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h i g h l i g h t s

• Shortest geodesic is not able to solve the initial value problem of discrete geodesic.
• Geodesic equation are second-order ODEs.
• We solve the initial value problem on triangle meshes by solving a first-order ODE
• The computed discrete geodesic path converges to the one on the smooth surface.
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a b s t r a c t

Computing geodesic paths and distances is a common operation in computer graphics and computer-
aided geometric design. The existing discrete geodesic algorithms are mainly designed to solve the
boundary value problem, i.e., to find the shortest path between two given points. In this paper, we focus
on the initial value problem, i.e., finding a uniquely determined geodesic path from a given point in any
direction. Since the shortest paths do not provide the unique solution on triangle meshes, we solve the
initial value problem in an indirect manner: given a fixed point and an initial tangent direction on a
triangle mesh M , we first compute a geodesic curve γ on a piecewise smooth surface M , which well
approximates the input mesh M and can be constructed at little cost. Then, we solve a first-order ODE of
the tangent vector using the fourth-order Runge–Kutta method, and parallel transport it along γ . When
the geodesic curve reaches the boundary of the current patch, its tangent can be directly transported to
the neighboring patch, thanks to the G1-continuity along the common boundary of two adjacent patches.
Finally, once the geodesic curve γ is available, we project it onto the underlying mesh M , producing the
discrete geodesic path γ , which is guaranteed to be unique on M . It is worth noting that our method
is different from the conventional methods of directly solving the geodesic equation (i.e., a second-
order ODE of the position) on piecewise smooth surfaces, which are difficult to implement due to the
complicated representation of the geodesic equation involving Christoffel symbols. The proposedmethod,
based on the first-order ODE of the tangent vector, is intuitive and easy for implementation. Ourmethod is
particularly useful for computing geodesic paths on low-resolution meshes which may have large and/or
skinny triangles, since the conventional straightest geodesic paths are usually far from the ground truth.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Computing geodesic distances and geodesic paths plays an
important role in many fields, such as CAD/CAM [1], path plan-
ning [2], shape analysis [3], parameterization [4,5], segmenta-
tion [6], and medial axis [7]. Geodesics on smooth surfaces are
well understood in classic differential geometry. However, the dis-

✩ This paper has been recommended for acceptance by Scott Schaefer and Charlie
C.L. Wang.
∗ Corresponding author.

E-mail address: clearbunny@gmail.com (P. Cheng).

http://dx.doi.org/10.1016/j.cad.2015.07.012
0010-4485/© 2015 Elsevier Ltd. All rights reserved.
crete geodesic problem, i.e., computing geodesic distances and
paths on discrete domains such as polygonalmeshes, is fundamen-
tally different from its smooth counterpart, due to the difference
between smooth and discrete domains. For example, geodesics
is both straightest and locally shortest on smooth surfaces, but
such a nice property does not hold on polygonal meshes. The dis-
crete shortest geodesic is not equivalent to the discrete straightest
geodesic,which bisects the vertex angles, since the former is amet-
ric but the latter is not.

As a fundamental problem in computational geometry and ge-
ometric modeling, the discrete geodesic problem has been stud-
ied extensively in the past three decades. To date, many elegant
algorithms have been proposed. Representative works include the
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Fig. 1. The discrete shortest geodesic does not solve the initial value problem. Let
v be a saddle vertex, whose curve angle is more than 2π . When a shortest geodesic
path, say γ (s, v), passes through v, it splits into many outgoing geodesic paths:
any line segment pv in the fan-shaped area (in gray) together with γ (s, v), is a
shortest path from s to p. Therefore, the initial value problemdoes not have a unique
solution, if one considers the shortest geodesic paths.

exact1 algorithms (e.g., theMitchell–Mount–Papadimitriou (MMP)
algorithm [8] and the Chen–Han (CH) algorithm [9]), the PDEmeth-
ods (e.g., the fast marching method [10] and the heat method
[11,12]), and the graph-theoretic methods (e.g., the saddle vertex
graph method [13]). These algorithms, however, are mainly de-
signed to solve the boundary value problem, that is, to find the
shortest path between two fixed endpoints.

