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Abstract—Quality assessment of image retargeting results is useful when comparing different methods. However, performing the

necessary user studies is a long, cumbersome process. In this paper, we propose a simple yet efficient objective quality assessment

method based on five key factors: i) preservation of salient regions; ii) analysis of the influence of artifacts; iii) preservation of the global

structure of the image; iv) compliance with well-established aesthetics rules; and v) preservation of symmetry. Experiments on the

RetargetMe benchmark, as well as a comprehensive additional user study, demonstrate that our proposed objective quality

assessment method outperforms other existing metrics, while correlating better with human judgements. This makes our metric a

good predictor of subjective preference.

Index Terms—Image retargeting, quality assessment, similarity and aesthetic measure, symmetry

Ç

1 INTRODUCTION

IMAGE retargeting, which adjusts an image into arbitrary
sizes such that the image can be displayed on screens of

different sizes, has received much attention in recent
years [1], [2]. Many retargeting methods have been pro-
posed, although a single method that works well on any
image still does not exist. Instead, different images favor
different retargeting algorithms (Fig. 1), which makes it dif-
ficult to predict a priori which method will work best on
which image. An efficient objective quality assessment for
image retargeting would thus be useful to select the best
result from a pool of retargeted results given a single input
image, without the need to rely on costly user studies. Fur-
thermore, this could also assist in developing new image
retargeting strategies.

Existing image retargeting quality assessment methods
can be coarsely classified into subjective [3], [4] and objective
methods [5], [6], [7]. Subjective methods are usually cumber-
some and time-consuming, since they require repeated votes
by many participants over relatively large combinations of
results. Therefore, similar to existing image quality metrics
in other domains (see [8] for a recent review), objectivemeth-
ods are a desired tool for assessing retargeted results fast
and automatically. However, as summarized in the next sec-
tion, existing state-of-the-art objective methods are limited
in their underlying image analysis. In this paper, we propose
a novel objective metric for quality assessment of retargeted

images based on five key critical factors that define image
quality for a retargeted result, selected by carefully analyz-
ing existing retargeting methods and their outcomes. These
factors are the following (see Fig. 2):

� Preservation of salient regions: These salient regions
dictate viewing patterns when looking at an image.
Alterations to such patterns in the retargeted image
should be minimized.

� Influence of introduced artifacts: Newly introduced
artifacts are one of the most damaging factors when
judging the quality of retargeted results.

� Preservation of the global structure: Changes in the
global structure of the image usually yield incorrect
inter-relationships between objects, thus altering
semantics.

� Aesthetics:Well-known rules for image composition [9],
[11]might be changed in the retargeted results.

� Preservation of symmetry: Broken symmetric features
are quickly detected as undesired artifacts by human
observers.

The first three factors define the similarity component of
our metric, or how well the original content is preserved in
the result. In previous work [3], similarity is compared by
analyzing the shape of saliency maps resulting from eye-
tracking experiments; our objective metric removes the
need for these experiments, which require specialized
equipment, providing a definition of similarity that closely
addresses the three main goals of image retargeting algo-
rithms: preserving content, limiting artifacts and preserving
structure [4]. Note that since global structure information
may not contain any clear salient region (see Fig. 3), both
factors need to be computed separately. Last, we rely on the
field of computational aesthetics to define well-known com-
positional rules that can be objectively measured [9], [12],
[13], and go beyond a simple preservation of symmetry. All
these factors are explained in detail in Section 3.

In our quality assessment metric, we first measure
the preservation of saliency by computing the changes
of the salient areas and the color variations; a weighted
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bidirectional similarity metric is used to measure the influ-
ence of artifacts, while global structure preservation is esti-
mated by means of a combination of two existing image
similarity metrics (SSIM [14] and HDR-VDP2 [15]). Sec-
ondly, an aesthetic metric is defined by measuring the
changes in image composition using several well-estab-
lished rules of aesthetics. Last, a symmetry measure is pro-
posed to evaluate the how well symmetric structures are
preserved. The final quality assessment is the result of an
optimally weighted linear combination of the partial simi-
larity, aesthetic and symmetry metrics. Extensive experi-
mental results on the RetargetMe benchmark [4], as well as
a comprehensive user study, demonstrate that our objective
metric1 outperforms other objective quality assessment
methods [6], [16], [17], [18], [19], [20], showing a much
higher agreement with human preference.

2 RELATED WORK

Many different image retargeting algorithms have been pub-
lished over the past few years, such as seam carving (SC)
[21], nonhomogenous warping [22], scale-and-stretch (SNS)
[23], patchwise scaling [24], multi-operators (MOPs) [17],
optimized resizing [26], content-aware resizing [27], [28] or
symmetry summarization [29]. Most of them share the com-
mon strategy of defining some sort of “energy”map over the
2D manifold of the image, which encodes what areas of the
images need to be preserved during retargeting. This energy
can be defined in terms of image gradients, salient areas, aes-
thetic considerations or a combination of several of them.We
refer the reader to some recent courses [1], [2], [30] and sur-
veys [31] for a complete overview of existing algorithms, and
focus here on qualitymetrics.

Several quality assessment techniques have been pro-
posed to compare image retargeting methods. Subjective
methods are based on analyzing the preference of partici-
pants in carefully designed user studies. A publicly avail-
able benchmark called RetargetMe, composed of a large

number of original and retargeted images computed by sev-
eral state-of-art methods, was presented in [4], along with
the first in-depth study of the subjective preference of a
large number of participants. Later, eye tracking was used
to compare image retargeting methods through the exami-
nation of gaze fixations and viewing patterns by Castillo
et al. [3]. The working hypothesis is that changing patterns
and fixation points reflect unwanted changes in the salient
regions of the original and the retargeted image, which
should be preserved during retargeting. These subjective
methods work well and offer valuable insights, but they
are costly to carry out.

