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a b s t r a c t

A natural metric in 2-manifold surfaces is to use geodesic distance. If a 2-manifold surface is represented
by a triangle mesh T , the geodesic metric on T can be computed exactly using computational geometry
methods. Previous work for establishing the geodesic metric on T only supports using half-edge data
structures; i.e., each edge e in T is split into two halves (he1, he2) and each half-edge corresponds to
one of two faces incident to e. In this paper, we prove that the exact-geodesic structures on two half-
edges of e can be merged into one structure associated with e. Four merits are achieved based on the
properties which are studied in this paper: (1) Existing CAD systems that use edge-based data structures
can directly add the geodesic distance function without changing the kernel to a half-edge data structure;
(2) To find the geodesic path from inquiry points to the source, the MMP algorithm can be run in an on-
the-fly fashion such that the inquiry points are covered by correct wedges; (3) TheMMP algorithm is sped
up by pruning unnecessary wedges during the wedge propagation process; (4) The storage of the MMP
algorithm is reduced since fewer wedges need to be stored in an edge-based data structure. Experimental
results show that when compared to the classic half-edge data structure, the edge-based implementation
of the MMP algorithm reduces running time by 44% and storage by 29% on average.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In many geometric problems in industry, solution spaces (such
as object spaces or configuration spaces) are usually given in
the form of polygonal meshes in R3 which represent 2-manifold
surfaces. On curved 2-manifold surfaces, a natural metric is to
use geodesic distance. Computing geodesic metric has found a
wide range of applications in natural science and engineering. In
this paper, we study the computation of exact geodesic metric on
2-manifold triangle meshes.

A geodesic path between two points p and q on a 2-manifold
M is a local shortest path onM which connects p and q. A geodesic
metric onM is a real function d : M×M → R such that ∀p, q ∈ M,
d(p, q) is the length of the shortest path between p and q. Let
T be a 2-manifold triangle mesh. If a geodesic path on T does
not go through any vertex in T except for its two endpoints, we
can always unfold the triangles, which are passed through by the
geodesic path, one by one along their shared edges into a 2D plane
and then the geodesic path becomes a straight line in the plane.
Fast algorithms have been proposed for both approximation and
exact geodesic computation on T . We briefly summarize some
representative works below. The reader is referred to [1] for a
detailed survey.
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A path is called a 1+ ϵ approximation of a shortest path on T if
its length is at most 1 + ϵ times the length of the shortest path.
Let n be the number of triangles in T . Hershberger and Suri [2]
presented a simple linear algorithm to compute an approximate
shortest path (ϵ = 1) on convex polytopes. For ϵ < 1, Agarwal
et al. [3] presented an algorithmofO(n log 1

ϵ
+

1
ϵ3

) time complexity,
whichhadbeen further improved toO(n+ log n

ϵ1.5
+

1
ϵ3

) [4] andO( n
√

ϵ
+

1
ϵ4

) [5], respectively. These algorithms [2–5] are all only applicable
for convex polytopes. For non-convex polytopes, Har-Peled [6]
presented an 1 + ϵ approximation algorithm of O(n2 log n +
n
ϵ
log 1

ϵ
log n

ϵ
) time complexity. Interpreting a triangulated surface

as a linear approximation of a smooth 2-manifold, geodesic paths
can also be computed approximately using numerical methods [7]
which use the fast marching method to solve the Eikonal equation
on T .

Exact geodesic metric can be computed on T using computa-
tional geometry methods. Sharir and A. Schorr [8] proposed an
O(n3 log n) algorithm to compute shortest paths on convex poly-
hedrons. A breakthrough is achieved in [9], called MMP algorithm
below, in which the shortest path between a source point and any
destination point on T is determined in O(n2 log n) time. The run-
ning time of MMP algorithm was further improved to O(n2) [10]
and O(n log2 n) [11], respectively. Surazhsky et al. [12] and Qin
and Wang [13] presented novel implementations of MMP algo-
rithm [9] and CH algorithm [10], respectively, and reported that
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their implementations runs quickly in practice. The degenerate
cases in the implementation [12] are handled in [14].

All these works [9,10,12,13] for computing exact geodesic met-
ric on T rely on a half-edge (also called directed edge in literature)
representation [15,16] of T ; i.e., every edge in T is represented by
two half-edges, each of which corresponds to one of two faces inci-
dent to that edge. This property, however, prevents the algorithms
to be appliedwith otherwidely used data structures in engineering
such as doubly-connected edge list [17], winged-edge data struc-
ture [18] and its variants for solid modeling [19], in which each
edge in T is recorded exactly once and we call these data struc-
tures [17–19] edge-based data structures, compared to the half-
edge data structures [15,16]. The comparisons of half-edge and
edge-based data structures are studied in [20].