Mitchell et al. [8] proved that the general form of a shortest
geodesic path γ was an alternating sequence of vertices and (pos-
sibly empty) edges. The unfolded image of the path along any edge
sequence is a straight line segment, and the curve angle of any ver-
tex which γ passes through is greater than or equal to π . As Fig. 1
shows, when a shortest geodesic path γ passes through a saddle
vertex (whose curve angle is more than 2π ), γ splits into multiple
outgoing geodesic paths. Therefore, the shortest geodesic paths, al-
though well defined, are not able to solve the initial value problem
of discrete geodesics, which aims at finding the unique geodesic
path from a fixed point and in a given tangent direction.

In this paper, we present a method for solving the initial value
problem on trianglemeshes. To ensure a unique solution, we adopt
an indirect strategy. Given a fixedpoint and an initial tangent direc-
tion on a triangle meshM , we first compute a geodesic curveγ on
a piecewise smooth surface M , which well approximates the input
meshM and can be constructed at little cost. Then, we solve a first-
order ODE of the tangent vector by the fourth-order Runge–Kutta
method, and parallel transport it alongγ . When the geodesic curve
reaches the boundary of the current patch, its tangent vector can
be directly transported to the neighboring patch, thanks to the G1-
continuity along the common boundary of two adjacent patches.
Finally, once the geodesic curve γ is available, we project it onto
the underlying mesh M , producing the discrete geodesic path γ ,
which is guaranteed to be unique on the trianglemeshM . See Fig. 2.

It is worth noting that our method is different from the
conventional methods of directly solving the geodesic equation
(i.e., a second-order ODE of the position) on the piecewise smooth
surface, which are tedious and difficult to implement, due to the
complicated representation of the geodesic equation involving
Christoffel symbols. Based on the first-order ODE of the tangent
vector, the proposed method is intuitive and easy to implement.
We observe that our method is particularly useful for computing
geodesic paths on low-resolutionmeshes with large and/or skinny
triangles, where the conventional straightest geodesic paths are
usually far from the ground truth. In addition, our method can be
easily adapted to work on non-orientable surfaces.

1 If the numerical computation is exact, the computed geodesic distance is also
exact.
Fig. 2. Our method solves the initial value problem of discrete geodesics. For
each point (in red) on the Rhino model, we compute geodesic paths in 60 tangent
directions,which are evenly sampled on the tangent plane. Each tangent direction is
guaranteed to produce a unique geodesic path on the triangle mesh. Our method is
numerically stable and works well on meshes with large and/or skinny triangles.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

2. Related work

This section presents the related work on computing geodesic
paths on discrete domains and discrete differential geometry.
As mentioned above, discrete geodesic paths are fundamentally
different from geodesics on smooth surfaces, since the shortest
geodesics and the straightest geodesics are not equivalent to each
other any longer.

Shortest geodesics have been extensively studied and also
widely used in computer graphics community. Existing methods
for computing exact shortest geodesic paths onpolyhedral surfaces
can be generally grouped into two categories, namely, theMMP al-
gorithm and the CH algorithm. Both methods are developed based
on the continuous Dijkstra’s algorithm, that iteratively propagates
the discrete wavefront from the source to the destination. They
differ in the wavefront organization and propagation scheme. The
MMP algorithm has an O(n2 log n) time complexity and an O(n2)
space complexity for a mesh with n vertices. The CH algorithm
runs in O(n2) time and takes O(n) space. Different extensions on
the two algorithms have been developed, which aim at paralleliza-
tion [14], performance improvement [15–18] and robustness [19],
computing geodesic offsets [20,21], geodesic loops [22], and all-
pairs geodesics [23].

