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Human experience–inspired path
planning for robots
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Abstract
In this article, we present a human experience–inspired path planning algorithm for service robots. In addition to con-
sidering the path distance and smoothness, we emphasize the safety of robot navigation. Specifically, we build a speed field
in accordance with several human driving experiences, like slowing down or detouring at a narrow aisle, and keeping a safe
distance to the obstacles. Based on this speed field, the path curvatures, path distance, and steering speed are all integrated
to form an energy function, which can be efficiently solved by the A* algorithm to seek the optimal path by resorting to an
admissible heuristic function estimated from the energy function. Moreover, a simple yet effective fast path smoothing
algorithm is proposed so as to ease the robots steering. Several examples are presented, demonstrating the effectiveness
of our human experience–inspired path planning method.
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Introduction

The path planning, which refers to designing a path for

navigating an agent toward a desired location from a start

position, has been widely applied in robotics community

and other real application fields,1 such as window clean-

ing,2 exploration of Mars, and video game.3 Among these

applications, path planning for service robots plays a cen-

tral role in complex indoor and outdoor environments.4

In general, path planning is to find a sequence of loca-

tion transition actions that transform a start position to a

goal position, where each transition action has an associ-

ated cost, and the sum of costs of all transition actions

represents some measurement for the path. Designing tran-

sition actions for path planning generally concerns on fol-

lowing aspects: (i) travel time between the start position

and the goal position (also referred as the time factor); (ii)

energy spent of an agent traveling a path; (iii) robots do not

collide with other objects; and (iv) smoothness of a path

is desired to ease steering of robots. Currently, main path

planning methods aim at designing an optimization model

which considers one or more of the above-mentioned

aspects, and then performing a minimization procedure to

achieve an optimal path.1,4–7 For example, the shortest path,

minimum time-consuming path, minimal energy cost, and

coverage path planning are, respectively, studied in the lit-

erature6,8,9 for a given navigation task. Path planning
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involves four developing stages: graph-based methods (e.g.

Dijkstra, Voronoi,10 A* and its variants5,11,12), artificial

potential method,7,13 probabilistic methods (e.g. probabilis-

tic roadmap method (PRM),14 rapidly exploring random tree

(RRT)15,16), and machine learning-based methods.17,18 Tthe

developing process of path planning is shown in Figure 1.

While existing methods give available solutions for

practical applications, neither of them has considered the

safety of navigation. In practice, the safety requirement is

very important. For example, a relatively narrow space

between a robot and persons may easily cause collision

between them especially when persons are playing regular

activities (e.g. hand waving), resulting in an uneasy envi-

ronment for humans. Therefore, a safety requirement is

explicitly considered along with the distance and smooth-

ness of a path for service robots in this article.

Our scheme is partly inspired by the human experience,

because humans seem to be experts in path selection and

could well analyze and synthesize diverse factors (e.g. dis-

tance, smoothness, and safety) in mind to make a proper

decision for path planning. We therefore design a new path

planning algorithm for robots by learning from human

experience especially in terms of safe driving. Take the

scene in Figure 2 as an example, where a service robot is

ordered to fetch several cups of coffee for participants of a

party. While a traditional algorithm may plan the path Ps,

the human experience–inspired algorithm tends to select

the path Po which should be more safe although taking a

little longer distance.

In fact, a large number of robots has been built that

explicitly mimic biological navigation behaviors for obsta-

cle avoidance, such as the ones emulating an annual migra-

tion of seabirds19,20 and ant-like behavior navigation

model.21 Inspired by the social interactions in human

crowds or animal swarms, Savkin and Wang22 proposed

an efficient obstacle avoidance algorithm in dynamic envir-

onments by integrating representation of the information

about the environment. Typically, the development of

robotics has been directly or indirectly affected by human’s

experiences and behaviors.23–25 However, these meth-

ods24–27 mainly focus on the motion modeling of robot’s

body parts (e.g. arms) and the interactive applications

between robots and humans. In this article, we emphasize

and learn from human driving experiences. Let’s take some

discussion on the human’s driving experiences. Generally,

a person prefers reducing the driving speed when passing

neighboring areas of obstacles, while speeding up in wide

areas with safe enough distance to obstacles. Furthermore,

in front of a very narrow aisle, a person like to select

another wide path even with a little longer distance. Yet,

she/he may determine to continue the narrow path if the

wide one is too much long compare with the narrow one.