In this paper, we make the following contributions:
• We prove that the exact geodesic metric structure in the MMP

algorithm [9] based on half edges can be merged for each edge
in T . This makes the algorithm applicable for edge-based data
structures. Furthermore, we show that the MMP algorithm can
be performed in an on-the-fly fashion; i.e., when we start at a
mesh point p to propagate a structure for finding the geodesic
path to another mesh point q, the MMP algorithm need not be
performed over the entire mesh surface, but can be terminated
when a correct structure covers q.

• The core of the MMP algorithm is to propagate a set of wedges
over all edges in T . By merging the wedges on two incident
half-edges into one set of wedges on an edge, unnecessary
wedges can be efficiently pruned during thewedge propagation
process and the number of total wedges in the MMP algorithm
is reduced. We show that when compared to the half-edge data
structures, edge-based implementation of the MMP algorithm
reduces storage by 29% and running time by 44% on average.

2. A short summary of the MMP algorithm [9,12]

The key idea of the MMP algorithm [9] is that between two
inquiry points p and q ∈ T , there exists a set of triangles Tpq =

(t1, t2, . . . , tm) ∈ T , p ∈ t1, q ∈ tm, which satisfies:
1. Each two sequential triangles ti and ti+1 are adjacent and share

a common edge.
2. If all these triangles are unfolded into a plane R2 along the

shared edges one by one, in the unfolded image of Tpq in R2,
the shortest path between p, q on T becomes a line pq or or a
polyline pv1v2 · · · q, where v1, v2, . . . are saddle vertices in Tpq.

In the above, the saddle vertex is defined as the vertex forwhich
the sum of incident angles is greater than or equal to 2π . One ex-
ample of the shortest paths in a triangle set (t1, t2, t3, t4, t5) is il-
lustrated in Fig. 1. For the source point p ∈ t1, the lines connecting
p to vertices v1, v2 partition the bottom edge into three intervals
I1, I2, I3. If the inquiry point q ∈ t5 is in the interval of I1, the short-
est path in between is a line pq. If q ∈ I2 (or q ∈ I3), the shortest
path is a polyline pv1q (or pv1v2q).

Based on the observation of plane unfolding, the MMP algo-
rithm computes a 2D subdivision structure (D1,D2, . . .) on T ,
which is exhaustiveness (


i Di = T ) and semi-mutual exclusion

(X◦

ij = ∅, Xij = Di ∩ Dj, for any i ≠ j, where X◦ is the interior of
set X). Each 2D subdivision cell Di is assigned with a point vi that
is the 2D image of either the source point p or a saddle vertex pro-
jected onto the plane containing Di. As illustrated in Fig. 2, given
such a subdivision structure, the shortest path between source p
and an inquiry point q can be efficiently achieved using the follow-
ing steps:
S1. Find the subdivision cell Ds containing point q. Set Dc = Ds,

r = q.
S2. Connect r and vc (the assigned vertex of Dc) by a line l in the

plane defined by Dc .
1 2
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Fig. 1. Shortest paths inside triangles (t1, t2, t3, t4, t5) unfolded into a plane. For
the source point p, if the inquiry point q ∈ I1 , then the shortest path is a line pq; if
q ∈ I2 (or q ∈ I3), the shortest path is a polyline pv1q (or pv1v2q).

S3. If r ≠ p, find the intersection x of l and Dc ; otherwise stop.
S4. Find the adjacent subdivision Da of Dc shared the same bound-

ary point x. Set Dc = Da, r = x. Go to step S2.
Due to the extreme complexity of the 2D subdivision structure

with curved boundaries for each subdivision cell, it is impractical
to explicitly build and store this 2D structure on T . Mitchell et al. [9]
circumvented this difficulty by only building a 1D subdivision
structure on the half edges of T and Surazhskey et al. [12] propose
a novel implementation of this 1D structure as summarized below.

Definition 1. Awedge is an interval on a half edge he of T , defined
by 6-tuple (b0, b1, d0, d1, σ , τ ), where b0 and b1 are parameters
measuring distance along he, d0 and d1 are distances from the
assigned vertex s to the endpoints b0 and b1, respectively, which
encodes the 2D position of s, σ is the distance of the shortest path
from the source p to s, τ is a binary direction specifying to which
side of he the vertex s lies.

Fig. 3(a) illustrates the wedge definition. To compute the 1D
edge subdivision, from the triangle containing the source p, initial
wedges can be identified and propagated. During the wedge
propagation, the new derived wedges may intersect some existing
wedges. Let w1, w2 be two intersected wedges with overlap δ
(Fig. 3(b)). Surazhsky et al. [12] use the following rules to update
w1, w2:

C1. If one of the wedges has a larger distance value entirely over δ,
then simply cut δ from that wedge.

C2. If the case C1 does not hold, then update twowedges using the
new separating point w (Fig. 3(c)) computed by

(q − s1x)2 + s21y + σ1 =


(q − s2x)2 + s22y + σ2. (1)

The solution of Eq. (1) is the intersection points of a branch
of hyperbola with the edge. The wedge propagation and updating
can be performed using a priority queue in a continuous Dijkstra
fashion. Mitchell et al. [9] proved that

• The propagation algorithm will generate correct solutions that
all half edges of T are completely covered by wedges.