Straightest geodesics receives relatively less attention than
shortest geodesics. Polthier and Schmies [24] introduced the dis-
crete geodesic curvature and defined the straightest geodesic on
polyhedral surface as a path that has equal curve angle on both
sides at each point. Then, they proposed the geodesic Eulermethod
and the geodesic Runge–Kutta method for integrating a given vec-
tor field on a surface. Polthier and Schmies also developed the
geodesic flow method [25] to compute the evolution of the front
of a point wave on a polyhedral surface. At each time step, the
front is a topological circle on the surface [26], where each point
moves a constant distance in orthogonal direction to the curve
by the straightest geodesic path. Kumar et al. [27] observed that
the straightest geodesic obtained by tracing the path with equal
left and right curve angles was far from the correct geodesic curve
on the smooth surface. Therefore, they proposed a sectional plane
method, which takes into account the variation of the tessella-
tion normal along the geodesic path. Kumar et al.’s method can
be considered as an extrinsic Euler method, which solves the
geodesic equation with the first-order approximation. Therefore,
their method tends to suffer from serious numerical issue and
may deviate from the true geodesic curve after only a few iter-
ations. Based on the fast marching method and the straightest
geodesic [24], Martinez et al. [28] proposed an iterative algorithm
for computing the shortest path between two fixed points.
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Convergence of discrete differential operators and quantities
has also been studied in the past years. Under the assumption
of convergence of surfaces in Hausdorff distance, Hildebrandt
et al. [29] proved that convergence of the following properties
were equivalent: surface normals, surface area,metric tensors, and
Laplace–Beltrami operators. Dai et al. [30] derived the explicit for-
mulae to the bounds of Hausdorff distance, normal distance, and
Riemannian metric distortion between the smooth surface and
the triangle mesh. They proved that the meshes induced from
Delaunay triangulations of dense samples on a smooth surface
were convergent to the smooth surface under both Hausdorff dis-
tance andnormal fields.Moreover, the Riemannianmetrics and the
Laplace–Beltrami operators defined on Delaunay triangulations
can also converge to those on smooth surfaces. Lieutier and Thib-
ert [31] proved that the convergence of shortest geodesics requires
additional assumptions. The assumptions are concerning the rate
of convergence of the normals and of the lengths of the edges of
the triangulations. They pointed out that the edge lengths cannot
converge faster to zero than the angles between the normals.

Computing geodesics on parametric surfaces, such as Bézier, B-
splines, and NURBS, has also been well studied. Beck et al. [32]
computed geodesics on C2-continuous surfaces by solving four
first-order ODEs. These equations were also used in [27] for com-
puting geodesics on NURBS surfaces. Patrikalakis and Bardis [33]
computed geodesic offsets of curves on rational B-splines using
the initial-value integration.Maekawa [34] computed the geodesic
path between a point and a curve on a parametric surface. See [35]
for a detailed discussion. Chen et al. [36] solved the geodesic equa-
tion on rational Bézier surfaces with at least C2 continuity, so that
the Christoffel symbols were continuous across adjacent Bézier
patches.

3. Preliminary

This section presents the background to differential geome-
try [37,38], which will be used in Section 4.

3.1. Geodesic equation

Let p, q ∈ S be two points on S, and g be the metric tensor
of S. The geodesic γ (p, q) between p and q is the locally distance
minimizer, which can be obtained by minimizing the following
functional

E(γ ) =
1
2


gγ (t)(γ̇ (t), γ̇ (t))dt.

The Euler–Lagrange equation yields the geodesic equation

d2xk

dt2
+ Γ k

ij
dxi

dt
dxj

dt
= 0, (1)

where x1(t) and x2(t) are the local coordinates of γ (t), and Γ k
ij are

the Christoffel symbols of the second kind. On smooth surfaces,
a geodesic is both straightest and locally shortest. Furthermore, a
geodesic is fully determined by an end point and a given tangent
direction. See Fig. 3.

Theorem (Existence and Uniqueness). Given a point p ∈ S and
a vector w ∈ Tp, v ≠ 0, there exists an ϵ > 0 and a unique
parameterized geodesic γ : (−ϵ, ϵ) → S such that γ (0) = p, and
γ ′(0) = w.

3.2. Geodesic curvature

Geodesics naturally generalize straight lines to curved surfaces.
Let S be a regular surface and γ (s) : [a, b] → S be a curve on S
parameterized by arc-length s. The curve γ passes through a point
p ∈ S, with tangent vector T = γ̇ , normal vector N, and binormal
Fig. 3. On a smooth surface, there is a uniquely determined geodesic passing
through a given point p in an arbitrary tangent direction ω ∈ Tp . Here we illustrate
two geodesics γ1 and γ2 on a torus, corresponding to two tangent directionsω1 and
ω2 . Note that the curve γ2 can return to the starting point p, whereas γ1 cannot.

