several incident geometric ob-
jects. Although the general technique [1, 4] exists to han-
dle the degeneracies theoretically in any geometric algo-
rithms, certain particular applications permit much more
efficient ways to handle degeneracies. In this paper we
classify and enumerate all the degenerate cases in the com-
putation of exact geodesics on triangle meshes. Based on
the classification, we present a systematic treatment to
handle all the degeneracies consistently. We also show by
examples that the real-world data is likely to be degener-
ate. The common users may find the presented technique
useful to obtain a robust implementation of the fast exact
geodesic algorithm.
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