• The total number of wedges in T is bounded by O(n2), where n
is the number of triangles in T .

The MMP algorithm solves a single-source all-destinations
geodesic problem on T . It can be naturally extended to a multiple-
sources geodesic field solution by propagating initial wedges si-
multaneously from multiple source points on T [21].

3. Edge-based exact geodesic metric on T

The wedge structure on half edges of T provides the exact
geodesic metric on T . To establish and store the exact geodesic
metric viawedge structure, theMMP algorithm [9] splits each edge
e of T into two halves and each half edge corresponds to one of two
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Fig. 2. 2D subdivision structure in a triangle mesh T for shortest path computation. Left: the subdivision of a triangle and each subdivision cell Di is assigned a vertex vi .
Right: tracing the shortest path using the subdivision structure and the assigned vertices.
Fig. 3. The wedge representation and the intersection of two wedges [12].
Fig. 4. Merge the wedges in two half-edges he1, he2 into one set of wedges in an edge e.
incident triangles of e. Let q be a point on e incident to triangles
t1, t2. The necessity of using half edges is that the shortest path
from source p to q that approaches q by crossing t1 or t2 must be
treated separately1 in the MMP algorithm.

If wedges are constructed using a half-edge data structure, all
wedges on one half edge must have the assigned saddle vertices
lying on the same side of that half edge (Ref. Fig. 4 left). In this case
the binary direction τ of the assigned saddle vertex in Definition 1
can be ignored. However, Surazhsky et al.’s implementation [12]
use a half-edge data structure and a direction τ in their wedge
definition simultaneously: this reveals a deficiency in their work.
Surazhsky et al. [12] presented that for wedge updating, if case C2
happens, then a single solution exists in the intersection region δ
by solving Eq. (1). This claim is only true for the half edge’s wedge
intersection and two intersected wedges must satisfy certain
conditions. We re-examine this claim in Property 6 in Section 4.

In this work, we study wedges in two stages:
• Wedge propagation stage. In this stage, much more wedges

than those in the final stage will be generated, updated or
possibly deleted later.

1 The two paths are called t1-free and t2-free paths in [9].
• Final stage. In this stage, only those necessary wedges for
answering single-source all-destinations inquiries are kept.

In this section, we show thatwedges on two incident half-edges
can be merged into one set of wedges on an edge (Ref. Fig. 4 right)
and the exact geodesic metric structure still holds. In particular,
we show that this half-edge merging is correct at both wedge
propagation and final stages. We prove the correctness using the
following three steps:

• Step 1. Based on the correctness of theMMPalgorithm [9], at the
final stage, each half edge of T is completely covered bywedges.

• Step 2. Based on the correctness of Step 1, we prove that
wedges on two incident half-edges can be merged into one set
of wedges on an edge at the final stage (Properties 1 and 2).

• Step 3. Based on the correctness of Step 2, we prove that at the
wedge propagation stage, wedges can be propagated and up-
dated using an edge-based data structure (Properties 3 and 4).

The merit of wedge merging at Step 2 is to save data storage
for geodesic path inquiries. The merit of wedge propagation using
an edge-based data structure at Step 3 is to reduce the number of
unnecessary wedges to be propagated at the wedge propagation
stage, and thus speed up the MMP algorithm.
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Fig. 5. A paradox of 2D face subdivision induced from 1D edge subdivision using wedges.
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Fig. 6. Proof of Property 2: r lies inside the wedge (a) or sits on the boundary of the wedge (b) or sits on a saddle vertex (c).
Property 1. The set of wedges on an edge, by merging the wedges on
two incident half-edges at the final stage with intersection updating
using rules C1 and C2, offer a correct 1D subdivision on all edges in T .

Proof. Refer to Fig. 4. Based on the correctness of the MMP algo-
rithm [9], at the final stage the wedges on two incident half-edges
he1 and he2 completely cover the two half-edges exhaustively and
semi-mutual exclusively. Then merging these wedges on he1 and
he2 into one set of wedges on edge e completely covers e. For any
point q on an edge in T , its shortest path to source p is clearly indi-
cated by a wedge containing q on that edge. For any point q inside
a triangle t in T , its shortest path pq to source p ∉ t must cross
t . Let the intersection point of pq and t be r . Since pq is a shortest
path, pr must be a shortest path too. Then r is properly covered by
a wedge which indicates the short path pr . �

The exact geodesic metric on T relies on a 2D subdivision as il-
lustrated in Fig. 2. However, a complete covering of 1D edges in T
using wedges may not induce a complete 2D subdivision of trian-
gles in T . Fig. 5 shows such an example. Let wa, wb, wc, wd denote
the wedges with assigned saddle vertices a, b, c, d, respectively.
For 1D subdivision on the edges, edge e1 is completely covered by
wedges (wa, wb, wc, wd), e2 by (wa, wd), e3 by (wb, wc, wd). For
the induced 2D subdivision inside the triangle, there is a vacuum
area (shown in white in Fig. 5 left) which is not covered by any
wedges. To answer this puzzle, the following property is in order.

