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We study the combinatorial complexity of Voronoi diagram of point sites on a general
triangulated 2-manifold surface, based on the geodesic metric. Given a triangulated 2-
manifold T of n faces and a set of m point sites S = {s1, s2, . . . , sm} ∈ T , we prove that
the complexity of Voronoi diagram V T (S) of S on T is O (mn) if the genus of T is zero.
For a genus-g manifold T in which the samples in S are dense enough and the resulting
Voronoi diagram satisfies the closed ball property, we prove that the complexity of Voronoi
diagram V T (S) is O ((m + g)n).

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

On an orientable triangulated 2-manifold T , the Voronoi
diagram of a set of point sites based on the geodesic met-
ric [10] (called below geodesic Voronoi diagram for short)
has found a wide range of applications in pattern anal-
ysis and computer vision [7]. More precisely, given a set
of m distinct sample points S = {s1, s2, . . . , sm} on T , the
geodesic metric dg( · ) induces a Voronoi diagram V T (S) of
S on T which subdivides T into m cells, one for each point
in S:

V T (S) = {
V (s1), V (s2), . . . , V (sm)

}

such that each cell satisfies

V (si) = {
p ∈ T

∣∣ dg(si, p) � dg(s j, p),

i �= j, j ∈ {1,2, . . . ,m}}
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1.1. Geodesic metric dg on T

A saddle vertex in T is defined as a vertex for which
the sum of incident angles of surrounding triangles is
greater than or equals 2π . A geodesic path between any
two points p,q on T is a locally shortest path l connecting
p and q on T . The path l goes through a series of trian-
gles which can be unfolded into a common 2D plane �
as shown in Fig. 1. In � , path l becomes either a line
segment pq or a polyline pv1 v2 · · · vkq, for which Mitchell
et al. [8] showed that v1, v2, . . . , vk can only be saddle ver-
tices in T . The geodesic distance dg(p,q) is the length of
the shortest geodesic path between p,q on T .

1.2. Structural properties of V T (S) on T

Points in S are called sites of Voronoi diagram V T (S).
A Voronoi edge is the intersection of two Voronoi cells
and a Voronoi vertex is the intersection of three or more
Voronoi cells. Upon a sufficiently small perturbance [4],
we use the following assumptions:
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Fig. 1. Geodesic paths inside triangles (t1, t2, t3, t4, t5) folded into a plane.
For the source point p, if the inquiry point q ∈ I1, then the shortest path
is a line pq; if q ∈ I2 (or q ∈ I3), the shortest path is a polyline pv1q
(or pv1 v2q).

Assumption 1. No vertices in T have the same geodesic
distance to any two sites in S .

Assumption 2. Any saddle vertex in T has a unique
geodesic path to each site in S .

Given Assumption 1, we have:

• Each Voronoi edge is 1D, i.e., homeomorphic to either
a line segment or a circle.

• All Voronoi cells are bounded by Voronoi edges, mu-
tually exclusive or semi-exclusive, and

⋃m
i=1 V (si) = T .

For a triangulated 2-manifold T of arbitrary genus, any
Voronoi cell V (si) is path-connected, possibly bounded
by several closed Voronoi edges. Different from planar
Voronoi diagram, a Voronoi edge in V T (S) may be closed
itself, i.e., without ending at a Voronoi vertex. Fig. 2 shows
such an example. Any Voronoi edge is a trimmed bisector
of two sites in S on T . We assign a binary relation (si, vi)

to each point p inside a Voronoi cell V (si), where vi is
the closest saddle vertex to p in the geodesic path con-
necting si and p, or vi = si if there is no saddle vertex
in the path. For each point in the Voronoi edge, it corre-
sponds to two binary relations (si, vi) and (s j, v j), and we
use Bsi s j (vi, v j) to denote the portion in a Voronoi edge
contributed by (si, vi), (s j, v j).
Fig. 3. Breakpoints (shown in red) in a Voronoi edge Bpq shared by two
Voronoi cells V (p) and V (q). Bpq consists of three portions, Bpq(p,q),
Bpq(v1,q), Bpq(v2,q). The shaded hole can be a polygonal obstacle such
as a prism of sufficient height. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of
this article.)