Fig. 4. Geodesic curvature. Let p be a point on a smooth surface S, andN the normal
at p. Two curves γ1 and γ2 are tangential at p, and both their tangent direction is T.
The tangent T, the normal N, and the binormal B define a orthonormal coordinate
basis at p. The curve γ1 is a geodesic at p, since γ̈1(s) is parallel to N, where s is
the arc-length parameter. However, γ2 is not a geodesic, since γ̈2 has a non-zero
component on B, i.e., the geodesic curvature κg = γ̈ · B ≠ 0 is not vanishing.

vector B = T × N. The curvature vector γ̈ is perpendicular to the
tangent T, i.e., γ̈ ⊥ γ̇ . The normal curvature κn at the point p is
the amount of the curve’s curvature in the direction of the surface
normal, i.e., κn = γ̈ · N. The geodesic curvature κg is defined by
projecting γ̈ onto the binormal vector B, i.e., κg = γ̈ · B. See
Fig. 4. The curvature of the curve γ is related to both κg and κn,

κ = ∥γ̈ ∥ =


κ2
n + κ2

g . The curve γ is a geodesic, if its geodesic
curvature vanishes κg = 0. The geodesic curvature measures how
far the curve is from being a geodesic. A geodesic has vanishing
geodesic curvature,meaning that it appears to curve in the ambient
space whenever the surface curves, but does not curve within the
surface.

4. Our algorithm

4.1. Overview

Let M = (V , E, F) be a triangle mesh, where V , E, and F are
the set of vertices, edges, and faces, respectively. We estimate the
vertex normal using the weighted-average method with 1-ring
neighborhood and Voronoi areaweights [39,40]. The tangent plane
of vertex v, denoted by Tv , passes through v and is perpendicular
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(a) Triangle △ABC . (b) PN-triangle B(u, v).

Fig. 5. A curved PN-triangle is a three-sided cubic Bézier patch that interpolates both the positions and normals of the three vertices of a planar triangle.
to v’s normal N(v). We assume the input meshM is sampled from
a smooth surface S so that it converges to S when the Hausdorff
distance between S and M is sufficiently small and the normal
fields onM converge to those on S.

Given an arbitrary point p ∈ V , and a tangent directionw ∈ Tp,
our goal is to find a unique geodesic path which passes through
p in the direction w. As mentioned above, we cannot use the
shortest path, which may produce multiple solutions. Since the
initial value problem is guaranteed to have a unique solution on C2

continuous surfaces, we consider a piecewise smooth surface M ,
which approximates M well and can be constructed from M with
little cost. In our implementation, we construct for each triangle
f ∈ F a curved PN-triangle [41] f ∈ M , which is a three-
sided cubic Bézier patch corresponding to a triangle f ∈ F of the
underlyingmeshM . The curved PN-trianglef interpolates both the
position andnormal of f ’s three corners. See Fig. 5. By using rational
blending [42], adjacent Bźier patches can be glued so that they have
G1 continuity along the common edge. See Fig. 7. Note that other
methods for locally construct piecewise smooth surfaces (e.g., [43])
can also be adopted.

Throughout this paper, if an object is defined on both the
underlying triangle mesh M and the piecewise smooth surface M ,
we distinguish its notations by the hat symbol. For example, pointp is defined on the curved PNG1-trianglef and pointp is defined on
the corresponding planar triangle f . Note that the tangent vectors
are always defined on the curved surface M , thus,we simply denote
them in the conventional way, i.e., using boldface font.

4.2. Algorithm

Letf be the curved patch containing p. We compute a unique
geodesic path γ ∈ f using the fourth-order Runge–Kutta method
and project γ onto the underlying triangle face f . Thanks to the
G1 continuity across the boundary, we can transfer the tangent
direction to the neighboring patch,whenγ crosses the boundary off . This allows us to extendγ to its neighboring patch, as shown in
Fig. 7. We continue the procedure until the geodesic curve reaches
the boundary or its length exceeds the user-specified threshold.

To compute the geodesic curve γ on M numerically, our
algorithm takes a step length δ as input and solves the initial
value problem in an iterative manner. Each iteration contains the
following four steps, as illustrated in Fig. 6:

(i) The point pi, the normal Npi , and a tangent vector Ti define
a sectional plane π . Find a point pi+1 ∈ π ∩ M such that
d(pi,pi+1) = δ, as shown in Fig. 6(a).