Property 2. The 1D subdivision on edges in T , resulted from merging
wedges on half edges at the final stage, induces a correct 2D
subdivision inside all triangles in T . Furthermore, each planar 2D
subdivision area induced from awedgewv is star-shaped with respect
to the assigned saddle vertex v in the same plane.

Proof. Assume that a vacuum area exists inside the triangle t from
the induced 2D subdivision, as shown in Fig. 5. Let q be a point
inside this vacuumarea.Without loss of generality, assume that the
source p is outside t . The shortest path from p to q must intersect
the boundary edges of t and let r be the intersection point. Since
the edges are completely covered by wedges, point r must be
inside a wedge wi or in the boundary of wi, as shown in Fig. 6. By
assumption, q cannot be in the extended line from i to r . So in the
cases shown in Fig. 6, the shortest path from p to q at point r form
q

u

f

Fig. 7. Proof of Property 3: an edge-based wedge wf at the final stage (shown in
blue color) is updated by awedgewu (shown in yellow color) during the edge-based
wedge propagation process. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

an angle which is not equal to π in the unfolded plane. If r is not a
mesh vertex, then a shortcut must exist that offers a shorter path
(Fig. 6(a) and (b)), a contradiction. If r is a vertex (Fig. 6(c)), then r
is a saddle vertex and q is star-shaped with respect to r . �

Property 3. At the wedge propagation stage, the wedges on two
incident half-edges can be merged into one set of wedges on an
edge. i.e., the resulting edge-based wedges at the final stage induce a
correct 2D subdivision (and a correct geodesic metric structure) inside
all triangles in T .

Proof. Based on Property 2, the edge-based wedges at the final
stage by merging half-edge-based wedges induce a correct 2D
subdivision in T . If Property 3 does not hold, there exists at least
one wedge in the edge-based wedges at the final stage which is
modified or removed during the edge-based wedge propagation
process. Let wf be such a wedge (shown in blue in Fig. 7) at the
final stage. If wf is updated (modified or deleted) by a wedge wu
during the edge-based wedge propagation process, let q be a point
sitting on the updated area (green point in 7). The updating means
that the path from q to source p through wedge wu is shorter than
the path through wedge wf . However, since wf is a wedge existing
at the final stage, the path from q to source p through wedge wf
should be the shortest, a contradiction. �
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Fig. 8. Example 1. Right: on edge e2 = (v5, v7), source point v0 contributes twowedgesw3 andw4 (shown in red). Middle: on edge e3 = (v5, v6), source point v0 contributes
two wedges w1 and w2 (shown in blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
In addition to its theoretical value, we found that Property 3 is
very useful in practice, since in our experiments more than 29% of
unnecessary wedges can be pruned during the edge-based wedge
propagation process and theMMPalgorithm is spedupby reducing
running time by 44% on average. More details are presented in
Section 5.

The 2D subdivision structure inferred from edge-based wedge
information offers a geodesic metric d : T × T → R. Let A be a
nonempty subset of T . The geodesic distance function for a point
x ∈ T to A is defined as dA(x) = infy∈A d(x, y), which found a wide
range of applications in industry [21,22]. We conclude this section
with the following property.

Property 4. Assume A is a nonempty subset of T . The map x →

dA(x), x ∈ T , is uniformly Lipschitz continuous in T , i.e.,

∀x, y ∈ T , |dA(x) − dA(y)| ≤ d(x, y).

Proof. Let x, y, z be three arbitrary points in T . Denote xz, xy, yz
as the shortest paths from x to z, x to y, y to z in T , respectively.
Since xz is the shortest path between x and z, we have d(x, z) ≤

d(x, y) + d(y, z). Now, ∀z ∈ A, ∀x, y ∈ T , let z∗
∈ A such that

infz∈A d(y, z) = d(y, z∗). Without loss of generality, let dA(x) ≥

dA(y). Then dA(x) = infz∈A d(x, z) ≤ d(x, z∗) ≤ d(x, y)+d(y, z∗) =

d(x, y) + dA(y). �

4. Edge-based wedge intersection updating

We have shown that the wedges on half edges can be merged
for each edge in T at the wedge propagation stage and the exact
geodesic metric still holds at the final stage. These properties
(Properties 1–4) have two merits for practical applications:

• Unnecessary wedges are pruned efficiently during the wedge
propagation process and the MMP algorithm is sped up;

• For an existing CAD system which uses classic edge-based data
structures, the system need not change to a half-edge data
structure for adding a new exact geodesic function, but can just
use the existing edge-based data structure.

Compared to the half-edge data structure, special attention
must be paid to the edge-based wedge intersection at the wedge
propagation stage. We start with the following example.