Objective methods have also been proposed, both in the
general context of image manipulation and for image retar-
geting in particular. The edge histogram (EH) [18] and the
color layout (CL) [19] define image distances to assess the
content similarity in two images. The earth-mover’s dis-
tance algorithm (EMD) [32] and SIFT-flow (SFlow) [20]
were used in [4] to assess image retargeting methods, since
they are robust to capturing the structural properties inher-
ent in images. They performed well when measuring the
preservation of salient regions but tend to underestimate
the influence of artifacts. Ma et al. [7] further verified
the efficiency of the above methods by fusing EH, CL and

Fig. 1. Different input images favor different retargeting methods. By
subjective evaluation [4], nonhomogeneous warping (WARP [22]) produ-
ces better results than shift-maps ([25]) in (a), while SM performs better
than WARP in (b). For the first image, SM outputs an unrealistic com-
pression of the back of the car, whereas for the second one it preserves
the heart shape better than WARP.

Fig. 2. Original image (a), plus the results of six popular retargeting
methods (b through g): Linear scaling (SCL), seam-carving ([21]), scale-
and-stretch ([23]), non homogeneous warping (WARP [22]), shift-maps
([25]) and cropping (CR). For this particular image, it can be seen how
some results do not preserve all salient regions (WARP, SM, CR); intro-
duce artifacts (SCL, SNS); do not preserve the global structure (SC,
WARP, SM); alter the original composition (SCL, WARP, SM, CR); or
break the original symmetry (WARP, SM).

Fig. 3. Two examples of images without a clear salient region, but with
well-defined structure.

1. Our code will be available at
http://cg.cs.tsinghua.edu.cn/people/�Yongjin/yongjin.htm.
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SIFT-flow, concluding that the combination of these
methods performs better than any single one of them in iso-
lation, for image retargeting quality assessment. Simakov
et al. [16] proposed a bidirectional similarity to describe
the coherence and completeness between input and out-
put images. This method is efficient in measuring the
influence of artifacts, but not in the preservation of salient
regions. Rubinstein et al. [17] proposed a bi-directional
warping (BDW) distance based on the non-symmetric
variant of dynamic time warping to measure the similar-
ity between each row/column or patch of an image and
its retargeted image. This method efficiently controls arti-
facts by optimizing the alignment of an original image
with its retargeted image, but it does not take into
account changes in the composition of the layout from an
aesthetics perspective. Liu et al. [6] used a top-down sim-
plified model of the human vision system to define a
saliency-based image similarity metric in the CIE Lab
color space. Fang et al. [33] applied a spatial pooling
method to provide dense pixel correspondences in the
reference and retargeted images, and applied the SSIM
measure to each pair of corresponding pixels to define an
overall image retargeting SSIM index. Hsu et al. [34] used
a local variance of SIFT flow vector field to measure the
geometric distortion of a retargeted image. These meth-
ods [6], [33], [34] can identify loss or distortions of salient
regions in the original image, but again they do not take
aesthetics into account. Last, used in the context of
deblurring algorithms, Masia et al. [35] propose an image
quality measure which combines the L2 norm, the SSIM
index and the HDR-VDP-2 metric. The SSIM index per-
forms well in measuring the structure similarity between
two images, while the HDR-VDP-2 produces a good esti-
mation on the overall quality of an image; since both of
these aspects are important in image retargeting, we
employ these two metrics as well when measuring struc-
ture preservation.

3 OBJECTIVE ASSESSMENT METHOD

We assess the quality of a retargeted image T with its

original image I as reference. Our quality assessment con-

sists of three parts: a similarity measure QsimðI; T Þ, an

aesthetics measure QaesðI; T Þ, and a symmetry measure

QsymðI; T Þ. QsimðI; T Þ further consists of three subparts,

dealing with the preservation of salient regions QsalðI; T Þ,
the influence of artifacts QartðI; T Þ, and the preservation

of the global structure QstrðI; T Þ. Given that Qsym only

works on input images with symmetric features, we first

define a general quality metric QðQsal; Qart; Qstr; QaesÞ
(Eq. (1)), and then extend it to Q0ðQ;QsymÞ to include sym-

metry (Eq. (2)). Both Q and Q0 can be interpreted as dis-

tance functions between T and I, defined in the [0, 1]

domain, where 0 means T = I and smaller value means
better retargeted result.

To represent the function Q, we make the basic assump-
tion that Qsal, Qart, Qstr and Qaes show mutual preferential
independence. In a deterministic preference structure, three
attributes X1, X2, X3 are preferentially independent of a
fourth attribute X4 if the preference between outcomes
< x1; x2; x3; x4 > and < x0

1; x
0
2; x

0
3; x4 > does not depend on

the particular value x4 for attribute X4 [38]. Then, by the
Debreu’s theorem [39], the preference behavior can be
described by minimizing the additive value function Q:

Q ¼ vsalQsal þ vartQart þ vstrQstr þ vaesQaes: (1)

For the images with symmetry features, a supplementary
metric Qsym is used:

Q0 ¼ vQQþ vsymQsym: (2)

The optimal values of weights vsal, vart, vstr, vaes, vsym and
vQ will be specified in Section 4.1. In the following sections,
we will introduce our three main components of the metric,
namely similarity, aesthetics and symmetry.

3.1 Similarity Component

The similarity component evaluates to what extent the
important contents and the structures are preserved, and to
what extent some new artifacts are introduced. For this, we
define three quality terms: Qsal for salient region preserva-
tion, Qart for the influence of artifacts, and Qstr for global
structure preservation.

3.1.1 Qsal for Salient Region Preservation

We assume that preserving the salient regions of an original
image is a desired feature of any image retargeting algo-
rithm [3]. In the field of image retargeting, Castillo et al. [3]
compute salient regions by analyzing eye-tracking data.
This method is obviously accurate, but time-consuming.
Many methods have been proposed to automatically predict
such salient regions (e.g., [6], [23], [40]). In this paper, we
follow the approach of Cheng et al. [41], who used global
contrast differences and spatial coherence information to
efficiently separate salient large-scale objects from their
low-saliency surroundings. This method has been evaluated
on the largest publicly available data set, consistently pro-
ducing good results.