(ii) Let f be the PNG1-triangle containing pi+1 and f ∈ F
the underlying triangle. Project pi+1 onto f along its normal
direction and set pi+1 the foot point. If the foot point is outside
f , we simply reset pi+1 as the intersection of pipi+1 and the
corresponding edge of f . See Fig. 6(b).

(iii) Compute the tangent T′

i+1 using the fourth-order Runge–
Kutta method. See Section 4.3 and Fig. 6(c).

(iv) Parallel transport the tangent T′

i+1 along γ to pi+1. See
Section 4.4 and Fig. 6(d).
The output is a sequence of points {p0(= p), p1, p2, . . .}, defining
the discrete geodesic path through p in the given direction on the
underlying triangle mesh. See Algorithm 1 for the pseudo-code.

Algorithm 1 Solving the Initial Value Problem of Discrete
Geodesics
Input: A triangle mesh M = (V , E, F), a point p ∈ V , a tangent

direction w⃗ ∈ Tp, the step length δ, and the maximal length L
Output: A sequence of points p0, p1, p2, . . . , pi ∈ M ,

representing the discrete geodesic path, whose length is no
more than L

1: Construct the PNG1-triangle for each face f ∈ F ;
2: p0 = p; s0 = 0; T0 = w⃗;
3: for i = 0; i < ⌈

L
δ
⌉; i + + do

4: pi+1 = geodesic_path(pi, Ti, δ);
5: pi+1 = projection(pi+1);

6: T′

i+1 = Runge_Kutta(pi, Ti, si, δ);
7: Ti+1 = parallel_transport(T′

i+1,pi,pi+1);
8: si+1 = si + δ;
9: end for

4.3. Tangent computation

Let γ ∈ S be an arc-length parameterized geodesic curve on a
smooth surface S. Since its geodesic curvature vanishes κg = 0,
the curvature vector γ̈ is parallel to the surface normal. Therefore,
the Frenet–Serret frame of γ coincides with the Darboux frame of
surface S, i.e.,

dT
ds

= κnN,

dN
ds

= −κnT + τB,

dB
ds

= τN,

(2)

where τ is the torsion of γ .
Since κn = −

dN
ds • T, we have the following first-order ODE on

tangent T:

dT
ds

= −


dN
ds

• T

N. (3)

Given the initial value s0 = 0 and T0 = w, we solve the above
ODE by employing the fourth order Runge–Kutta method, where
the accumulated error is in the order of O(δ4). We define function
f (s, T) = −( dN

ds • T)N, and compute Ti, for i = 1, 2, . . . , as follows:

T′

i+1 = Ti +
δ

6
(v1 + 2v2 + 2v3 + v4), (4)

si+1 = si + δ, (5)
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(a) Computingpi+1 . (b) Projectingpi+1 . (c) Computing T′

i+1 . (d) Parallel transport T′

i+1 topi+1 .

Fig. 6. A typical iteration in our algorithm.
Fig. 7. G1 continuity of a curved PNG1-triangle. Along the boundary of two neighbor patches, the patch is obtained by blending the two cubic Bézier patches for the triangle
edge (see (a)). For patches that meet at a vertex v, the control points corresponding to the vertex are all projected to the tangent plane at v (see (b)). Thus, the tangent
direction remains unchanged when the geodesic crosses the edge boundary or passes through a vertex. As a result, we can continue to solve the first-order ODE of the
tangent on the neighboring patch (see (c)).
where

v1 = f (si, Ti), (6)

v2 = f

si +

δ

2
, Ti +

δ

2
v1


, (7)

v3 = f

si +

δ

2
, Ti +

δ

2
v2


, (8)

v4 = f (si + δ, Ti + δv3). (9)

We iteratively update the tangent direction using the above
equations and trace the geodesic.

4.4. Parallel transport

Note that the computed tangent T′

i+1 is located at pi. So we
need to parallel transport T′

i+1 to pi+1 along the geodesic curve
γ (pi,pi+1).

Let α be the angle between T′

i+1 and Ti at pi. Projecting
−→pipi+1 onto the tangent plane Tpi+1 , we obtain a reference tangent
direction T. With the normal N atpi+1, we compute the binormal
B = T × N. Finally, we compute Ti+1 = T + cosαB. Fig. 6(d)
illustrates the parallel transport of tangent vector.