Example 1. Fig. 8 shows a symmetric mesh model. The vertices’
positions are v0 = (0.5, 0.5, 1.5), v1 = (0, 0, 1), v2 = (1, 0, 1),
v3 = (1, 1, 1), v4 = (1, 1, 0), v5 = (1, 0, 0), v6 = (0, 0, 0) and
v7 = (0.5, 0.5, −0.5). The source point is at v0. Let △ijk denote
the triangle formed by vertices i, j, k. Consider edges e2 = (v5, v7)
and e3 = (v5, v6). On e3, source v0 contributes twowedgesw1, w2:
• w1 goes through △v0v1v2, △v1v6v2, △v2v6v5.
• w2 goes through △v0v2v3, △v2v4v3, △v2v5v4, △v2v6v5.

On e2, source v0 contributes two wedges w3, w4:

• w3 goes through △v0v1v2, △v1v6v2, △v2v6v5, △v5v6v7.
• w4 goes through △v0v2v3, △v2v4v3, △v2v5v4, △v4v5v7.

It is readily seen that in this example,

• The intersection of w1 and w2 on e3 is in the case C1, for which
Eq. (1) has no solution in the intersection region δ.

• The intersection of w3 and w4 on e2 is in the case C2, for which
Eq. (1) has an infinite number of solutions in δ.

Definition 2. At the wedge propagation stage, for a wedge w =

(b0, b1, d0, d1, σ , τ ) at an edge e, w is called correct if w offers a
true geodesic metric for the interval (b0, b1) at e.

In Surazhsky et al.’s implementation [12] of theMMP algorithm,
for any moment at the wedge propagation stage, there are some
wedges that exist on the edges and those wedges to be propa-
gated are stored in a priority queue Q . The priority queue Q sorts
the wedges to be propagated by their shortest distances back to
the source point. Each time the first wedge in Q is popped off and
propagated outward across a triangle face. If a wedge wp is prop-
agated to produce a new wedge wc , we denote wp = Parent(wc)
and wc = Child(wp). The following property is readily seen.

Property 5. At the wedge propagation stage, if the longest geodesic
distance in an existing wedge we is shorter than the shortest geodesic
distance in the first wedge wf in the propagation priority queue Q ,
then we is correct. This property is true for both half-edge and edge-
based data structures.

Proof. Since the propagation of wf to Child(wf ) will increase
the shortest geodesic distance in Child(wf ) to the source point,
Child(wf ) cannot update we. Meanwhile, after popping off and
propagation of wf , the new wedges that enter into Q can never
have their shortest geodesic distances shorter than the shortest
geodesic distance in wf . That completes the proof. �

We find Property 5 is valuable in practice. For previous im-
plementations of the MMP algorithm, to find the geodesic path
from one inquiry point q to the source point p, the wedge prop-
agation has to be completely performed over the entire mesh sur-
face. Based on Property 5, once we determine there is a wedge that
covers q and is correct, the wedge propagation process can be ter-
minated and accordingly the MMP algorithm is performed in an
on-the-fly fashion. This on-the-fly fashion is particularly efficient
for those inquiry points near the source p.

For the number of solutions of Eq. (1) in the intersection region
δ, we have the following property.
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Fig. 9. The relation of hyperbola and wedges’ saddle vertices. The solution of Eq. (1) is the intersection of a branch of hyperbola with the edge, where the wedges’ saddle
vertices are treated as the foci of the hyperbola (left). Two solutions exist where two saddle vertices lie in different sides of the edge (middle) or lie in the same side of the
edge (right).
r

I

p

Fig. 10. Proof of Property 6. Left: the update of two intersected wedges w1 and w2 for the case shown in Fig. 9 right. Middle: the shortest path from the saddle vertex V1 to
the source point p goes through the saddle vertex V2 . Right: the shortest path from the saddle vertex V1 to the source point p does not go through the saddle vertex V2 .
Property 6. In the intersection region δ of two intersected wedges
w1 and w2 at the wedge propagation stage, the number of solutions
of Eq. (1) can be zero, one, two or infinite. If both Parent(w1) and
Parent(w2) are correct and the number of solutions is two or infinite,
the two assigned saddle vertices of wedges w1 and w2 must be from
different sides of the edge.