In principle, we could measure the preservation of
salient regions by taking into account the change of the
salient areas between the original image I and its retar-
geted result T . We measure such change as the normalized
difference Qarea ¼ jSI � ST j=maxðSI; ST Þ, where SI and ST

represent the areas of the original and retargeted salient
regions, respectively. However, this naive approach
would not always produce good results, since sometimes
the areas of salient regions may happen to be close, but
the content of such regions might have changed during
retargeting. We thus rely on common image understand-
ing strategies, and also take into account variations in con-
tent as changes in the color histogram (in HSV space) of
the region [42].

For an efficient representation, we quantize the HSV
space and map it into a one-dimensional, 256-bin color his-
togram C as [43]. In their work, a quantizer QM

c (where M =
Nh �Ns �Nv) is proposed to describe any HSV color by Nh

hues, Ns saturations and Nv values (we use 16, 4 and 4
respectively). This way, each color in HSV space is assigned
to a unique index in M dimensions. Given the quantized

values of pixel p as QM
c ðhÞ, QM

c ðsÞ and QM
c ðvÞ, we can
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compute its color by CðpÞ ¼ QM
c ðhÞ �Ns �Nv þQM

c ðsÞ �
Nv þQM

c ðvÞ.
Let hI and hT be the color histograms in C space

describing the salient regions of I and T . We measure

their color difference as Qcolor ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP255
i¼1ðh0

I � h0
T Þ2

q
, where

h0
I and h0

T represent normalized histograms. Qsal is finally
defined as:

Qsal ¼ vareaQarea þ vcolorQcolor; (3)

where varea þ vcolor ¼ 1 and varea;vcolor > 0. The optimal
values of varea and vcolor are discussed in Section 4.1. Fig. 4
shows some examples of Qarea and Qcolor for some retar-
geted results.

3.1.2 Qart for Artifacts Influence

Visual artifacts in the form of distortions or broken struc-
tures may appear in the resulting retargeted image. The
recently proposed bidirectional similarity metric [16] cap-
tures a quantitative measure of the potential visual artifacts
introduced during retargeting, by comparing small patches
from the original and retargeted images. Two images are
considered to be visually similar if as many small patches as
possible from one are included in the other, and vice versa.

However, the original formulation of the metric does not
take into account the influence of the salient areas in the
images. Castillo et al. [3] analyzed eye tracking data from
many viewers and found that relatively large artifacts out-
side the main salient areas tend to go unnoticed much lon-
ger than artifacts in the main salient regions. We thus
modify the original bidirectional similarity metric to take

into account the influence of saliency, defining our measure
of artifacts influence as:

Qart ¼ 0:5

1
NI

P
R�I SR minQ�T DðR;QÞ

maxR�I ðSR minQ�T DðR;QÞÞ

þ 0:5

1
NT

P
Q�T SQ minR�I DðQ;RÞ

maxQ�T ðSQ minR�I DðQ;RÞÞ ;
(4)

where R and Q are 3� 3 patches from the original and
retargeted images respectively, NI and NT are the number
of patches in such original and retargeted images, and D is
the distance measure between two patches as defined
in [16]. The saliency weights SR and SQ are given by the
average of the salience values of all pixels contained in
patches R and Q. These salience values are computed by
the method of Cheng [41].

3.1.3 Qstr for Structure Preservation

A good retargeting method should also preserve the global
structure of the original image as much as possible. How-
ever, measuring the preservation of the global structures
between two images (before and after resizing) is challeng-
ing. On the one hand, it is well known that objective metrics
working at pixel level, such as the L2 norm, do not perform
well when measuring higher level attributes like structure.
On the other hand, more sophisticated metrics such as the
Structural Similarity Index Measure (SSIM [14]) can only be
used to measure quality degeneration after registration
between the original and the modified image, usually with-
out changes in content.

Since the original image and its retargeted result have
different sizes, we first establish structure-aware dense pixel
correspondences between the original and retargeted
images. Instead of directly searching the whole retargeted
image for each pixel of the original image, we use a struc-
ture-aware pixel mapping scheme relying on scale-space the-
ory [6], [44]. Briefly (please refer to the original publications
for further details), a convolution of a Gaussian function

Gðx; y; sÞ ¼ 1
2ps2

e�ðx2þy2Þ2s2 with image I is applied, and a

difference-of-Gaussian image D is obtained as Dðx; y; sÞ ¼
ðGðx; y; ksÞ �Gðx; y; sÞÞ � Iðx; yÞ. The Gaussian image
Gðx; y; sÞ � Iðx; yÞ is down-sampled by a factor of 2 and the
process is repeated to produce an image scale space

ðI;D1; D2; . . . ; DnÞ. We follow [6] to set the parameters

k ¼ ffiffiffi
2

p
and n ¼ bmc where m is the minimum number of

ða; b; c; dÞ, while ða� bÞ is the original image size and ðc� dÞ
is the retargeted size.

Applying this to both our original image I and its retar-

geted image T , we obtain the image scale spaces ðI;D1
ori;

D2
ori; . . . ; D

n
oriÞ and ðT;D1

ret; D
2
ret; . . . ; D

n
retÞ, from which a

hierarchical pixel match is performed. First, the pixels in
Dn

ori and Dn
ret are matched and then propagated to level

ðn� 1Þ as an inter-scale constraint. These pixel matches are
further fine tuned in a 5� 5 local window as an intra-
scale constraint to give accurate pixel matches at level
ðn� 1Þ. This process is repeated until the I and T levels
are reached. Note that the inter-scale constraint offers a
consistent image structure correspondence in a top-down
manner and the intra-scale constraint offers structure-
aware accurate pixel matches.