Passive human walking has been studied by many research-

ers,28 and it simulates human’s behavior by considering the

potential energy consuming when human walking. In a

word, path planning by humans is not only related to the

time cost, path distance, and ease steering but also relevant

to the safety.

Inspired by human’s experiences, we develop a safety-

related path planning method. We construct a speed field

that can efficiently simulate slowing down and detouring

behaviors of humans around obstacles and then integrate

the distance and smoothness factors with the speed field to

form a human experience–inspired energy function model.

Based on this model, the optimal path can be efficiently

achieved by the well-known A* algorithm. Specially, the

lower bound of the energy function, namely the admissible

function in A* algorithm, can be easily estimated. We also

propose a fast yet effective post-processing to smooth paths

generated by the A* method. In summary, the main contri-

butions of this article include:

Figure 1. The developing process of path planning.

Figure 2. Illustration of human experience–inspired path plan-
ning. In this scene, a service robot carrying several cups of coffee
on a plate is serving at a party and is required to traverse from the
current position S to the target position G. The shortest path Ps is
selected by the traditional algorithms, and the path Po is selected
by the human experience–inspired algorithm.
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i. A human experience–inspired path planning algo-

rithm that considers the safety factor is presented.

ii. A dynamic speed field is constructed to control

robot’s speed, which can also adapt to dynamic

scenes.

iii. An effective post-processing approach is utilized

to smooth paths for ease steering of robots.

The rest of this article is organized as follows. In

“Related work” section introduces some related works. In

“The proposed model” section, an energy functional model

of path planning is presented to simulate human’s experi-

ence, and speed field computation and a practical feasible

curvature computation scheme are also detailed. In “Path

planning scheme” section, A* algorithm is applied to the

energy function to search an optimal path, and a path

smoothing method is also presented. Several path evalua-

tion criteria are introduced in “Path evaluation” section.

Experimental results are shown in “Implementation and

results” section. Finally, conclusions are made in

“Conclusions and future works” section.

Related work

Path planning has been widely studied by robot commu-

nities and other researchers, and plenty of methods have

been proposed to deal with practical problems. In this sec-

tion, we mainly focus on representative path planning algo-

rithms in two dimensional scenarios, and more references

can be found in the study by LaValle.1

Visibility graph29,30 views obstacles in configuration

spaces as polygons and then constructs a graph using the

start position, the goal position, and vertices of polygons.

Then the path is obtained by graph search methods, for

example, Dijkstra’s algorithm.

Artificial potential field (APF)7,13,31,32 is another impor-

tant method for path planning in robots. In general, obsta-

cles are modeled as repulsive fields in APF, while the goal

position is considered as an attractive field. Thus, the repul-

sive fields avoid agents approaching to obstacles, and the

attractive fields move agents to the goal. Paths generated by

APF are generally smooth, but the main drawback of APF

is that a local minimizer is trapped possibly.

Probabilistic path planning algorithm is an effective

method, and its two representative methods are the

PRM14 and the RRT.15,16,33 The basic idea of probabil-

istic path planning is to randomly select non-collision

points in free motion space and then connect them to get

a path. Probabilistic methods are probabilistically com-

plete, and the path generated by them for the same

problem is also not unique.