5. Experimental results

We implemented our algorithm in C++ and evaluated it on a PC
with an Intel Core2 2.83 GHz CPU and 4 GBmainmemory. Tomake
the results unitless, we uniformly scale all models to be bounded
by a unit cube. We measured the running time of computing 60
geodesic paths,which evenly emanate from100 randomly selected
source points and have the length

√
3. Theoretically, the time

complexity of solving the ODE (lines 3–9 in Algorithm 1) depends
only on the maximal length L and the step length δ. In practice,
we observe that themesh complexity also affects the running time
slightly, since the point location is triangulation dependent. See
Fig. 8.

Fig. 9 shows the all-direction geodesic paths on several common
3Dmodels in graphics community. We observe that most geodesic
paths on real-world models do not return to the initial point, thus,
they can be arbitrarily long. Computational results show that our
Fig. 8. The time complexity is inversely proportional to the step length δ. The
vertical axis shows the running time of computing 60 geodesic paths of length

√
3

at 100 random source points. The time for constructing the PNG1-triangles, which
is dependent on mesh complexity, was excluded.

method is numerically stable andworks well onmeshes with large
and skinny triangles as well as sharp features. See Figs. 2 and 12.
Fig. 11 demonstrates the results of our algorithm for computing the
local exponential map on triangle meshes, which naturally define
polar coordinates on 3D surfaces. Our method can be also applied
to non-orientable surfaces, as shown in Fig. 10.

Our method computes the discrete geodesic path γ by pro-
jecting the unique geodesic γ , which is defined on the piecewise
smooth surface M , onto the underlying piecewise linear surface
M . Thus, it is natural to consider the ‘‘gap’’ between γ and γ ,
and the length difference |len(γ ) − len(γ )| as the convergence
measures. We construct five synthetic surfaces, namely, sphere,
ellipsoid, paraboloid, hyperboloid, and torus, with increasing
resolutions. See Fig. 13. All mesh vertices are on the smooth sur-
faces, and we compute the vertex normals analytically. Fig. 13(a)
shows that when the mesh resolution is sufficiently high, the
curved PNG1-triangles converge to the smooth surfaces. For each
surface, we solved the initial value problem at 10 points and as-
signed 60 evenly distributed tangent directions for each point.
Then we computed the length difference 1L = |len(γ ) − len(γ )|

and the area of the gap between γ and γ . As Fig. 13(b) (c) shows,
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Fig. 9. We solved the initial value problem on a wide range of 3D models, and we
assigned each source point 60 evenly distributed tangent directions. Note that our
method works well on highly curved regions as well as sharp features. The images
are generated at high resolution to allow for zoom-in examination.

Fig. 10. Our method works for the non-orientable surfaces.

both the gap area and length difference converge to zero as the av-
erage edge length h decreases.

6. Discussion

6.1. First-order ODE vs. second-order ODE

Computing geodesics on parametric surfaces, such as B-spline
surfaces and NURBSs, has been studied in the literature
[33,27,36,34]. These methods directly solve the standard geodesic
equation (1), which is a second-order ODE of the position. One, of
course, can borrow their approaches to the PNG1-triangles, which
are cubic Bézier patches. However, due to complicated represen-
tation of the Christoffel symbols on triangular patches, the imple-
mentationwould be tedious.Moreover, surfacesmust be at leastC2

continuous to ensure that the Christoffel symbols are continuous.
In contrast, our method solves the first-order ODE of the tangent
vector on G1 continuity patches, which is intuitive and easy to im-
plement. Moreover, as Eq. (3) shows, the derivative of tangent de-
pends on the change of normal, which can be computed efficiently
on cubic Bézier patches.

6.2. Comparison with straightest geodesic

Polthier and Schmies [24] defined the straightest geodesic as a
curve that bisects the total vertex angle.
Fig. 11. Computing local parameterization using our method. The user specified a
point p on the 3D mesh and a radius r . We then applied our method to compute
60 geodesic paths passing through p and having length r . Each geodesic path
uniquely corresponds to a radial line of a polar coordinate system defined on Tp ,
which allows us to build a polar coordinate system on 3D meshes. We visualized
the parameterization by using the checkerboard texture mapping on a rectangular
patch. The bottom row shows the parameterized patch on R2 .

Definition (Straightest Geodesic).Acurveγ on apolyhedral surface
M is called a straightest geodesic if for any point p ∈ γ the left
and right curve angles θl and θr at p are equal, that is, the geodesic
curvature vanishes at p. See Fig. 14(a).