Fig. 4. Example values of Qarea and Qcolor for retargeted results. The left
image of each sub-image is the original image while the right is its salient
region by Cheng’s method [41]. Multi-operator: Qarea ¼ 0:46, Qcolor =
0.11. Scale-and-stretch: 0.66 and 0.22. Shift-maps: 0.49 and 0.73.
Seam-carving: 0.46 and 0.15.
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After this process, the global structure similarity is
evaluated by a weighted summation of local similarity win-
dows from every pair of pixel correspondences. Based on
the mapping relationship of pixels between an original
image and a retargeted result, we define Qstr based on the
SSIM [14], and the more recent version of the Visual Differ-
ences Predictor (VDP2 [15]). SSIM compares the structural
similarity between two images by analyzing the degrada-
tion of structural information between corresponding
windows in images, while HDR-VDP-2 (from here on,
VDP2) includes a model of human perception to predict
the overall quality of an image, compared to a given ref-
erence. For both, larger values mean better results. To
match the measures of Qsal and Qart, where smaller val-
ues mean better results, we compute ð1� SSIMðp; p0ÞÞ
and ð1� VDP2ðp; p0Þ=100Þ to evaluate the structure preser-
vation. Let pixel pi be the ith pixel of the original image I
and pixel p0i its corresponding pixel in the retargeted
image T , we then define Qstr as:

QstrðI; T Þ ¼ vssim

XNt

i¼1

ð1� SSIMðpi; p0iÞÞ

þ vvdp

XNt

i¼1

ð1� VDP2ðpi; p0iÞ=100Þ;
(5)

where vssim þ vvdp ¼ 1, vssim;vvdp > 0 (computed in
Section 4.1) andNt is the numbers of pixels of the retargeted
image T . Smaller Qstr means better retargeted result.

3.2 Aesthetics Component

Inspired by the field of computational aesthetics [12], [13]
and its applications in image composition [9], [11], we incor-
porate a computational measure of image aesthetics into
our quality assessment metric. Specifically, we focus on two
rules that have been empirically shown to increase image
aesthetics in most cases [9]:

� Rule of thirds. This rule divides an image into nine
parts of equal size by equally spacing two horizontal
and two vertical lines. These lines define four inter-
section points as shown in the red points in Fig. 5
(left). When the salient regions lie near to them, the
perceived aesthetics of an image generally improved
(see the sun and boat in Fig. 6a).

� Visual balance. The image is regarded to be visually
balanced if the center of mass of all salient regions is
close to the image center (see the spider in Fig. 6b).

Note that there are many other (sometimes competing)
rules devised to compute the aesthetic measure of an image,

such as diagonal dominance, color-related rules, or rules
defining different salient-region sizes. However, our goal is
to obtain an aesthetics component that is as simple as possi-
ble and serves our goal in the context of image retargeting.
Since we also need to integrate its value coherently with
Qsal and Qart, we propose the following simple variant
of the aesthetic score functions defined in [9].

Our aesthetic metric Qaes consists of two parts, Qthird for
rule of thirds and Qbal for visual balance. Let the set
A ¼ ðaNE; aNW ; aSE; aSW Þ denote the power points in the
rule of thirds, and aCenter be the image center (Fig. 5, right).
The Qthird is computed as follows: In the retargeted image,
we first compute the center position mk of each of k salient
regions such as the green point in Fig. 5. We then compute
the positions of the power points in A, and find the nearest
point anear to mk and the farthest point afar to mk as shown
in Fig. 5, right. Then

Qthird ¼ jjmk � pðanearÞjj2
jjmk � pðafarÞjj2

; (6)

where pðaiÞ denote the position of ai and jj � jj2 denotes the
L2 norm. Similarly, we define Qbal by

Qbal ¼ 1

HL
jjm� pðaCenterÞjj2; (7)

where m is the center of mass of all salient regions, HL
means the half length of diagonal line of a retargeted image
and is used to do normalization.

Finally, we obtain Qaes as Qaes ¼ 0:5Qthird þ 0:5Qbal. Note
that the measure Qaes is normalized in the range ½0; 1	, and
smaller values mean better compliance with aesthetics
rules, and better retargeted result (such as the SNS result
in Fig. 7).

3.3 Symmetry Component

Symmetry is one of the most important structural features
in images. In fact, broken symmetries are usually one of the

Fig. 5. Illustration of the Qaes computation. Left: the rule of thirds and
intersection points. Right: The power points are defined as the union of
intersection points and the image center (aCenter). Supposed mk is the
center of a salient region, its nearest power point anear is the aNE while
its farthest power point afar is the aSW .

Fig. 6. Representative images for each aesthetic rule.

Fig. 7. Example values of Qaes for some retargeted results. The red
points are the power points, while the green points are the centers of
salient regions. By Qaes, SNS (Qaes ¼ 0.30) performs better than MOP
(Qaes ¼ 0.38), SC (Qaes ¼ 0.35) and SM (Qaes ¼ 0.32).
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easiest-to-spot artifacts in retargeted images [4] (see Fig. 8).
Recently, some retargeting methods have been specially
designed to preserve symmetric features [29].

To take symmetry into account, we first detect the sym-
metry regions. According to [29], the symmetric regions in
an image usually satisfy the following features: first, they
possess similar distinguishing, invariant and stable proper-
ties; second, their intensities are very similar or satisfy some
monotonic transformation. Therefore, the areas covering
“windows” in Fig. 9 (denoted by red ellipses in Fig. 9c) are
symmetric regions for possessing similar properties under
some affine transformation. Many methods can be used to
identify symmetric regions such as Harris corners [46], or
SIFT points [47]. We use maximally stable extremal regions
(MSER) [48], which have been recently shown to be effective
at detecting symmetric regions for retargeted images [29].
The MSER method can efficiently identify regions with sim-
ilar content even after affine transformations which often
occur in image retargeting. However, the regions detected
by the MSER are some ellipses with overlapped or trivial
regions such as Fig. 9b. Therefore, we use adaptive mean-
shift clustering [49] to group detected regions, and select as
symmetric regions the clusters with the largest covering
areas (Fig. 9c).

