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Humans' remarkable capacity on rapid natural scene categorization has been widely studied in neu-
roscience. Recently, a functional MRI (fMRI) study showed that in human brain, decoding of natural
scenes from line drawings was very similar to those from color photographs. In this paper, based on
recently proposed computational cognition model of Perception, Memory and Judgement (PMJ model),

work for natural scene categorization in line drawings. The Ohio State University (OSU) dataset was used,
which included 475 color photographs in six categories, i.e., beaches, city streets, forests, highways,
mountains and offices, as well as 475 corresponding line drawings produced by trained artists. Experi-
mental results show that our proposed cognitive framework achieves 48.4% recognition rate in leave-
one-out cross-validation, which is much higher than fMRI-data-driven decoding accuracy in the visual-
processing hierarchy (29% in V1, 27% in V2þVP, 26% in V4, 29% in PPA and 23% in RSC).

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

It is well known that humans had remarkable capacity at per-
ceiving and categorizing natural scenes, and the neural mechan-
isms of rapid natural scene categorization in human brain had
been widely investigated (e.g., [1]). It was reported [2] that in
human brain, scene category information can be encoded in pat-
terns of functional MRI (fMRI) activity in the parahippocampal
place area (PPA), the retrosplenial cortex (RSC), the lateral occipital
complex (LOC), and the primary visual cortex (V1). Visual areas V2,
VP and V4 are also interested since they build representations
based on V1 information.

Recently, a study on natural scene categorization by reducing
the scenes to mere lines was presented in [3]. In this study, color
photographs in six categories (beaches, city streets, forests, high-
ways, mountains and offices) were collected. Then line drawings
were created by trained artists who traced those contours in the
photographs that best captured the scene. We call these data the
Ohio State University (OSU) dataset. An elaborated experiment was
performed in [3] in which color photographs and line drawings in
OSU dataset were presented alternatively to participants. Func-
tional MRI images were recorded when participants passively
iu).
viewed the OSU dataset. Experimental results showed that despite
the marked difference in scene statistics and consideration
degradation of information, scene category can be decoded from
fMRI data for line drawings just as well as from activity for color
photographs.

In this paper, we propose a computational cognitive framework
that investigates how a computer program can be used to simulate
the human vision system that categorizes natural scenes from line
drawings. Our work is based on a recently proposed computa-
tional cognition model of Perception, Memory and Judgement (PMJ
model) [4]. In the perception stage, we compute a saliency map on
color photograph, and map the salient region onto the corre-
sponding line drawing. In the memory stage, we apply a local
histogram with circular bins to extract feature instantiations from
perceived line drawings. The collected feature instantiations are
clustered in a bag-of-word model and forms a visual vocabulary.
Then each line drawing is presented by a feature vector that is a
set of visual words in the vocabulary. In the judgement stage, a
SVM classifier is applied and optimal parameters are trained from
feature vectors represented line drawings in six categories in
leave-one-out cross-validation. Experimental results show that
our proposed cognitive framework in machine vision has a con-
sistent performance in the line with the pattern of brain activity
measured with fMRI in observers who viewed line drawings of
natural scenes. Our PMJ-inspired cognitive framework achieves
48.4% recognition rate in OSU dataset, which is much higher than
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fMRI-data-driven decoding accuracy in the visual-processing
hierarchy (29% in V1, 27% in V2þVP, 26% in V4, 29% in PPA and
23% in RSC).
2. Related work

A line drawing is usually referred to as a set of sparse, simple
two-dimensional feature lines without hatching or stippling for
shading/tone effects [5]. Humans have an innate ability to per-
ceive, recognize and interpret line drawings, e.g., children's sket-
ches and line arts by ink on paper. Line drawings had been used for
studying objects and scenes in human cognition for more than
three decades [6,7]. Recently a fMRI study found that the neural
activation in response to line drawings was similar to that in color
photographs [3] and a study that investigated how the nature
scene categorization of line-drawings and color photographs was
reflected in event-related potentials (ERPs) was presented in [8].

Due to less information stored in line drawings when com-
pared to the color photographs, the usage of line drawings in
intelligent process of visual media, including the retrieval and re-
use of images [9,10], videos [11,12], 3D graphical models [13–15]
and conceptual design in industry [16,17], has attracted consider-
able attention recently. The reader is referred to [5] for a survey.
However, up to now, there are very few algorithms that directly
simulated the patterns of brain activity due to its extreme com-
plexity [18]. Since object and natural scene categorization is one of
the fundamental problems that find a wide range of applications
Fig. 1. Examples of color photographs (CP) and corresponding line drawings (LD) in six c
dataset. (a) Beach (CP). (b) Beach (LD). (c) City street (CP). (d) City street (LD). (e) Fo
(j) Mountain (LD). (k) Office (CP). (l) Office (LD). (For interpretation of the references to
in computer vision, it is much desired to develop practical algo-
rithms that make use of the cognitive mechanism in rapid cate-
gorization in linear drawings. These practical algorithms may also
shed some lights on solving other more complex problems such as
scene understanding and intelligent decision making.