A discrete geodesic γ containing no surface vertex is both
straightest and locally shortest. In general, the straightest geodesic
is not equivalent to the shortest geodesic on polyhedral surfaces.
We summarize the differences between them as follows:

– The shortest geodesic distance is a metric, while the straightest
geodesic distance is not, due to the violation of the triangle
inequality. See Fig. 14(c).

– The shortest geodesic path cannot pass through a spherical
vertex p with total vertex angle θ < 2π , since moving it off
p will shorten the length. On the other hand, any path through
p that bisects θ is a straightest geodesic. See Fig. 14(b).

– The shortest geodesics through a hyperbolic vertex with total
vertex angle θ > 2π have geodesic curvature κg in the interval
[−π(1−

2π
θ

), π(1−
2π
θ

)]. Among these shortest geodesic paths,
only the one with zero geodesic curvature is the straightest
geodesic.

– The shortest geodesics in metric geometry solve the boundary
value problem of connecting two given points on a manifold
with a locally shortest curve. The straightest geodesics do not
solve the boundary value problem, since there exists shadow
region in the neighborhood of a hyperbolic vertex, where
points cannot be joined by a straightest geodesic. Instead, the
straightest geodesics solve the initial value problem with a
given position and an initial tangent direction (see Fig. 15).

– The shortest geodesic distances converge to geodesic distances
on smooth surfaces at a quadratic rate [11], whereas the
straightest geodesics do not converge [31].

It is worth noting that our method is fundamentally different
from the straightest geodesic: our geodesic path is a polyline inside
a triangle, whereas a straightest geodesic path, when restricting
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(a) L = 4.0. (b) L = 40.0.

Fig. 12. Solving the initial value problem on the Rhino model with two different length constraints. The source point is located at the belly button.
Fig. 13. Convergence test on four synthetic models. Sphere (cos u sin v, sin u sin v, cos v), u ∈ [0, 2π ], v ∈ [0, π]; Ellipsoid (2 cos u sin v, 2 sin u sin v, 3 cos v), u ∈ [0, 2π ],
v ∈ [0, π]; Paraboloid (2v2, 4v, 6u), u, v ∈ [−1, 1]; Hyperboloid (2 cos v

√
1 + u2, 2 sin v

√
1 + u2, 4u), u ∈ [−1, 1], v ∈ [0, 2π ]; Torus ((3 + cos v) cos u, (3 +

cos v) sin u, sin v), u ∈ [0, 2π ], v ∈ [0, π]. When the mesh resolution is sufficiently high, the Hausdorff distance between the PNG1-triangles M and the smooth surface S
approaches zero, meaning that the curved PNG1-triangles converge to the smooth surfaces S. We also observe that the discrete geodesic γ ∈ M converges to the geodesicγ ∈ M , since both the length difference |len(γ ) − len(γ )| and the area of the gap between γ andγ approach zero. The horizontal axis h is the average edge length ofM .
to a triangle, must be straight line. We observe that straightest
geodesics are too ‘‘rigid’’ to approximate analytic geodesics on
low-resolution meshes. As Fig. 16 shows, the straightest geodesic
is far from the ground truth on a low-resolution torus model,
which has only 300 faces. Our method, in sharp contrast, is more
flexible, providing a high quality approximation when the step
length is sufficiently small. We also observe that our results and
the straightest geodesics are similar when the input mesh has a
sufficiently high resolution and fairly good triangulation. This is
not a surprise, since the vertex normals for each such triangle
do not vary too much. Thus, our method is particularly useful for
computing geodesic paths for low-resolution meshes which may
contain many large and/or skinny triangles.