Proof. If the intersection of two wedges is in case C1, then Eq. (1)
has no solution in δ. For case C2, the existence of one single solution
is given in [12] and the existence of infinite solutions is given in
Example 1. There are two possibilities of there being two solutions
of Eq. (1) in δ. The first case is that two assigned saddle vertices
of w1 and w2 lie in the different sides of the edge (Fig. 9 middle)
and the second case is two assigned saddle vertices in the same
side of the edge (Fig. 9 right). Both cases can occur at the wedge
propagation stage. Below we prove that if both Parent(w1) and
Parent(w2) are correct, the second case does not exist. For the
second case, the update of wedges can only be the case shown
in Fig. 10 left. Let v1 and v2 be the saddle vertices of w1 and w2,
respectively. Since Parent(w1) is correct, the shortest path from
v1 back to the source is indicated by Parent(w1). If this shortest
path from v1 passes through v2 as shown in Fig. 10 middle, let this
path intersect the branch of hyperbola at the point I . For any point
r lying in segment v1I of the path, r has a shorter path from r to
the source by going through v2 than the path from r to the source
through v1. However, since r lies on the left hand of the branch
of hyperbola, the path from r to the source through v1 should be
shorter than the path r to the source through v2, a contradiction.
So the shortest path from v1 to the source cannot pass through
v2, but intersects the wedge Parent(w2) as shown in Fig. 10 right.
However, since the shortest paths cannot intersect (see the proof
of Property 7), this case does not exist either. So if the number of
solutions is two and Parent(w1) and Parent(w2) are correct, the
two assigned saddle vertices of wedges w1 and w2 must be from
different sides of the edge.

If the number of solutions is infinite, then either the twowedges
are identical or the hyperbola solution degenerates to a bisector
a b

r

x

q

r

d
x

c

Fig. 11. Proof of Property 7: a and b are two assigned saddle vertices of two
intersected correct wedges wa and wb , respectively, and cd is a shortcut of path
r(b) + rx.

(that coincides with the mesh edge) between two assigned saddle
vertices. The first case cannot occur at the wedge propagation
stage. For the second case, the two assigned saddle vertices lie in
the different sides of the edge. �

In the proof of Property 6, we use the following property.

Property 7. Two correct wedges cannot intersect.

Proof. Let a and b be two assigned saddle vertices of correct
wedges wa and wb, respectively. If wa and wb intersects, let r be
a point inside the intersection area as shown in Fig. 11. Denote the
shortest path distance from source p to r through a by r(a), and
r(b) is similarly defined for the saddle vertex b. In the wedge wa,
we extend the line segment ar to some point xwhich is also in the
intersection area. If r(a) = r(b), then there are two equal-distance
shortest paths from p to x, i.e., r(a) + rx = r(b) + rx. However,
since both r and x are interior points in the nonempty intersection
area wa ∩ wb, there exists a shortcut (shown in line segment cd in
Fig. 11) in the path r(b) + rx; thus contradicts to the assumption
r(a)+ rx is a shortest path. Nowwithout loss of generality, assume
r(a) > r(b). In the wedge wa, we extend the line segment ar to
a point q which is inside wa but not in wb. Then the inequality
r(a) + rq > r(b) + rq means q(a) in wa is not a shortest path
distance; a contradiction. �
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5. Experimental results

We have proved several properties which show the MMP
algorithm [9] can be performed in an edge-based data structure
and the original MMP algorithm can be improved in the following
three aspects:

• On-the-fly implementation. If the user specifies any two points
p and q on the mesh and running the MMP algorithm by
propagating wedges initialized from p, the MMP algorithm
needs not to be run over the entire mesh surface: According to
Property 5, once a correct wedge covers q, the MMP algorithm
can be terminated.

• Time efficiency. According to Property 3, at the wedge prop-
agation stage, the wedges on two incident half-edges can be
merged into one set of wedges on an edge. Then some unnec-
essary wedges can be efficiently pruned during the propagation
process and thus the algorithm is speeded up. Our experiments
show that using edge-based data structure reduces 44% running
time on average when compared to using half-edge data struc-
ture.

• Space efficiency. According to Properties 2 and 3, fewer wedges
are stored in an edge-based data structure when compared to
those wedges stored in half-edge data structures. Our experi-
ments show that at the wedge propagation stage, the number
of total produced wedges is reduced by 29% on average, and at
the final stage, the number of stored wedges is reduced by 34%
on average.

Below we present the experiments and summarize the exper-
imental results, which demonstrate the time and space efficiency
achieved by using the edge-based data structure.

5.1. Benchmark test models

To test the robustness and stability of coding of geodesic metric
computation on T , we build a set of benchmark models utilizing
visibility graphs [15]. Refer to Fig. 12(a) and (b). Given a set S of
disjoint polygonal obstacles in a plane, the visibility graph VG(S) of
S is defined as follows: its nodes are the vertices of S and there is a
line connecting two nodes v andw if they can see each other. Given
two points p, q in S with n nodes, VG(S∪{p, q}) can be constructed
in O(n2 log n) and the shortest path between p, q can be found in
O(n log n) time [15].

We use the shortest planar paths computed from visibility
graphs as the ground truth to construct the benchmark models.
Let the obstacles S be bounded in a sufficient large rectangle R
(Fig. 12(a)). A triangulation of p, q, R and the boundaries of S
can be constructed in O(n log n) time (Fig. 12(c)). At the place of
each obstacle, a polygonal cylinder is lifted and sewed with the
planar triangulation along the obstacle’s boundary (Fig. 12(d)). If
the height of obstacle cylinders is sufficient high, the shortest path
between p and qwill not climb the cylinders; instead, the shortest
pathwill go around the boundary of planar obstacles (Fig. 12(e) and
(f)). We use both convex and concave obstacles in the benchmark
models. By using mesh refinement and simplification, the number
of triangles in the benchmark models can be adjusted.