A* method5,11 is a widely used path planning method

since it has many good properties: (1) given start and goal

positions in a scene, the path achieved by A* is unique; (2)

in a finite time, A* can always return a result even there is

no solution; and (3) a good admissible function can lead to

an acceptable time-consuming even for a large map. Now

many researchers have developed various variants of A* to

deal with different situations and tasks, such as D* Lite,34

any-angle A*,3 and Field D*.12

Gradient-based methods35,36 are a two-step algorithm of

designing an optimal path. It first uses a straight line to

connect the start and target points (even pass through obsta-

cle regions) and then takes points out of obstacles in the

gradient directions. Generally, the raw paths generated by

the process are not smooth, thus a post smoothing operation

is desired.

When an agent faces a completely unknown environ-

ment and equips with some sensors, it requires to deal with

all kinds of situations according to the sensed information.

In the case, machine learning-based methods17,18 are a

good technology to deal with path planning tasks.

Comparing with other path planning algorithms, A*

algorithm is a deterministic and flexible approach, and it

is very convenient to search an optimal solution for a con-

crete path planning problem. In this article, we propose

using the A* algorithm to optimize the proposed path plan-

ning model.

Our method is partially similar to Dolgov et al.’s

method,10 and both methods consider the practical safe

requirement, but their method does not consider the dis-

tance factor and causes the generated paths often along

with central lines of roads. As compared, our method can

flexibly adjust the path by controlling parameters of the

speed field.

The proposed model

In this section, we introduce the energy function of our path

planning method according to human experiences.

Energy function

The driving path of a person is related to both the smooth-

ness and the psychological speed of the path. Generally,

people prefer driving on a wide road with high speed,

which motivates us to design the energy function E inver-

sely proportional to the speed v. However, when v is too

small, 1
v

would tend to infinity and be the dominant contri-

bution for path planning, which is not desired in practice.

Therefore, we set

E / M � v ð1Þ

where M > 0 is a large enough constant.

On the other hand, humans are prevailing to smooth

paths with little turnings. An ideal case is that the driving

road is almost straight. In fact, the steering experience

implies two factors: the driving time is as short as possible,

and the driving road is as straight and smooth as possible.

Let s be the driving distance, and k is the path smoothness

parameter. We also consider that the energy function E is

proportional to the distance s and the parameter k.

Gong et al. 3



According to the above analysis, the energy cost along a

path C is defined as follows

EðCÞ ¼ l1sðCÞ þ l2kðCÞ þ l3

ð
C

M da� vðCÞ ð2Þ

where da represents the line element; l1 > 0, l2 > 0, and

l3 > 0 are three trade-off parameters. The energy function

relates to two initial conditions, the start position ps and the

target position pg . The inequality v � V max is also required,

where v and V max are the scalar values of velocity vðpÞ and

maximal velocity, respectively. We then denote them as the

speed and the maximal speed, respectively. kðCÞ represents

the sum of curvatures along a path C, and vðCÞ represents

the speed sum along a path C.

The objective of this article is to seek an optimal path C�

which minimizes the energy cost function defined in equa-

tion (2). We also denote the minimal energy as EðC�Þ.
Supposing a path C ¼ fp1 ¼ ps; p2; . . . ; pn ¼ pgg, then the

corresponding discrete energy function is defined as

EðCÞ ¼ l1

Xn�1

i¼1

k piþ1 � pi k þl2

Xn

i¼1

kð piÞ

þ l3

Xn

i¼1

ðM � vð piÞÞ
ð3Þ

where kð pÞ and vð pÞ are the curvature and speed at

point p, respectively.

So far, we have three unknowns sðCÞ, kð pÞ, and vð pÞ.
In the following sections, we give methods to determine the

last two quantities. The distance sðCÞ can be determined by

the algorithm automatically.

In the following two subsections, we mainly give details

how to compute the speed field vð pÞ and the computation

of curvatures kð pÞ at every point p. Here, we just concern

the scalar values of vð pÞ and kð pÞ.

Dynamic speed field

We assume the map for a robot traversing is a white and

black image. The black patches represent obstacles that

robots cannot reach, and white parts are available areas that

robots can reach.