Line drawings include hand-drawn figures, symbols or hand-
written texts. In particular, as a kind of pictographs, Chinese
characters had been widely studied in its own right. The reader is
referred to [19] for a survey in the field of handwritten Chinese
character recognition (HCCR). Similar to the intelligent process of
visual media using line drawings, state-of-the-art HCCR technique
has been extended to build a personalized handwritten Chinese
recognition engine [20]. Here we emphasize that the line drawings
studied in this paper are general, i.e., depicting one of the six
natural scene contents including beaches, city streets, forests,
highways, mountains and offices.
3. PMJ-inspired cognitive framework

Consensus had been reached in psychological research that
most cognitive processes consist of several successive processing
stages [22]. In our study, we apply the PMJ model [4] that parti-
tions the cognitive process into the stages of perception, memory
and judgement, corresponding to the stages of analysis, modeling
and decision in the computation process. In the stage of percep-
tion, through pre-attention selection and selective attention, the
cognitive load of cognition system is reduced and salient visual
ategories (beaches, city streets, forests, highways, mountains and offices) in the OSU
rest (CP). (f) Forest (LD). (g) Highway (CP). (h) Highway (LD). (i) Mountain (CP).
color in this figure caption, the reader is referred to the web version of this paper.)
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features are extracted. In the stage of memory, dynamic memory
system is achieved through the mechanisms of encoding and
storing processes (short-term memory) and the mechanisms of
updating and consolidation (long-term memory). In the stage of
judgment, judgments or decisions are made in an efficient way
through categorization learning and action coding. These three
stages can interact with each other to complete the cognitive
processing tasks.

We apply the PMJ model to develop a practical algorithm for
natural scene categorization depicting by line drawings. The OSU
dataset is used for supervised learning, which contains 475 color
photographs in six categories: beaches (80), city streets (79), for-
ests (80), highways (80), mountains (76) and offices (80). Each
color photograph has a corresponding line drawing that was
produced by trained artists at the LotusHill Research Institute by
tracing contours in the color photographs via a custom graphical
user interface. The order and coordinates of all line strokes were
recorded digitally to allow for later reconstruction of the line
drawings at any resolution in terms of preserving long or short
contours, in order to reflect the global or local structures. All color
photographs and line drawings were rendered at a resolution of
800�600 pixels. Line drawings are represented by black lines on a
white background. See Fig. 1 for an example.

3.1. Perception

In the perception stage, selective attention is applied and sali-
ent visual information is extracted. We compute a saliency map for
each color photograph using the GBVS algorithm [21]. Refer to
Fig. 2. The GBVS algorithm assigns a saliency value between 0 and
1 to each pixel in the color photograph, where 1 means the most
significance and 0 means the least significance (Fig. 2b). We
determine a salient region in the image by setting a threshold τ in
saliency map. The choice of an optimal threshold τ is discussed in
Section 4 and experimental results show that our cognitive fra-
mework is not sensitive to the threshold value.

We store the salient region in a binary image, in which each
white pixel has a saliency value larger than the threshold τ
Fig. 2. The perception stage in PMJ-inspired cognitive framework. (b) is the saliency ma
by white) by setting a threshold τ¼ 0:2 in (b). (e) is the perceived line drawing by applyi
red) in perceived line drawing. (For interpretation of the references to color in this figu
(Fig. 2c). Then we generate a perceived line drawing (Fig. 2e) by
only preserving in full line drawing (Fig. 2d) the lines falling into
the salient region. The memory stage presented in the next section
utilizes a set of sample points (Fig. 2f) in perceived line drawing to
generate a vocabulary representation of categorized line drawings.

3.2. Memory

The memory stage contains two types of memories: short-term
and long-term memories. Short-term memory of new learned
information is created instantly and can be easily disrupted by
learning other information. In other words, the short-term mem-
ory is fragile. Meanwhile, the memories are consolidated over time
from short-term (seconds to hours) to long-term (days to months)
and the memory enhancement by long-term training has been
demonstrated to be a biological mechanism [23].