5.2. Comparison of half-edge and edge-based data structures

We have implemented the geodesic metric algorithm on the
platform of Visual C++ .net in Microsoft Window operating
system. The code is available at.2 We test the code with the
following models:

2 http://cg.cs.tsinghua.edu.cn/people/~Yongjin/Yongjin.htm.
a b

d

f

c

e

Fig. 12. The benchmark model utilizing visibility graphs. (a) A set of obstacles
and two source points p, q inside a rectangle. (b) The visibility graph of (a) and
the shortest path between p and q. (c) A Triangulation of (a). (d) The benchmark
triangle mesh model by lifting each planar obstacle as a polygonal cylinder with a
sufficient height. (e, f) Two different views of the shortest path between p and q in
the benchmark model, computed by the presented geodesic metric algorithm. The
distance field on themodel is colored by one-to-onemapping the geodesic distance
to an index color map.

• Ten benchmark models in various complexities: the number of
obstacles ranged from 10 to 100 and the number of triangles
ranged from 1k to 20k.

• Ten 3D engineering models with moderate triangle numbers
(2k to 20k). Thesemodels are with various complexities in both
geometry (i.e., different curvature distributions) and topology
(i.e., different genus numbers). Eachmodel is providedwith two
types: uniform and non-uniform. Fig. 13 shows three examples:
On each model, a geodesic path is presented with source point
shown in green and target point shown in yellow. By mapping
the geodesic distances to a color index, the distance field on
each model is also shown with colors.

• Five large 3D mesh models (>150k triangles). All models are
bounded in a 1.0×1.0×1.0 cubes. Fig. 14 shows two examples.

We randomly sample source points onmodels and compare the
geodesic distances output from following three methods:

• the shortest paths utilizing the visibility graphs (only applicable
for benchmark models).

• The GeodesicLib implementation3 provided by the authors
in [12].

• Our implementation using an edge-based data structure.

3 http://www.cs.technion.ac.il/~vitus/geolib.html.

http://cg.cs.tsinghua.edu.cn/people/~Yongjin/Yongjin.htm
http://www.cs.technion.ac.il/~vitus/geolib.html
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(a) A non-uniform sphere model. (b) A uniform sphere model after remeshing.

(c) A non-uniform eight model. (d) A uniform eight model after remeshing.

(e) A non-uniform teapot model. (f) A uniform teapot model.

Fig. 13. Test models with moderate triangle numbers: sphere (genus-0), teapot (genus-1) and 8-shape (genus-2) models. Each model is shown with two versions: non-
uniform and uniform. The distance field on models is shown using color index.
Table 1
The statistic data of test models shown in Figs. 13 and 14. All these models are normalized in a 1.0× 1.0× 1.0 cube: l(e) is the average edge length of each model, σ [l(e)] is
the standard deviation of l(e) which gives a measure of the uniformness of the model, maxe l(e) is the maximal edge length in the model, and mine l(e) is the minimal edge
length in the model.

Face No. Edge No. l(e) σ [l(e)] maxe l(e) mine l(e)

Non-uniform eight 2022 6066 0.079710 0.032766 0.260810 0.020274
Uniform eight 2022 6066 0.068804 0.007349 0.103375 0.042040
Non-uniform sphere 3996 11988 0.089625 0.044386 0.369710 0.001317
Uniform sphere 4074 12222 0.085278 0.007969 0.148602 0.073768
Non-uniform teapot 11666 34998 0.044716 0.027207 0.571824 0.000994
Uniform teapot 11667 35001 0.042054 0.012402 0.103145 0.002287
Angel 181147 543444 0.007005 0.002620 0.086559 0.000011
Girl head 384902 1154706 0.007360 0.002791 0.082696 0.000001
Our test results show that among more than one hundred
thousand computed geodesic values, the results output from three
methods are the same upon the floating point machine precision.
These results experimentally demonstrate that the coding of our
edge-based wedge intersection is correct.

Since the GeodesicLib for the implementation [12] outputs
geodesic paths in a text file without the wedge information, below
we use our implementation of the MMP algorithm to compare the
performance between edge-based and half-edge data structures.
The performance data given below are all tested with an off-the-
shelf PC with INTEL I7-2600K CPU, running at 3.40 GHz with 4 GB
RAM.

To evaluate the statistic data of wedge information, we use
the 3D engineering models shown in Fig. 13 that are presented in
two formats: non-uniform and uniform. The statistic data of these
mesh models is summarized in Table 1, which also include the
two large models shown in Fig. 14. All models are normalized in a
1.0×1.0×1.0 cube. In Table 1, by regarding the length of each edge
in a mesh model as a random variable, the statistic data includes
the mean l(e) of l(e) (i.e., the average edge length), the standard
deviation σ [l(e)] (which gives a measure of the edge uniformness
in the model), the maximal edge length maxe l(e) in the model and
the minimal edge length mine l(e) in the model.