As we have pointed out, the driving speed of humans is

related to driver’s psychology. The speed is high if there

are no obstacles around, otherwise it is slow. Thus, the

speed is related to the distance between vehicles and

obstacles. Therefore, we use the Laplacian equation

defined in equation (4) to estimate an impact coefficient

map u for an input map. Then u can be viewed as a smooth

control function which can simulate the speed field with

the maximal speed V max

Duðx; yÞ ¼ @
2u

@x2
þ @

2u

@y2
¼ 0 ð4Þ

where uðx; yÞ has the following approximation scheme

ukðx; yÞ ¼ 1

4
ðukðxþ 1; yÞ þ ukðx� 1; yÞ

þ ukðx; yþ 1Þ þ ukðx; y� 1ÞÞ
ð5Þ

where k is the iterative step. The initial conditions are

boundaries of obstacles with value 0. The coefficient map

is calculated by equation (5) using iterative optimization. In

our experiments, the number of iterations is set to 40.

Assuming the maximal speed of a robot as V max, the

speed field of an input map for a robot is defined as follows

~vðx; yÞ ¼ oV max � uðx; yÞ ð6Þ

where 0 < o � 1 is a trade-off coefficient which can

control the speed of a robot further.

In practical situations, it is required that the speed of

robots is not too slow even it is turning. Thus, the speed

field is finally defined by

v0ðx; yÞ ¼ max
�

~vðx; yÞ; eV max

�
ð7Þ

where 0 < e < 1 is a constant that control the minimal

speed of robots. Essentially, the truncated definition

ensures the speed of a robot not too small. Due to the

smoothness of Laplacian interpolation, there is not enough

discrimination for neighbors of a point in speed map v0.
Therefore, a logarithm transformation is performed, and

the final speed map is vðx; yÞ ¼ log
�

vðx; yÞ
�

.

Dynamic updating. We have presented a static speed field in

scenes as earlier, but in practice, dynamic scenes are ubi-

quitous (e.g. diverse activities of humans) and thus a

dynamic updating scheme is required for modern robots

with sensors.

For a given map with obstacles O, we first compute the

Voronoi diagram Vd of O. If robots detect a new obstacle

Os, we then update Vd for Os locally. Denote Cs the Vor-

onoi cell of Os, then the speed field vðx; yÞ is also updated

locally in Cs by the Laplacian equation (5) with zero

boundaries of Os.

Curvature computation

As shown in Figure 3, p and q are two points on a curve

(blue solid curve), and q is also a neighbor point of p. l01
and l2 (two green vectors in Figure 2) are two unit tangent

lines at p and q, respectively. Translating l01 to q gets

another vector l1, and dT ¼ l1 � l2 (red vector) is the dif-

ference between l1 and l2. From the view of tangent, the

curvature kðpÞ at p has the following definition

kðpÞ ¼ lim
q!p

dT
k p� q k ð8Þ

where k p� q k is the Euclidean distance of p and q. In this

article, we use tangents to approximate curvatures.
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Supposing a robot has been moved i steps which gen-

erates i points in the motion space, which are denoted by

fp1; . . . ; pi�1; pig. According to the definition in equation

(8), the curvatures can be approximated at these discrete

points by

kðpiÞ ¼
2 k pi�1pi

���! � pipg
��! k

k pi�1pg k
ð9Þ

where pq�! ¼ q� p represents a vector pointing from p to

q, and k pq k is the Euclidean distance between p and q. It

is worthy to pointing out that pi is the weighted mean value

of previous points p1; p2 . . . ; pi, . . . that is

pi ¼
1

2
ðpi þ pi�1Þ

A benefit of the definition of pi is that it measures the

amount of pi deviated from the previous short time path.

Path planning scheme

Based on the proposed model, we search a path by using the

A* method that can navigate a robot from any initial posi-

tion to the target position avoiding collisions.