Suppose the final symmetric regions of a retargeted
result T are given by R ¼ friðci; ui; viÞ; i ¼ 1; 2; . . . ; Nsg,
where ri describes an ellipse and (ci, ui, vi) are its center,
major axis vector and minor axis vector, respectively. For
example, the red ellipse in the yellow rectangle in Fig. 9c is
a symmetric region, with the black point as its center, the
blue line as its major axis, and the green line as its minor
axis. We then evaluate the image quality introduced by
symmetry preservation of T by accumulating the minimum
symmetry distances of all its symmetric regions. First, we
define the symmetry distance Dsym from its symmetric
region rm to rn by:

Dsymðrm; rnÞ ¼ 1

Nm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNm

i¼1
ðPiðrmÞ � PiðF ðrnÞÞÞ2

rzfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{intensity similarity

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� jum � unj

um þ un
� jvm � vnj

vm þ vn

�2
s
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

shape similarity

;

(8)

where Nm is the number of pixels in rm, PiðxÞ is the ith pixel
in region x, um and vm are the axis vectors of rm, un and vn
are the the axis vectors of rn, and F ðrnÞ is an affine transfor-
mation function to make rn the same size as rm.

If two regions satisfy the symmetry relationship, they
should have similar shape and content. Therefore, our sym-
metry distance is evaluated by two similarity measures,
namely the intensity similarity (the first term in Eq. (8))
and the shape similarity (the second term in Eq. (8)). The
intensity similarity, computed by the intensity difference,
describes the content consistency between them. For the
regions satisfying the symmetry relationship usually
formed by affine transformation, we first transform rn by F
to the size of rm when compute the symmetry distance from
rm to rn. Similarly, the rm will be transformed to the size of
rn when computing the symmetry distance Dsymðrn; rmÞ
from rn to rm. The shape of a symmetric region is deter-
mined by its major and minor axes; we measure the shape
similarity by the length differences between the axis vectors
as shown in Eq. (8).

For each symmetry region of a retargeted image, we com-
pute the symmetry distances to all other symmetry regions,
and select its minimum symmetry distance. This minimum
symmetry distance is related to the most similar region
that forms a symmetry relationship with it. Then, we define
the Qsym, which describes the symmetry preservation of the
whole retargeted image by accumulating all the minimum
symmetry distances of its symmetric regions, as:

Qsym ¼ 1

Ns

X
rm2R

minrn2RDsymðrm; rnÞ; (9)

where R is the set of symmetry regions of a retargeted
image T , and Ns is the number of symmetric regions in R.
Smaller Qsym values mean fewer differences between sym-
metric regions, which leads to better symmetry preservation
(see Fig. 8).

Fig. 8. Example values of Qsym for image Taj Mahal. The CR (Qsym ¼
0:37) and the SNS (Qsym ¼ 0:55) methods preserve image symmetry
better than WARP (Qsym ¼ 0:59) and SM (Qsym ¼ 0:57).

Fig. 9. Symmetric regions detection. After obtaining MSER regions such as (b), we cluster them by the adaptive mean-shift clustering to select the
major cluster as symmetry regions such as (c) while discarding the trivial and overlapped regions.
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3.4 Final Measure

To use our objectivemetric, the user simply indicates whether
symmetry must be taken into account, given a pair of original
and retargeted images. This can also have been previously
tagged: For example, the RetargetMe dataset [4] already
contains information about symmetry. Thenwe define

ðQ;Q0Þ ¼ Q0 if the image has symmetric features
Q otherwise;

�
(10)

where Q is defined in Eq. (1) and Q0 is defined in Eq. (2).

4 RESULTS AND EVALUATION

To evaluate our results, we use the 37 images in the Retar-
getMe database [4] in our experiment. These images are
classified into six image types, including lines/edges (25
images), faces/people (15 images), foreground objects (18
images), geometric structures (16 images), symmetry (six
images) and texture (six image). Note that one image may
belong to several types. For each image, there are eight
retargeting results produced by state-of-the-art methods,
including: simple cropping (CR), multi-operator [17],
streaming video (SV) [50], shift map (SM) [25], non-homoge-
nous warping (WARP) [22], seam carving (SC) [21], simple
scaling (SCL) and scale-and-stretch [23].

As observed in [4], the quality of retargeted results can-
not be represented in a linear scale and the paired compari-
sons technique was suggested to replace the traditional
ranking methods for quality assessment. We follow the
method proposed in [4] to use the Kendall correlation coeffi-
cient [51] to measure the degree of agreement between an
objective assessment and the subjective assessment, which
is computed as follows: First, for an original image I, we
build a subjective score vector s ¼ ðs1; s2; . . . ; s8Þ for the
eight retargeting methods based on the subjective scores in
RetargetMe, i.e., si is the number of times the retargeted
result Ti (computed by the ith retargeting method) is
selected as the best by users. Second, we build an objective
score vector o ¼ ðo1; o2; . . . ; o8Þ for I using our objective
assessment method where oi ¼ QðI; TiÞ represents an objec-
tive quality measure. Third, we rank s and o after sorting
them. s is sorted in descending order since the higher si the
better quality Ti, while o is sorted in ascending order since a
smaller oi means better quality. Finally, we compute the
Kendall correlation coefficient t between the two ranked
vectors to obtain the rate of agreement between the objective
and the subjective assessments:

t ¼ 1

m

Xm
i¼1

Nþ
i �

Xm
i¼1

N�
i

 !
; (11)

where m ¼ c2n is the number of compared pairs given the
ðn ¼ 8Þ retargeting methods. For a given pair i of entries in
the ranking, if it is a concordant pair in s and o, we set

Nþ
i ¼ 1 and N�

i ¼ 0, otherwise Nþ
i ¼ 0 and N�

i ¼ 1. By

accumulating Nþ
i ðN�

i Þwe obtain the number of concordant
(discordant) pairs over all the pairs of entries in the ranking.
Note that �1 
 t 
 1. A higher t means a better agreement
between the objective and the subjective assessments.