We first compare the space efficiency between half-edge and
edge-based data structures, using two measures:
• The number of totalwedges produced at thewedge propagation

stage. It gives the upper bound of storage for running the MMP
algorithm. Table 2 summarizes this type of data for eightmodels
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(a) An angel model. (b) A girl head model.

Fig. 14. Two large 3D models: an angel and a girl head model. The angel model has 181148 triangles and 543444 edges. The girl head model has 384902 triangles and
1154706 edges. On each model, a geodesic path is presented with source point shown in green and target point shown in yellow. By mapping the geodesic distances to a
color index, the distance field on each model is also shown with colors. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
Table 2
The comparison of the number of total wedges produced at the wedge propagation
stage for using half-edge and edge-based data structures. These data is generated
by averaging on the data over 100 trials, each time a random point on the model is
selected to initialize the MMP algorithm.

Wedges produced at the
wedge propagation stage

Percentage of
wedge reduction (%)

Half-edge
structure

Edge-based
structure

Non-uniform eight 21059 12643 40.0
Uniform eight 19289 11809 38.8
Non-uniform sphere 117045 101227 13.5
Uniform sphere 116253 103108 11.3
Non-uniform teapot 172111 129810 24.6
Uniform teapot 165996 128409 22.6
Angel 1530506 935655 38.9
Girl head 3271066 1972283 39.7

listed in Table 1. These data show that using an edge-based data
structure can on average reducewedges produced at thewedge
propagation stage by 29%, when compared to the use of half-
edge data structure.

• The number of wedges existing at the final stage. It gives the
upper bound of storage for computing geodesic paths using the
MMP algorithm. Table 3 summarizes this type of data for eight
models listed in Table 1. These data show that using an edge-
based data structure can on average reduce wedges existing
at the final stage, when compared to the use of half-edge data
structure by 34%.

Secondly we compare the time efficiency between half-edge
and edge-based data structures, using themeasure of running time
Table 3
The comparison of the number of wedges existing at the final stage for using half-
edge and edge-based data structures. These data are generated by averaging the
data over 100 trials, each time a random point on the model is selected to initialize
the MMP algorithm.

The number of wedges
existing at the final stage

Percentage of
wedge reduction (%)

Half-edge
structure

Edge-based
structure

Non-uniform eight 11846 6481 45.3
Uniform eight 11513 6578 42.9
Non-uniform sphere 53167 43539 18.1
Uniform sphere 53371 44468 16.7
Non-uniform teapot 80732 55866 30.8
Uniform teapot 76830 58304 24.1
Angel 947923 504873 46.7
Girl head 1995957 1056117 47.1

that is spent for all wedge computation and propagation. Table 4
summarizes this type of data for eight models listed in Table 1.
These data show that using an edge-based data structure can on
average reduce running time of the MMP algorithm by 44% when
compared to the use of the half-edge data structure.

6. Conclusions

Previous work [9,10,12,13] that computes the exact geodesic
metric on a 2-manifold mesh T is only applicable in half-edge data
structures. In this paper, we show that the computation of ex-
act geodesic metric is also applicable in edge-based data struc-
tures. A direct merit is that some existing CAD systems which use
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Table 4
The comparison of running time spent for all wedge computation and propagation,
for using half-edge and edge-based data structures. These data are generated by
averaging on the data over 100 trials, each time a random point on the model is
selected to initialize the MMP algorithm.

Running time of the MMP
algorithm (s)

Percentage of
time reduction (%)

Half-edge
structure

Edge-based
structure

Non-uniform eight 0.03976 0.01985 50.1
Uniform eight 0.03533 0.01756 50.3
Non-uniform sphere 0.18345 0.11741 36.0
Uniform sphere 0.17651 0.11464 35.1
Non-uniform teapot 0.30973 0.17957 42.0
Uniform teapot 0.28969 0.16996 41.3
Angel 3.06657 1.57997 48.5
Girl head 6.70950 3.47284 48.2

edge-based data structures [19] can simply add a new function for
computing exact geodesic without changing the kernel completely
to a half-edge data structure.We also show that edge-based imple-
mentation of the MMP algorithm can achieve three merits: (1) To
find the geodesic path between any two points on T , theMMP algo-
rithm can be run in an on-the-fly fashion; (2) unnecessary wedges
can be efficiently pruned during the edge-based wedge propaga-
tion process and the MMP algorithm is sped up; (3) Fewer wedges
need to be stored for establishing the exact geodesic metric on T ,
thus improving the spacial efficiency. Experimental results are pre-
sented showing that when compared to the half-edge data struc-
ture, the edge-based implementation can reduce running time by
44% and storage by 29% on average.
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