Formulation in motion space

In this article, robots are assumed to be disk-shaped objects,

and obstacles are convex or concave polygons. Assuming a

robot centered at x 2 R2 with radius R > 0 operates in a

closed compact space S � R2, and M polygonal obstacles

fOigM
i¼1 also locate in S. We define the free motion space F

of a robot as follows

F ¼ fx 2 S : Bðx;RÞ � S\ [
M

i¼1
Oi � Bð@Oi;RÞ[Bð@S;RÞg

ð10Þ

where Bðx; rÞ is an open ball Bðx;RÞ ¼
fy 2 S :k y� x k< Rg, Bðx;RÞ represents the closure,

k � k denotes the 2-norm, @S is the boundary of S, and �
is the dilation operation along every obstacle’s boundary.

We also assume that the distance of any two polygonal

obstacles in F satisfies

dM ð pi; pjÞ > 2R; 8i 6¼ j ð11Þ

where dM ð pi; pjÞ is the minimal distance of two sets, that is

dM ð pi; pjÞ ¼ minfk x� y k: x 2 pi; y 2 pjg
Overall, a robot in theory can walk freely in its free

motion space, however, in practice, a more wider space

is needed for robots especially when they traverse some

obstacles. For example, in Figure 2, rail-mounted

robots in an unmanned dinning room generally preserve

a certain distance from tables and chairs for safety

considerations.

A*-based path planning

Given a target location pg 2 F and a robot locates at

ps 2 F, we need to find a path that can navigate a robot

from ps to pg without collisions. The task can be accom-

plished by getting a position vector Pn ¼ ð p1; p2; . . . ; pnÞ
such that p1 ¼ ps and pn ¼ pg .

The A* method selects a path that minimizes

f ð pÞ ¼ gð pÞ þ hð pÞ, where p is the last position of a path,

and gðpÞ is the cost of the path from the start position ps to

p, and hð pÞ is an admissible heuristic function that mea-

sures the lower bound of the cost from p to the target

position pg. The key of A* search algorithm is to design

an admissible heuristic function hð pÞ, where the use of

hð pÞ is to avoid overestimating the actual cost to arrive

at the target position. In this article, we define the heuristic

function hð pÞ as follows

hð pÞ ¼ l1 k p� pg k þl2kð pÞ þ l3

�
M � vð pÞ

�
ð12Þ

where k � k is the 2-norm. The heuristic function hð pÞ
designed here is admissible obviously.

On the other hand, if let pk ¼ p, then the function gð pÞ is

defined as

gð pÞ ¼ l1ssð pÞ þ l2

Xk

i¼1

kð piÞ þ l3

Xk

i¼1

�
M � vð piÞ

�
ð13Þ

where ssð pÞ is the length of a polyline fp1; p2; . . . ; pkg.
Based on aforementioned formulations, the optimal path

can be produced using the standard A� algorithm.

Path smoothing

In most cases, the raw paths generated by A* algorithm

are possibly not smooth enough, even the smoothness has

been considered. Therefore, a post smooth process is per-

formed to ease driving for robots. Specifically, the path is

smoothed by minimizing an energy function under fol-

lowing constraints: (1) paths are smooth enough, (2) point

Figure 3. Curvature definition by tangent. l01 and l2 are the unit
tangents of p and q, and translating l01 to q generates the purple
vector l1. dT is the difference between l1 and l2.

Gong et al. 5



positions in the smoothed path after smoothing are not too

far away from original corresponding ones, and (3)

smoothed path should also have a strong safe distance to

the obstacles.