4.1 Optimal Parameter Setting

As the parameters in Eq. (2) depends on Eq. (1), we first
compute the optimal parameters of Eq. (1), namely ðvsal;
vart;vstr;vaesÞ and ðvarea;vcolor;vssim;vhdpÞ. To find an opti-
mal set, we define a functional ~t ¼ ðvsal;vart;vstr;vaes;
varea;vcolor;vssim;vhdpÞ in an eight-dimensional space X as
follows. The constraints vsal þ vart þ vstr þ vaes ¼ 1, varea þ
vcolor ¼ 1, vssim þ vhdp ¼ 1, and the values of these parame-
ters that should be controlled in the range ½0; 1	 form a
hypercube H in X. Each point p 2 H defines a deterministic
measureQðpÞ in Eq. (1). UsingQðpÞ, we compute the Kendall
correlation coefficient t of the images in a training set. The
value of the functional ~tðpÞ is defined to be the average of all
Kendall correlation coefficients for all the original images in
a training set. Then the optimal parameters correspond to
the position p0 2 H where ~tðp0Þ reaches themaximum.

To find the optimal point p0, we estimate the functional t
using the RBF interpolations. We sample H using the inter-
val 0.05 in each dimension. For each sample point si 2 H,
we compute the functional value ~tðsiÞ. The RBF interpolat-
ing function is

~tðxÞ ¼
Xn
i¼1

viFðx� siÞ; (12)

where vi is the weight for each sample si, x 2 H and n is the
number of sample points in H. We use the Gaussian radial

basis function FðrÞ ¼ e�r2 due to its positive definite prop-
erty. The weights vi are solved by the linear system from
the interpolating constraints

~tðsjÞ ¼
Xn
i¼1

viFðsj � siÞ; 8sj 2 H:

Given the analytical form ~tðxÞ, we find its maximum
value in H using the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm in multiple dimensions.

4.2 Comparison of Objective Metrics

We compare the proposed metric with six other objective
methods, namely BDS [16], BDW [17], EH [18], CL [19],
SFlow [20] and CSim [6]. BDS and DBW work similarly as
the factor Qart defined in Eq. (4). EH and CL use signatures
of fixed lengths regardless of image size to estimate the
image quality. In the previous evaluation by Rubinstein
et al. [4], SFlow and EMD [32] were found to yield a similar
performance, since both use a dense SIFT descriptor. In this
study, we choose SFlow as a representative for comparison.
CSim is specially designed for assessing image retargeting
methods, which simulates the human vision system in a
top-down manner; i.e., in the scale space of images, the
coarse level is used to evaluate the global structure corre-
spondence and the fine level is used to evaluate the pixel
similarity with the constraints of structure correspondence.
In our proposed measure, we use the five key factors to
assess the quality of a retargeted image: Qsal and Qart, Qstr

evaluate the preservation of image content and structure,
the factor Qaes evaluates aesthetics, and Qsym evaluates the
preservation of symmetry feature.

To verify the performance of our metric and compare it
to other objective methods, we apply leave-one-out cross
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validation (LOOCV) in the RetargetMe database. In each
fold of our LOOCV, one original image and its eight retar-
geted results are used as the test set, with the remaining
images as the training set. After 37 folds (the number of
original images in RetargetMe), each image has thus been
used as a test set once. The parameters of our metric are
determined as described in Section 4.1.

To estimate how well the objective metrics agree with the
participants’ subjective preferences, we compute the corre-
lation between rankings produced by each objective metric,
and the subjective results from the RetargetMe paper [4].
We use the Kendall correlation coefficient [51] for all seven
metrics using the test set. The results are summarized in
Table 1, classified according to the image types defined in
the RetargetMe database. We also compute a mean Kendall
correlation coefficient using all the images in the test set
(last column). It can be seen how our metric consistently
produces the best results, being a good predictor of subjec-
tive users’ preferences.

We further compare our metric against two other recent
ones [33], [34]. Using again all 37 images in RetargetMe, the
mean Kendall correlation coefficient of the IR-SSIM metric in
[33] is 0.363, smaller than the 0.399 correlation achieved by
our metric. Different from Table 1 in which eight retargeted
results (CR,MOP, SV, SM,WARP, SC, SCL and SNS) are used
to compute the Kendall correlation coefficients, only five
retargeted results (MOP, SM,WARP, SC and SCL) are used in
[34]. By using the same five retargeted results in RetargetMe,
the mean values of the Kendall correlation coefficients of our
metric and [34] (ours, [34] in each image type are: lines/edges
ð0:552; 0:431Þ, faces/people ð0:533; 0:390Þ, texture ð0:500;
0:286Þ, foreground objects ð0:544; 0:389Þ, geometric structure
ð0:600; 0:438Þ, symmetry ð0:567; 0:523Þ and all ð0:567; 0:523Þ.
Ourmetric consistently yields better predictions.

4.3 Validity of the Components in Q and Q0

4.3.1 Components in Q

Four factors Qsal, Qart, Qstr, Qaes are considered in Q, as
defined in Eqs. (3)-(6). To analyze the validity each factor,
we define the following four alternative measures and com-
pare them with Q:

Q1 ¼ vartQart þ vstrQstr þ vaesQaes

Q2 ¼ vsalQsal þ vstrQstr þ vaesQaes

Q3 ¼ vsalQsal þ vartQart þ vaesQaes

Q4 ¼ vsalQsal þ vartQart þ vstrQstr:

8>><
>>:

We repeat the LOOCV experiment as presented in
Section 4.2, this time replacing the measure Q0 by Q1, Q2,
Q3, Q4 and Q respectively. Then, we compare the Kendall
correlation coefficients obtained from Q1, Q2, Q3, Q4 and Q
with the original images as reference images in the Retar-
getMe benchmark. The results are summarized in Fig. 10,
showing that Q performs consistently and significantly bet-
ter than all the other choices.