Definition 1. A breakpoint in a Voronoi edge Bsi s j con-
tributed by sites si, s j , is a transition point at which the
portion of the Voronoi edge changed from Bsi s j (vi, v j) to
Bsi s j (vk, vl), where the unordered pairs (vi, v j) �= (vk, vl).

Fig. 3 shows an illustration of breakpoint definition. We
define the combinatorial complexity of V T (S) to be the to-
tal number of breakpoints, Voronoi vertices, Voronoi edges
and Voronoi cells in V T (S).

1.3. Related work

Moet et al. [9] studied a special triangulated surface,
called realistic terrain, which is a piecewise-linear contin-
uous function defined over a planar triangulation. Moet
et al. showed that the Voronoi diagram of m sites on an
n-face realistic terrain has complexity Ω(n + m

√
n ) and

O ((n+m)
√

n ). Aronov et al. [1] improved the results in [9]
and showed that the worse-case complexity of the Voronoi
diagram on a realistic terrain is Θ(n +m

√
n ). Cabello et al.

[2] studied the higher-order Voronoi diagrams on triangu-
lated surfaces and showed that the sum of the combina-
torial complexities of the order- j Voronoi diagrams of m
sites on an n-face triangulated surface, for j = 1,2, . . . ,k,
is O (k2n2 + k2m + knm). Note that the work in [2] used
Fig. 2. The Voronoi diagram of sites in S (shown in grey points) on a 2-manifold model. All the Voronoi edges (shown in red) are homeomorphic to a circle
and there is no Voronoi vertex in this diagram. The Voronoi cell V (sm) has m − 1 closed Voronoi edges. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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a different meaning of combinatorial complexity, by in-
cluding the number of edges on T that are crossed by
Voronoi edges as breakpoints. Our definition of breakpoints
is consistent with the ones in [1,9].

1.4. Our results

We study the combinatorial complexity of Voronoi di-
agram V T (S) on a general triangulated surface T . Previ-
ous work [1,9] on a special terrain model gave the lower
bound Ω(n + m

√
n ). But for a general surface T of arbi-

trary genus, no upper bound is provided. We present a
simple yet effective proof, showing that the complexity of
Voronoi diagram of m sites on a general n-face T is O (mn)

if the genus of T is zero. For T of genus-g (g > 0) in
which the samples in S are dense enough, we show that
the complexity of Voronoi diagram V T (S) is bounded by
O ((m + g)n).

2. Complexity of breakpoints in a Voronoi edge

In V T (S), Bsi s j is denoted as the Voronoi edge con-
tributed by sites si, s j . At each breakpoint bki on Bsi s j ,
the shortest path from bki to si (or s j) is not unique.
Without loss of generality, let bki have two shortest paths
P si (vr), P si (vs) to si , vr �= vs , where paths P si (vr), P si (vs)

go through respectively saddle vertices vr, vs in the binary
relations assigned to bki . Given that paths P si (vr), P si (vs)

cannot intersect each other (based on Assumption 2)
and they are both completely contained in the Voronoi
cell V (si), we denote the connected region in V (si) by
Area(P si (vr), P si (vs)) whose boundaries are formed by
P si (vr) ∪ P si (vs).

Property 1. Area(P si (vm), P si (vn)) ∈ V (si) can enclose one
or more Voronoi cells V (skr ), r = 1,2, . . . , l, l < m, skr �= si ,
skr �= s j .