Assuming the path C ¼ fp1 ¼ ps; p2; . . . ; pn ¼ pgg is a

polyline, and Cs ¼ fq1 ¼ ps; q2; . . . ; qn�1; qn ¼ pgg is its

smoothed version. Then, the optimal energy function for

path smoothing is defined as follows

EðCsÞ ¼
Xn�3

i¼2

k qi � Bik2

2
þ b1

Xn�1

i¼2

k qi � pik2

2

þ b2

Xn�1

i¼2

F repðqiÞ
ð14Þ

where b1;b2 > 0 both are real numbers, qb
i is an attractive

point, and F repðqiÞ is the repulsive function defined in

APF,13 that is

F repðqiÞ ¼
1

2

1

�ðqi; p obsÞ
� 1

�0

0
@

1
A

2

�ðqi; p obsÞ � �0

0 �ðqi; p obsÞ < �0

8>><
>>:

where �ð �; �Þ is the distance function, p obs represents

obstacles, and �0 > 0 is a constant given by users. The

second term of equation (14) guarantees that smoothed

paths cannot deviate from original ones too far. The third

term guarantees the strong safe distance. The first term

attracts the point qi to a Bezier point Bi, which can control

the smoothness of the path. Specially, Bi is a Bezier point

interpolated by four neighbor points ðqi�2; qi�2; qiþ1; qiþ2Þ
of qi

Bi ¼
1

8
qi�2 þ

3

8
qi�1 þ

3

8
qiþ1 þ

1

8
qiþ2 ð15Þ

This formula indicates that Bi is from a cubic Bezier

curve. Since Bezier curves are generally smooth, we can

desire paths processed by this method are also smooth. In

fact, Bezier-based smoothing path generation methods are

extensively used in path planning.37,38

Using the gradient descent algorithm, the energy func-

tional shown in equation (14) can be optimized by the

following iterative scheme

qkþ1
i ¼ Bk

i þ l1pi þ ak
i ðqk

i � Ok
i Þ=ð1þ l1Þ ð16Þ

where ak
i is defined as

ak
i ¼

a
1

�ðqk
i ;O

k
i Þ
� 1

�0

0
@

1
A 1�

�ðqk
i ;O

k
i Þ
�3

�ðqk
i ;O

k
i Þ � �0

0 �ðqk
i ;O

k
i Þ > �0

8>>><
>>>:

where Ok
i 2 p obs represents the closest point to pk

i .

Path evaluation

Path Evaluation is very important in path planning study. In

the previous work, researchers usually used the following

three criteria to measure a path’s quality: the running time

T of algorithm, the number of turning points TPN, and the

length of a path PL. However, all three aspects do not

related to safety. Thus we design following two criteria

to measure safety:

1. the minimal distance between a path P and obsta-

cles O: MD ¼ minfk x� o k: x 2 P; o 2 Og.
2. the safety coefficient of a path P and obstacles O:

SC¼
P

x2Pdðx;OÞ
PL

, where dðx;OÞ ¼ minf k x� o k:
o 2 Og, and O represents obstacles.

MD reflects the worst case of a path passing through

obstacle regions. SC is used to measure the safety perfor-

mance which is not considered by previous works to the

best of our knowledge. In practice, humans generally desire

the path length PL as short as possible and distances to

obstacles as long as possible. Therefore, a bigger SC

reports a better safety performance.

Implementations and results

In this section, we give implementation details of our

algorithm and show the results from our approach. All

examples shown in this article are performed on a laptop

running on a 3.40 GHz laptop computer with 4 GB of

memory. Generally, the path planning algorithm, includ-

ing A* search and path smoothing, can be accomplished in

0.3 s for an indoor layout map (1026 	 800) and the Paris

rendering map (907 	 728) shown in Figures 5 and 6,

respectively.

In our implementation, the A� method searches eight

directions (8-neighbors) of current position each time, and

therefore the step length of every action is 1 or
ffiffiffi
2
p

. We

normalize curvatures and speeds of all positions into an

interval [0.0, 1.0] to eliminate the influence of different

dimensions. Furthermore, we set o ¼ 0:8 and e ¼ 0:1. If

without statement, in path smoothing module, we set

a ¼ 3 and �0 ¼ 10. In path planning module, we set

l1 ¼ 0:4; l2 ¼ 0:4, and l3 ¼ 0:6 if without special

statement.