6.3. Adaptive step length

Both the performance and the accuracy of our algorithmdepend
on the step length, i.e., the smaller the step length, the better
accuracy we obtain, at the price of higher computational cost. The
results reported above are based on fixed step length. In practice,
adaptive step length may improve the performance without
compromising the quality, Note that the normal variancewithin an
iteration is small given a short step length δ, hereby the adjustment
of tangent direction is not significant. As suggested by the adaptive
length in the Runge–Kutta method [44], we adopted the following
heuristic to determine the step length in our implementation. If
Fig. 14. (a) A straightest geodesic has equal left and right curve angles θl = θr .
(b) The shortest geodesic between s and t cannot be extended through a spherical
vertex p, since making it off p shortens the length. (c) Unfold the spherical vertex p
to R2 .

the length of dN is less than a user-specified tolerance tol, we
simply computed the locally straightest geodesic for this iteration.
Otherwise,we adjusted the tangent directionwith an adaptive step
length δa

δa = 0.9 × δ ×
tol

∥dN∥
. (10)

Empirically,we set the local error tolerance tol = h
26
. Table 1 shows

the performance and quality measurements of our algorithm with
fixed step length and adaptive step length.
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(a) |V | = 300, |F | = 600. (b) |V | = 1200, |F | = 2400. (c) |V | = 4800, |F | = 9600. (d) |V | = 19,200,
|F | = 38,400.

(e) |V | = 76,800,
|F | = 153,600.

Fig. 15. The straightest geodesic [24] (red) converges to the ground truth (blue) only when the mesh resolution is sufficiently high. Our method with step length δ =
h
16

produces very good result (green) evenwhen themesh resolution is very low. Note that all geodesics are given the same initial condition. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
(a) δ =
h
2 . (b) δ =

h
4 . (c) δ =

h
8 . (d) δ =

h
16 . (e) Plots of gap areas.

Fig. 16. Comparison of our method (green) to straightest geodesic (red) and analytic geodesic (blue) on the torus model with 600 faces. Note that all geodesics are with
the same initial condition. We set the step length δ =

h
2 ,

h
4 ,

h
8 and h

16 , respectively, where h is the average edge length. We can clearly see that our result converges to the
ground truth when the step length δ approaches zero. We evaluate the quality of a geodesic curve by measuring the area between it and the ground truth. As shown in (e),
the gap is proportional to the length of the geodesic (the horizontal axis). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Table 1
Fixed step length versus adaptive step length. We computed 60 geodesic paths evenly emanating from 100 randomly selected source points and having the length

√
3. The

running time t was measured in seconds. The step length is indicated by δ, h is the average edge length, and 1Lmeasures the length difference between the geodesic on the
curved PNG1-triangles and the discrete geodesic on the piecewise flat surfaces.

Surface (|V |, |F |) h Fixed step length (1L, t) Adaptive step length
(1L, t)

δ =
h
2 δ =

h
4 δ =

h
8 δ =

h
16

Sphere (642, 1280) 0.150730 (0.023123, 0.190147) (0.011562, 0.327172) (0.009730, 0.636252) (0.001264, 1.299852) (0.002584, 0.277009)
Ellipsoid (382, 760) 0.467991 (0.040078, 0.161148) (0.019068, 0.260773) (0.018068, 0.485002) (0.004623, 1.005054) (0.004917, 0.244246)
Hyperboloid (465, 900) 0.132355 (0.031381, 0.229931) (0.015646, 0.258773) (0.007801, 0.460958) (0.003913, 0.958326) (0.005089, 0.248684)
Torus (300, 600) 0.182588 (0.057618, 0.139749) (0.030948, 0.206672) (0.012446, 0.425581) (0.005751, 0.888576) (0.006547, 0.213495)
7. Conclusion

This paper presents a method to solve the initial value prob-
lem of discrete geodesics. Since the commonly used shortest
geodesic [8] does not produce a unique solution,we solve the prob-
lem by computing a geodesic curve on a piecewise smooth sur-
face M , whichwell approximatesM and can be constructed at little
cost. Each patch in M is a three-sided cubic Bézier spline, thus, it
has a unique geodesic curve through the given point in any direc-
tion. We solve a first-order ODE of the tangent by the Runge–Kutta
method and adopt parallel transport tomove the tangent along the
geodesic curve. When the geodesic curve reaches the boundary of
the current patch, its tangent can be transported to the neighbor-
ing patch, thanks to the G1-continuity along the common bound-
ary of two adjacent patches. We project the geodesic curve fromM onto the underlying mesh M to obtain the unique solution of
the initial value problem. We define the error metric as the gap
between the two geodesic curves and observe that the computed
discrete geodesic converges linearly to its smooth counterpartwith
increasing mesh resolution. Experimental results show that our
method is particularly useful for computing geodesic paths for low-
resolution meshes which may contain many large and/or skinny
triangles.
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