TABLE 1
The Mean Kendall Correlation Coefficients of Seven Objective Metrics, Organized by the Image

Types Defined in the RetargetMe Database

Lines/edges Faces/people Texture Foreground objects Geometric structure Symmetry All

BDS 0.040 0.190 0.089 0.167 �0:004 �0:012 0.083
BDW 0.031 0.048 �0:009 0.060 0.004 0.119 0.046
EH 0.043 �0:076 �0:063 �0:079 0.103 0.298 0.004
CL �0:023 �0:181 �0:089 �0:183 �0:009 0.214 �0:068
SFlow 0.097 0.252 0.161 0.218 0.085 0.071 0.145
CSim 0.091 0.271 0.188 0.258 0.063 �0:024 0.151
ðQ;Q0Þ 0.351 0.271 0.304 0.381 0.415 0.548 0.399

Our metric consistently yields the best results (highlighted).

Fig. 10. The mean Kendall correlation coefficients of Q1, Q2, Q3, Q4 and
Q for each image type and all the 37 images.

TABLE 2
Kendall Coefficients of All Images Tagged as

Symmetric in the RetargetMe Database

Image name Q Qsym Q0

Johan 0.643 0.643 0.714
St. Angelo 0.643 0.143 0.714
Buddha �0:071 0.214 0.357
Foliage 0.500 0.143 0.571
Glasses �0:143 0.786 0.714
Taj Mahal �0:071 0.143 0.214

Mean 0:250 0.345 0.548

TABLE 3
Kendall Coefficients of Six Images that Are Not Tagged

As Symmetric in the RetargetMe Database

Image name Q Qsym Q0

DKNYgirl 0.643 0.429 0.500
Brick_house 0.571 �0:143 0.071
Butterfly 0.857 0.214 0.214
Car1 0.643 0.214 0.571
Painting2 0.714 0.357 0.286
Surfers 0.643 �0:214 �0:286

Mean 0.679 0.143 0.226
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4.3.2 Components in Q0

The measure Q0 consists of two factors, namely Q (analyzed
above) and Qsym, which is designed for images with sym-
metric features. As described in Section 3.3, our symmetry
detection relies on the user’s indication about whether or
not symmetry is present in the image. We have also tried
using suitable automatic state-of-the-art methods [52], [53]:
By applying these methods to the data set under Symmetry
Detection from the RealWorld Images Competition 2013
[54], the detection rates of [52] and [53] are 65.80 and 69.60
percent respectively. While reasonably good for automatic
algorithms, these percentages are still too low for an applied
method like ours.

To study how mistakenly choosing Q0 (or Q) in images
with clear symmetry (or lack of) will impact our quality
assessments, we first repeat the LOOCV experiment pre-
sented in Section 4.2, this time replacing the measure Q0 by
Q and Qsym. Then we compute the Kendall correlation coef-
ficients for all the images in the RetargetMe dataset tagged
as symmetric, using the three options: Q0, Q and Qsym. The
results are summarized in Table 2, showing a much better
performance of Q0 for these symmetric subset, as expected.
Similarly, Table 3 shows the Kendall correlation coefficients
of six images not tagged as symmetric in the database, using
Q and Q0. This time, again as expected, Q yields better
results than wrongly using Q0.

5 APPLICATION TO NOVEL DATASETS

To demonstrate the applicability of our objective metric to
different image datasets, we select 17 new images from the
RetargetMe database that lack subjective scores.2 Fig. 11 shows
this new dataset. Each image has eight retargeted results by
the same methods presented before: CR, MOP, SV, SM,
WARP, SC, SCL and SNS.

Parameters. We compute objective scores using the pro-
posed measures in Section 3, with parameters determined
as specified in Section 4.1 on the training set of all 37 origi-
nal images in RetargetMe. These parameters are:

Q1 ¼ 0:66Qart þ 0:17Qstr þ 0:17Qaes

Q2 ¼ 0:45Qsal þ 0:38Qstr þ 0:17Qaes

Q3 ¼ 0:8Qsal þ 0:1Qart þ 0:1Qaes

Q4 ¼ 0:31Qsal þ 0:03Qart þ 0:66Qstr

Q ¼ 0:45Qsal þ 0:38Qart þ 0:1Qstr þ 0:07Qaes:

8>>>><
>>>>:

(13)

and

Q0 ¼ 0:13Qþ 0:87Qsym; (14)

where the ðvarea;vcolorÞ for Q2, Q3, Q4 and Q are ð0:5; 0:5Þ,
ð0:6; 0:4Þ, ð0:3; 0:7Þ, and ð0:6; 0:4Þ, respectively. The
ðvssim;vhdpÞ for Q1, Q2, Q4 and Q are ð0:9; 0:1Þ, ð0:9; 0:1Þ,
ð0:8; 0:2Þ and ð0:9; 0:1Þ, respectively.

Participants and experiment description. Sixty-one univer-
sity students with normal color vision (28 female and 33
male), aged 18 to 33, participated in this user study. The
experiment was run on a desktop computer with a 23.6-inch
monitor at a 1;920� 1;080 resolution. Before taking the test,
and similar to the procedure followed in the RetargetMe
paper, all participants were instructed about what image
retargeting is, and what their role in the test would be. For
this, apart from oral instructions, they were shown an image
(not included in the subsequent test) as well as a series of
retargeted results. The participants only advanced to the
real test once they successfully completed some easy exam-
ples first (not taken into account in the final analysis).

A pair of images were simultaneously displayed side-by-
side on the screen, with a black background. The left image
was always the original image (from the 17 used in the test),
while the right image was one of its eight retargeted results.
Therefore there are a total 17� 8 ¼ 136 image pairs, which
were displayed in random order. We followed a variant of
the ITU-R five-point quality scale [55] and, for each pair,
asked participants to rate the retargeted result by choosing
a score in five intervals: 1-5 (bad), 6-10 (poor), 11-15 (fair),
16-20 (good) and 21-25 (excellent). All participants com-
pleted the rating of the 136 pairs.