The proposed optimal path planning algorithm is built

on the platform of Visual Cþþ with Qt 5.3.2 GUI. In the

system as shown in Figure 4, we implement the shortest

path method and our method, respectively, which are both

optimized by the A* search algorithm. On the left working

area of the system interface, maps and paths are shown, and

the start and target positions S and G can be chosen inter-

actively. On the right panel of the system interface, several

widgets are designed to adjust parameters. Once a start

6 International Journal of Advanced Robotic Systems



position and a target position are chosen, we can choose an

algorithm in the process menu to generate a path. For

example, in Figure 4, we use our method to generate a path

(green curve) that connects S and G.

Experimental results

For given start and target nodes ps ¼ 248; 110 and

pg ¼ 669; 653, the example for an indoor scene is shown

in Figure 5. The result indicates that our path planning

method is feasible for indoor environments. The path

(green curve in Figure 5) generated by our method is

smooth and extends along boundaries of obstacles,

which is very similar to human’s walking habit. Further-

more, the path indeed has a certain distance with bound-

aries of obstacles, which guarantees strong safety for

robot steering. Therefore, it is suitable for robot steering

along the path.

We have also tested the path planning on large-scale

scenes. We download a three-dimensional (3-D) Paris

model from Internet, and then the model is projected onto

the x� z plane orthogonally. The projection is shown in the

left of Figure 6. Then the projection is binarized with color

clustering operations and manual refinement to extract the

transportation road networks of Paris. As shown in Figure

6, red dots indicate the start position ð ps ¼ 154; 579Þ and

the target position ð pg ¼ 853; 159Þ, and the green and

blue curves represent our optimal path and the shortest

path, respectively. Note that in this example, the path

smoothing is not performed since the width of the road

networks is very thin. Note that our path (green curve in

Figure 4. The interface of our optimal path planning system. The
green and blue curves represent our optimal path and the
shortest path, respectively.

Figure 5. Illustration of path planning by our method at an indoor
layout scene.

Figure 6. Path planning on a large-scale scene. The left is the render map of Paris 3-D model with several path planning results, where
the green and blue curves represent our optimal path planning result and the shortest path planning result, respectively. The right-top
and the right-bottom are two local zoom-in images.
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Figure 6) contains a long and straight segment comparing

with the shortest path (red curve in Figure 6).

Path evaluation

We evaluate different paths generated by different path

planning algorithms, including RRT method,16 practical

method,10 fuzzy logic (FL) method,39 and our method.

RRT16 and the practical search (PS) method10 are imple-

mented using Matlab [version 2010], and the FL method39

is implemented by Cþþ. Note that in Figure 7, we set

l3 ¼ 2:0. Paths generated by other methods are smoothed

except for RRT, thus a simple mean value filter is used for

RRT. Path planning results of these algorithms in maps

with size 500 	 500 are shown in Figure 7.

To evaluate path’s quality, five different criteria (see

“Path evaluation” section) are computed for paths gener-

ated by different algorithms, and the statistical results are

reported in Tables 1 and 2. Since RRT is a random algo-

rithm, it is tested ten times in the two static maps, and only

one of the results are shown in Figure 7. As shown, RRT

method16 has less turning points comparing to other three

algorithms but performs worse with respect to other cri-

teria, especially getting lower safe coefficient. FL method39

shows a mediocre performance for these criteria. The prac-

tical method10 and our method have a similar safe perfor-

mance, but our method always have a shorter path length

than the practical method. In summary, the method pro-

posed in this article can balance different requirements.

We have also analyzed influence of different para-

meters l1, l2, and l3 for optimal path planning, as shown

in Figure 8. In this example, we generally set l1 ¼ 0:01,

l2 ¼ 0:01, and l3 ¼ 0:01 if without special explanation.