We apply the distributed memory computation model pro-
posed in [15] to compute a vocabulary-based memory repre-
sentation from perceived line drawings. The memory model in
[15] is briefly summarized below:

� Short-term memory: After randomly sampling the perceived
line drawings, a histogram with circular bins is generated as an
instantiation of features. All instantiations in perceived line
drawings are then clustered into a vocabulary.

� Long-term memory: The vocabulary is not static but only a
transience (short term) and the stationary distribution (long
term) in vocabulary is modeled by a state space in a discrete-
time Markov chain.

Fig. 3 illustrates the histogram of circular bins. For each line
drawing of 800�600 pixels, we generate PtNum¼500 random
points by applying Halton's quasi-random point sequence. Then
averagely there are Areaperceived

800�600 � PtNum random points inside a per-
ceived line drawing (Fig. 2f). For each random point in a perceived
line drawing, a histogram with circular bins (NumCir¼15) is gen-
erated (Fig. 3a). The radius of the maximum circle is ldigonal=5,
where ldigonal is the diagonal length of the bounding box of the
p of the image (a) using the GBVS algorithm [21]. (c) is the salient region (indicated
ng the salient region (c) into the full line drawing (d). (f) shows sampling points (in
re caption, the reader is referred to the web version of this paper.)



Fig. 3. A histogram with circular bins as feature instantiation. (a) For each sample point shown in Fig. 2f, a histogram with circular bins (NumCir¼15) is generated. (b) The
value of each bin is the number of black pixels falling into that bin.

Table 1
The confusion matrix of the recognition results obtained by our PMJ-inspired
cognitive framework (PMJCF) by leave-one-out cross-validation.

Ground truth

Beach City Forest Highway Mountain Office

Prediction Beach 66.3% 7.6% 11.3% 33.8% 25.0% 12.5%
City 3.8% 58.2% 22.5% 18.8% 1.3% 26.3%
Forest 0.0% 11.4% 41.3% 13.8% 4.0% 12.5%
Highway 12.5% 10.1% 2.5% 25.0% 4.0% 12.5%
Mountain 10.0% 0.0% 11.3% 1.3% 65.8% 1.3%
Office 7.5% 12.7% 11.3% 7.5% 0.0% 35.0%

Table 2
The confusion matrix of the recognition results obtained by PMJCF in two classes:
man-made scenes (city streets, highways and offices) and non-man-made scenes
(beaches, forests and mountains).

Ground truth

Man-made scenes Non-man-made scenes

Predict Man-made scenes 78.0% 31.4%
Non-man-made scenes 22.0% 68.6%
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perceived area. The differences of radii of remaining circles are of
equal-size. Then the value of each bin in this histogram is the
number of black pixels falling into that bin (Fig. 3b).

Each histogram (corresponding to a random sample) can be
represented by a vector in a space RNumCir of dimension NumCir¼15.
All the random samples in all perceived line drawings in the OSU
dataset generate a point cloud in space RNumCir . We apply the K-
means clustering algorithm in RNumCir and for each cluster its center
is treated as a visual word vi. In our experiment, we choose K¼2000
and generate a vocabulary V ¼ fv1; v2;…; v2000g.

Each visual word vi may not have equal representative capacity
for classifying categories of line drawings. In other words, some
visual words may be more presentative than the others in the
vocabulary. We apply the Markov chain model in [15] to select the
most representative words in vocabulary and put them in long-
term memory.

Assume that a person watch and learn the line drawings one-
by-one. During the watch process, more and more visual words
from new observed line drawings are generated and entered into
short-term memory. Then we regard the vocabulary V ¼ f
v1; v2;…; vKg as a state space and each word vi is a state. Denote by
λ¼ fλi : viAVg the possibility measure on V, where λiZ0 is the
possibility of word vi be representative. We maintain the con-
straint

P
vi AVλi ¼ 1 such that λ defines a distribution of a random

state V.
To model the dynamic watching process, we introduce an

artificial time t into the distribution ðλtÞtZ0 ¼ ðVt : 0rto1Þ.
To model the memory consolidation, let pij be the transition
probability between any two words vi and vj, defined by

pij ¼
sijPK

j ¼ 1 sij

where

sij ¼Dij�
1
ni

1
nj

X
Iu Avi

X
Iv Avj

DðIu; IvÞ;

Dij ¼maxfDðIu; IvÞ; 8 IuAvi; 8 IvAvjg;

vi and vj are the clusters of vi and vj respectively, Iu and Iv are the
instantiations (a histogram represented by a point in RNumCir) in vi
and vj respectively, DðIu; IvÞ is the distance between Iu and Iv, and ni
and nj are the numbers of instantiations in vi and vj respectively.