We demonstrate this property by constructing an exam-
ple. We put a cone of sufficient hight at the shaded hole in
the configuration shown in Fig. 3 and redraw it in Fig. 4.
Let bkr be a breakpoint in the edge Bsi s j . In V (si), there
are two shortest paths P si (v1), P si (v2) from bkr to si . Let
site sk sit on the apex of the cone. Since the height of
the cone is sufficient large, Area(P si (v1), P si (v2)) ∈ V (si)

completely encloses the Voronoi cell V (sk). Similarly if
we put more cones inside Area(P si (v1), P si (v2)) akin to
the fingers in a hand and put a site on the apex of each
cone, the Voronoi cells of these sites will be all enclosed
by Area(P si (v1), P si (v2)). In this case, the shortest paths
P si (v1), P si (v2) are not homologous in V (si).

One Voronoi cell V (si) may be multiple-connected and
let L(si) be one of its closed boundaries. Denote all break-
points in L(si) as BKL(si) = {bk1,bk2, . . . ,bks} and SV L(si) =
{sv1, sv2, . . . , svt} as the union of all saddle vertices in
V (si) that constitute binary relations with BKL(si) . Break-
points in BKL(si) are ordered such that when one walks
from bk( j mod s) to bk( j+1 mod s) , the interior of V (si) al-
ways lies to the left hand side. Whenever there is no risk
of confusion, we omit the operator mod s below.
Fig. 4. Area(Psi (v1), Psi (v2)) in the Voronoi cell V (si) encloses another
Voronoi cell V (sk), where the path Psi (v1) starts from si to breakpoint
bkr through v1, and Psi (v2) through v2, and site sk sits on an apex of
a cone of sufficient height.

Lemma 1. Each saddle vertex in SV L(si) can devote to at most
two breakpoints in BKL(si) . Here “an sv devotes to a bk” means
there is a shortest path from bk to a site through sv.

Proof. breakpoints in BKL(si) separate L(si) into pieces.
For any point inside each piece, there is only one short-
est path to si going through a saddle vertex sv ∈ SV L(si) .
Since sv enters and leaves the binary relations for points
in one piece at two endpoints, sv devotes to these two
breakpoints. Assume sv devotes to three breakpoints
in BKL(si) . Then two cases exist. First, the three breakpoints
bki,bki+1,bki+2 devoted by sv are consecutive along the
Voronoi edge (Fig. 5 left). In this case, points in the
piece pe1 = (bki,bki+1) and points in the piece pe1 =
(bki+1,bki+2) have the same binary relation indicating the
shortest path to si , and then bki+1 cannot be a breakpoint.
In the second case, sv devotes to bki,bki+1,bkw , w > i + 2
or w < i − 1. In this case, however, either the shortest
path from bki+2 to si or the shortest path from bki−1 to
si must intersect the path P si (sv) started at bkw (Fig. 5
right), a contradiction to the fact that given Assumption 2,
two shortest paths to si cannot intersect each other. �

Denote the number of saddle vertices in V (si) as sn(si).
Since any Voronoi edge e is incident to two Voronoi cells
of si and s j , the number of breakpoints in e is at most
2(sn(si) + sn(s j)).

3. Complexity of V T (S) on T of genus-0

Lemma 2. The number of the Voronoi vertices and Voronoi
edges in V T (S) on a genus-0 T is O (m), where m = #S is the
cardinality of S.

Proof. Denote #Φ as the cardinality of set Φ . Let
G(Ver(V T (S)),Eg(V T (S))) be the graph made up of all
Voronoi vertices Ver(V T (S)) and all Voronoi edges
Eg(V T (S)) in V T (S). By Property 1, there may be some
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Fig. 5. Proof of Lemma 1.