The paths shown in Figure 8(a) to (d) tend to be a shorter

one with increasing l1, which agrees with our model

designing. With the increasing of l2, paths shown in

Figure 8 (e) to (h) have obvious variations. In fact, since

curvature characterizes local shapes of geometry, and it is

also very sensitive, thus different l2 lead diverse results.

There is a little special for l3. When it is bigger than l1

and l2, paths shown in Figure 8 (j) to (l) do not show

obvious variations. Therefore l3 is not sensitive if it has a

bigger value. Hence choices of l1, l2, and l3 are pivotal

for concrete applications. We could set a larger l1 for a

shorter distance requirement. Note that l2 controls the

weight of curvatures of paths which are a local geome-

trical features. Therefore, we advise a large l2 if a local

smoothness is desired. However, a very large l2 is not a

good choice for smoothness (e.g. Figure 8(g) and (h)).

Generally, we suggest a large value of l3 and a similar

value of l1 and l2 for a safe path application.

Dynamic scenes

A dynamic path planning example is tested, and the result

is shown in Figure 9. A path is generated and connects S

and G in a static scene shown in Figure 9(a). But in Figure

9(b), when robots move to the node M, a new obstacle H is

detected, and then the speed field is updated, and the path is

also re-computed. The final path is shown in Figure 9(b).

The example illustrates that the dynamic updating scheme

is useful for dynamic scenes.

Figure 7. Path planned by different methods. (a) RRT16; (b) practical method10; (c) our path planning result; (d) RRT16; (e) practical
method10; (f) fuzzy logic39; and (g) our path planning result. RRT: rapidly exploring random tree.
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Examples shown in this section demonstrate that our

optimal path planning algorithm for robots is practically

feasible. Specially, these results also validate that our

model can simulate human’s experiences.

Conclusions and future works

In this article, we propose a model to simulate human’s

path planning. Specially, the safety of robot navigation is

considered. The major technical contributions of the article

include the following aspects:

1. A dynamic speed field is proposed, which is incor-

porated with multiple factors, such as safety, path

curvatures and path distance, to model human driv-

ing experiences. By adapting parameters

(l1; l2; l3), the model can generate diverse paths

according to specific requirements.

Figure 8. The path planning results by our method with different parameters. (a) l1 ¼ 0.01; (b) l1 ¼ 0.05; (c) l1 ¼ 0.5; (d) l1 ¼ 3;
(e) l2 ¼ 0.01; (f) l2 ¼ 0.05; (g) l2 ¼ 0.5; (h) l2 ¼ 3; (i) l3 ¼ 0.01; (j) l3 ¼ 0.05; (k) l3 ¼ 0.5; and (l) l3 ¼ 3.

Figure 9. Illumination of path planned in dynamic scene by our
method. Compared with (a), a new obstacle H appears in (b).

Table 1. Statistical results of paths are shown in Figure 7(a) to (c),
where — means the algorithm fails for the map with given start
and target nodes.

T (s) TPN PL MD SC

RRT 3.088 436 541.75 0.307 9.224
FL — — — — —
PS 0.062 573 665.439 10.6538 20.0372
Human experience–

inspired path
planning method

0.107 564 590.783 9.07 14.6226

RRT: rapidly exploring random tree; FL: fuzzy logic; PS: practical search;
TPN: number of turning points; PL: length of a path; MD: minimal distance;
SC: safety coefficient.
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2. An efficient but easy-to-implement path smoothing

algorithm is presented. The smoothed path is more

suitable for steering of robots.

3. Experiments on indoor scene and large-scale out-

door scene have demonstrated the effectiveness of

our path planning method.

In the future, we would like to develop our method in

several aspects, such as smartly selecting parameters l1, l2,

and l3, and adapting to usual maps (e.g. maps with non-

smoothed obstacles). We also would like to develop our

method assisted by scene sematic analysis especially iden-

tifying the static objects and persons.
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