Fig. 11. The new dataset of 17 images for our user study, to analyze the applicability of our metric to a different data set.

Fig. 12. The fitting curve using a logistic function in SPSS.

2. There are 80 images in the RetargetMe database. Only 37 of those
(the ones we used in Section 4) have subjective preference scores; the
rest of the images were not used in the RetargetMe publication and
thus do not have subjective scores.
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Results. The raw scores provided by participants were
first normalized and converted into z-scores (a.k.a. standard
scores or normal scores). Then all scores were re-scaled to
fit in the range ½0; 100	. After outlier removal by the interval
method [55], mean opinion scores (MOSs) were computed
for each retargeted image. The higher MOS indicates the
better perceived quality. For each retargeted image, an
objective score was also computed (Eqs. (13) and (14)).

To measure the performance of our proposed metric, a
nonlinear mapping between objective (X) and subjective (Y)
scores was applied with a logistic function:

Y
1

aþ b� e�cX
;

where a ¼ 0:012, b ¼ 1:196 and c ¼ 0:073 which were opti-
mized in SPSS software. The resulting curve (shown in

Fig. 12) fits the data well (R2 ¼ 0:656).
Four metrics were further used for evaluation: Metric A

is the correlation coefficient between objective/subjective
scores after nonlinear regression analysis. Metric B is the
correlation coefficient between objective/subjective scores
after variance-weighted regression analysis. Metric C is the
Spearman rank-order correlation coefficient between the
objective/subjective scores. Metric D is the outlier ratio of
the predictions after the nonlinear mapping. For metrics A,
B and C, higher is better; for D, lower is better. The results
are summarized in Table 4:

� Our metric ðQ;Q0Þ yields the best performance com-
pared to the other measures (Eqs. (13) and (14)).

� It also shows good consistency with respect subjec-
tive assessments.

5.1 Quality-Driven Image Retargeting

Our objective metric can be used to guide the design of new
image retargeting methods. Previous works (e.g., [17], [26])
have shown that combining multiple operators often leads
to better results than using a single operator. For instance,

in [17], the bidirectional warping measure is used to select
an optimal sequence of several candidate operators. In
Section 4.2 we have shown how our metric outperforms
BDW, and thus can be used to design new multi-operator
methods. Here, we present a simple proof-of-concept com-
bination scheme that uses our metric.

As shown in Fig. 13, we choose three simple retargeting
operators: cropping, scaling and seam carving. Given an
original image as input, the retargeted image is generated in
similar fashion as previous multi-operator schemes: In each
iteration, the three operators are applied independently and
the best result evaluated by our metric is chosen as the input
for next iteration. Since the metric outperforms previous
ones, good results as usually achieved with very few itera-
tions. Fig. 14 shows an example using only three iterations
and compared against eight other retargeting methods.
Note that our simple scheme is not optimized in terms of
choice of individual operators, number of iterations or error
threshold, and determination of optimal sequences of oper-
ators. A full treatment of these optimizations and compari-
son with [17], [26] is beyond the scope of this paper, but our
example serves as a proof of concept.

6 CONCLUSIONS AND FUTURE WORK

We have presented a simple yet effective objective quality
metric for image retargeting. Five key factors are consid-
ered: preserving salient regions, reducing artifacts, control-
ling global structure, satisfying image aesthetics, and
maintaining symmetry. Our experiments show that our
method consistently and significantly outperforms other
objective methods. We have also shown how it correlates
better with users’ subjective preferences by means of a
leave-one-out cross validation test, and an additional user
study. This indicates that our metric can indeed be used as
a good predictor of subjective quality assessment, without
the need to perform cumbersome user studies.

There are two limitations of ourmethod, whichwe hope to
address in future work. One is the speed of the evaluation;
to evaluate a retargeting operation from 1;024� 754 to
768� 754 takes around 50 seconds. While this is still orders
of magnitude faster (and simpler) than running user studies,
it rules out online applications. The second one has to dowith

TABLE 4
Results Using with Four Different Metrics (A, B, C and D)

Our Correlation coefficients (Outlier)

measure Metric A Metric B Metric C Metric D

Q1 0.443 0.941 0.444 0.074
Q2 0.577 0.950 0.586 0.066
Q3 0.592 0.951 0.612 0.096
Q4 0.424 0.942 0.406 0.096
ðQ;Q0Þ 0.656 0.963 0.721 0.051

Our proposed quality measure yields the best performance and is consistent
with respect to subjective assessment. Please refer to the text for details.

Fig. 13. A simple multi-operator scheme using our metric (Eq. (2)).

Fig. 14. Example result of our multi-operator iterative scheme using our metric and three iterations. The numbers show the result of our metric. When
compared to eight retargeting methods including multi-operator [17], our new multi-operator scheme has the best result.
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the symmetry detection. Since state-of-the-art symmetry
detection methods [52], [53] have reported success rates of
less than 70 percent, we chose to rely on user’s input to indi-
cate whether an image has symmetric features. Nevertheless,
if a breakthrough symmetry detection method is proposed in
the future, we can easily incorporate it in our pipeline.

Although our metric offers excellent results, for some
images there may exist some overlap between some compo-
nents of our metric. Future work could analyze the possible
influence of this overlap in the optimal parameter settings,
further improving the metric. In addition, we would like to
test our metric on video retargeting. This could be done on a
per-frame basis by using our metric and adding a term for
temporal consistency, although more sophisticated methods
could be devised that leverage all the information at once
instead. We believe this kind of automatic predictors of
image quality will have an important rule in a near future,
where retargeting operations along many dimensions (size,
color, disparity...) will need to be applied to visual content,
to adapt it to the characteristics and limitations of the many
kinds of existing computational displays [37]. For instance,
an additional disparity-preservation term could be devised
to extend our method to evaluate stereo retargeting (e.g.,
[36], [56]). Given our modular approach, we hope that our
proposed metric can be used as the starting point for these
and possibly other cases, such as light field retargeting [10].
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