Fig. 6. Proof of Lemma 2. Left: the Voronoi diagram V T (S). Middle: the simple graph G′ by adding auxiliary nodes. Right: the 2-connected graph G′′ by
adding auxiliary edges.
Voronoi cells V (si) that are completely surrounded by an-
other Voronoi cell V (s j), i �= j. Refer to Fig. 6 left. Let
Eg(V T (S)) = Eloop ∪ Epiece , where Eloop is the subset of
Voronoi edges, each of which is homeomorphic to a circle
and Epiece is the subset of Voronoi edges, each of which
is homeomorphic to a line segment. We introduce three
auxiliary nodes into each edge in Eloop and one auxiliary
node into each edge in Epiece , as shown in Fig. 6 middle.
Denote the resulting graph by G ′ = (V ′, E ′), where #V ′ =
#Ver + #Epiece + 3#Eloop and #E ′ = 2#Epiece + 3#Eloop . G ′ is
a simple graph but may not be 2-connected. We add edges
between vertices from different components in G ′ , leading
to a 2-connected graph G ′′ as shown in Fig. 6 right. De-
note the edges in G ′′ \ G ′ by Eadd . By Fary’s theorem, G ′′
on a genus-0 T has a planar embedding and thus Euler’s
formula holds. Note that there are m faces in G ′ and each
new added edge in Eadd can split one Voronoi cell into at
most two. We have

#E ′′ − #V ′′ + 2 � m + #Eadd

Since

#E ′′ = #E ′ + #Eadd, #V ′′ = #V ′

#V ′ = #Ver + #Epiece + 3#Eloop

#E ′ = 2#Epiece + 3#Eloop

we have

#Epiece − #Ver + 2 � m

Since 2#Epiece � 3#Ver and #Eloop � m, we have #Ver =
O (m) and #Eg = O (m). �
Theorem 1. The combinatorial complexity of V T (S) on T of
genus-0 is O (mn), where n is the number of faces in T .
Proof. By Lemma 1, each Voronoi edge can have at most
O (n) breakpoints. Given Lemma 2, there are totally O (mn)

breakpoints and O (m + n) Voronoi vertices, edges and
cells. �
4. Complexity of V T (S) on T of genus-g

V T (S) is called an intrinsic Voronoi diagram which satis-
fies the closed ball property [5] if and only if:

• Each Voronoi cell is a closed topological disk.
• The intersection of two Voronoi cells is either empty

or a single Voronoi edge.
• The intersection of three Voronoi cells is either empty

or a single Voronoi vertex.

It was shown in [3,6] that given a sampling S of T ,
if ∀x ∈ T , ∃si ∈ S , such that si ∈ B(x,ρm(x)), then V T (S)

satisfies the closed ball property, where B(x, r) = {y ∈ T :
dg(x, y) < r}, ρm(x) = min{conv(x), 1

2 inj(x)}, conv(x) and
inj(x) are convexity radius and injectivity radius of x, re-
spectively [3].

Lemma 3. The number of the Voronoi vertices and edges in an
intrinsic Voronoi diagram V T (S) on the genus-g T is O (m + g),
where m = #S.

Proof. Since V T (S) satisfies the closed ball property, it is
proved in [3] that the dual of V T (S) exists and is a proper
triangulation of the underlying 2-manifold. So the Euler’s
formula #Edge − #Vertex + 2 − 2g = #Face is applicable
to V T (S). �
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Fig. 7. The Voronoi diagram of 12 sites on a 2022-face triangulated surface of genus-2. Left: the Voronoi diagram on the triangulated surface. Right: the
Voronoi edges and sites with transparent surface.
Theorem 2. If the sampling S on T is dense enough such that
V T (S) satisfies the closed ball property, the combinatorial com-
plexity of V T (S) on T of genus-g is O ((m + g)n).

5. Conclusions

We study the combinatorial complexity of Voronoi di-
agram V T (S) on a general triangulated 2-manifold T of
arbitrary genus g . The bound O ((m + g)n) offers a theoret-
ical guarantee of polynomial complexity in space and time
for the practical algorithm in [7]. A real world example is
shown in Fig. 7. In particular, we show that the number of
Voronoi vertices and Voronoi edges are linear with respect
to the number of Voronoi cells in a 2-manifold of genus-0,
serving as a direct generalization of the linear relationship
in planar Voronoi diagrams.
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