We characterize Vt as a Markov chain with transition matrix

P¼ pij : 1r i; jrK and initial distribution λ0 ¼ λi ¼ ni
nall

n o
, where

nall ¼ n1þn2þ⋯þnK . Then we can infer the long-term behavior
from the stationary distribution of the Markov chain model. It has
been shown [15] that the matrix P is irreducible and the discrete-
time process Vt is ergodic. Accordingly, the stationary distribution
λ1 can be directly computed as the solution to the left-eigenvector
problem λ1P¼ λ1.

The stationary distribution λ1 gives a representativeness
measure on the words in vocabulary V. We sort all words in V
using a decreasing order of λi and select the top 50% words as
representative words to consist a filtered vocabulary ~V in long-
term memory.



Fig. 4. Global-structure-preserving simplification of a line drawing shown in Fig. 1(l), by iteratively removing contours of shortest length. The resolution is defined by the
percentage of pixels in original line drawing that were preserved in the simplified line drawing. (a) Resolution: 100%. (b) Resolution: 85%. (c) Resolution: 70%. (d) Resolution:
55%. (e) Resolution: 40%. (f) Resolution: 25%.

Fig. 5. Local-structure-preserving simplification of a line drawing shown in Fig. 1(l), by iteratively removing contours of longest length. The resolution is defined by the
percentage of pixels in original line drawing that were preserved in the simplified line drawing. (a) Resolution: 100%. (b) Resolution: 85%. (c) Resolution: 70%. (d) Resolution:
55%. (e) Resolution: 40%. (f) Resolution: 25%.
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3.3. Judgment

Based on the filtered vocabulary ~V ¼ fv1; v2;…; vK=2g, each per-
ceived line drawing LD can be presented by a feature vector
LD¼ ðx1; x2;…; xK=2Þ, where xi¼1 if there is an instantiation (cor-
responding to the histogram of a random sample) in LD which falls
into the cluster of vi, otherwise xi¼0. Then we normalize the
vector to have a unit length LD ¼ LD

‖LD‖2, where ‖LD‖2 is the 2-norm
length of LD.

Given the normalized feature vectors LD of all line drawings in
six categories in the OSU dataset, we train a SVM classifier with a
linear kernel Kðxi; xjÞ ¼ xTi xj. A penalty parameter in the kernel is
optimized by a LIBSVM optimization function as presented in the
next section.
4. Experiments

To the authors' best knowledge, the proposed method in this
paper is the first computer program that can recognize the cate-
gory of nature scenes in which a given line drawing belongs to.
A previous work [3] that recognized categories of nature scenes in
line drawings was based on the fMRI data taken from human
observers. The same SVM classifier as in ours was used in [3].
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Therefore, when we compared our recognition results with those
in [3], the difference in performance was due to the recognition
features we proposed in this paper.
4.1. Experiment setting

There are four parameters in our recognition features:

� The threshold τ in Section 3.1 to compute a binary image from a
saliency map.

� The number PtNum of random points in Section 3.2 to be dis-
tributed in a line drawing of 800�600 pixels.

� The number NumCir of circular bins in the histogram in
Section 3.2.

� The number K of clusters in the K-means clustering algorithm in
Section 3.2.

In our implementation, we chose τ¼0.2, PtNum¼500,
NumCir¼15 and K¼2000. Note that our method was not sensitive
to the parameters and the experimental results were stable when
0:1rτr0:3, 300rPtNumr600, 15rNumCirr20 and 1500rK
r 2500.

We used LIBSVM [24] with a linear kernel Kðxi; xjÞ ¼ xTi xj for
classification. In our application, there are six categories in the OSU
dataset and LIBSVM can perform multiclass classification; see
Section 7 in [24] for full details. The penalty parameter inside the
implementation of the linear kernel was optimized by a LIBSVM
function SVMcgForClass.
Fig. 6. Recognition rates in PMJCF of global or local-structure-preserving line
drawing simplification. Red curve: recognition rates of OSUglobal(x), x ranged from
5% to 100%. Green curve: recognition rates of OSUlocal(x), x ranged from 5% to 100%.
(For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)
4.2. Recognition performance and comparison

We use leave-one-out cross-validation (LOOCV) for recognition
performance evaluation. That is, in each fold, one line drawing was
used as the test set and the others are used as the training set.
After 475 folds, each subject has been used as the test set once and
the final recognition accuracy was computed based on all the
results.

Our experimental results with the setting presented in Section
4.1 showed that our PMJ-inspired cognitive framework (PMJCF)
achieved a recognition rate 48.4% for line drawings in six cate-
gories (beaches, city streets, forests, highways, mountains and
offices), which was significantly higher than the chance level
16.7%. As a comparison, the recognition rate in [3] that used the
same OSU dataset and the same SVM classifier was only 29% by
working with the patterns extracted from fMRI data in the primary
visual cortex (V1), and was 27% in V2þVP, 26% in V4, 29% in PPA
and 23% in RSC, where V1, V2, VP, V4, PPA and RSC are brain area in
the visual-processing hierarchy.

The confusion matrix of our PMJCF results was summarized in
Table 1. The results showed that the classes of beaches, city streets
and mountains can be recognized very well. The class of highways
had the worst recognition performance and were frequently
recognized as beaches. This may be possibly because many high-
ways images also contained parts of sky, mountain and sea which
were also appeared in beaches images. The class of offices were
frequently recognized as cities, possibly because these two classes
of images contains blocks of straight line segments. The class of
forests were sometimes recognized as cities. If we re-organized
these images into man-made scenes (city streets, highways and
offices) and non-man-made scenes (beaches, forests and moun-
tains), the recognition rate was improved to 73.3% and the corre-
sponding confusion matrix was summarized in Table 2.
4.3. Global vs. local structures in line drawings

The fMRI experimental results [3] revealed that line drawings
can be decoded as accurately as photographs, although line
drawings had remarkable difference in scene statistics and con-
siderable degradation of information. Observing that color and
texture information are lost in line drawings, a possible reason is
that the geometric structure preserved in line drawings plays a
primary role in representing scene categories. It is then interesting
to ask whether long contours (reflecting global structure) or short
contours (reflecting local structure) in line drawings is important
to representing the geometric structure in images. In this section,
we showed that long contours were more important than short
contours in PMJCF if sufficient local details were provided; other-
wise short contours were more important.

Experiment I: Global-structure-preserving line drawing simplifi-
cation. In the OSU dataset, all line drawings were created by artists
who traced contours in color photographs. For each line drawing,
the order and coordinates of all line strokes were provided in the
OSU dataset. To preserve the global structure, from a line drawing
we iteratively removed contours of shortest length. This led to a
hierarchy of line drawings with different resolutions. Here the
resolution was defined by the percentage of black pixels in original
line drawing that were preserved in the simplified line drawing.
An example was illustrated in Fig. 4. Let x be a percentage ranged
from 0% to 100%. We denoted by OSUglobal(x) be the set of line
drawings, each one of which is a global-structure-preserving
simplification at resolution x of a line drawing in the OSU data-
set. We applied the proposed PMJCF with LOOCV on OSUglobal(x), x
ranged from 5% to 100%, and the curve of recognition rates was
shown in Fig. 6 (red curve).

Experiment II: Local-structure-preserving line drawing simplifi-
cation. For each line drawing in OSU, we iteratively removed
contours of longest length to preserve local structures. An example
was illustrated in Fig. 5. We denoted by OSUlocal(x) be the set of line
drawings, each one of which is a local-structure-preserving sim-
plification at resolution x of a line drawing in the OSU dataset. We
applied the proposed PMJCF with LOOCV on OSUlocal(x), x ranged
from 5% to 100%, and the curve of recognition rates was shown in
Fig. 6 (green curve).
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The results summarized in Fig. 6 showed that when the reso-
lution x reached 5%, the sets OSUglobal(x) and OSUlocal(x) contain
very few scene information and cannot be used for scene cate-
gorization; accordingly, their recognition rates both reached the
chance level 16.7%. When the resolution xZ90%, the global
structure contained in long contours (which also contains suffi-
cient local details indicated by xZ90%) has a better performance
than the local structure contained in short contours. When the
resolution xo90%, local structures contained in short contours
outperformed global structures contained in long contours; this
possibly because PMJCF made use of histograms with local circular
bins in the memory stage.
5. Conclusion

Natural scene categorization had drawn considerable attention
from neuroscience and computer science. In this paper, a PMJCF
computational model is proposed to recognize the categories of
natural scenes based on line drawings. PMJCF consists of three stages
of computation. At the first stage of perception, a saliency map is
extracted from color photographs and applied to obtain perceived
line drawings. At the second stage of memory, a vocabulary of visual
words is obtained by clustering instantiations of features (short-term
memory) followed by a stationary distribution analysis of a discrete-
time Markov chain (long-term memory). At the third stage of jud-
gement, a SVM classifier with a linear kernel is applied. Experimental
results show that PMJCF can achieve above-chance recognition rate
48.4%, which is much better than the SVM-classifier-based recogni-
tion rates (the best is 29%) in [3].
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