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Abstract—The ability to detect anomalies in perceived stimuli
is critical to a broad range of practical and applied activities in-
volving human operators. In this paper, we propose a real-time
physiological-based system to assess the cross-task mental work-
load during anomaly detection. Forty participants were recruited
to detect anomalous images from a set of different distracting
images (Task I) and abnormal activities from surveillance videos
(Task II). In Task I, the task difficulty levels were manipulated by
changing the number of anomalies/distracting stimuli (15, 21, 28, or
36) with and without time constraints (i.e., 4 × 2 = 8 task difficulty
levels). Physiological and behavioral data from four task difficulty
levels were divided into four categories according to subjective rat-
ings of the mental workload. The support vector machine (SVM)
classifiers were trained on these data to predict the mental work-
load categories of: 1) the same four task difficulty levels (within
level); and 2) the other four task difficulty levels in Task I (cross
level). Within-level classifications (with an average of 95.29%) were
more accurate than cross-level classifications (average of 72.2%),
which were much more accurate than random level classifications
(25%). In Task II, the same participants monitored one, two, or four
video clips simultaneously in accordance with three task difficulty
levels. The same physiological signals were processed for real-time
recognition of a participant’s mental workload after he or she com-
pleted each activity detection task. The three-class SVM classifiers
were trained on physiological data from Task I to predict the men-
tal workload categories of the Task II (cross task), achieving an
overall classification accuracy of 53.83%, compared to a 33.33%
accuracy at random. These results are discussed in terms of their
implications for developing situation-aware recognition systems of
the mental workload and adaptive human–computer interaction
platforms.

Index Terms—Anomaly detection, cross task, human–computer
interaction, mental workload, physiological measures, workload
classification.
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I. INTRODUCTION

ANOMALY detection in images/videos is applicable in a
variety of domains and has been widely studied in com-

puter vision, pattern recognition, and engineering psychology.
A number of automatic anomaly detection algorithms have been
proposed [1]. However, there is little work that studies the human
factors in the process of anomaly detection. In many anomaly de-
tection situations, such as human–computer monitoring, the role
of a human operator is critical. We list following three examples.

1) X-ray security screening: The security checkpoints for
X-raying passenger bags are the key element in trans-
portation security. Despite great improvements in techno-
logical equipment (e.g., high-resolution X-ray machines),
the decision as to whether a piece of luggage can enter
the gate or not is still made by a human screener under a
critical time limit [2].

2) Surveillance video analysis: To train machine-learning
algorithms to analyze an extremely large amount of
surveillance video data and detect abnormal activities,
previously observed activities need to be analyzed, an-
notated, and profiled by human experts, thus requiring
substantial human operator effort to obtain an accurately
labeled training dataset in a limited amount of time [1].

3) Medical diagnosis: Tasks such as radiological diagno-
sis of chest X-rays or CT images aim to detect a large
number of anomalies that signal different diseases. Al-
though computer-aided diagnosis techniques have been
developed, these images frequently need to be judged by
doctors themseland also with the ves [3]. In many medical
contexts, there is time pressure on radiology doctors to act
quickly because of the sheer volume of work.

The ability to detect anomalies in perceived stimuli by a per-
son is critical in these applications. Anomalous features are
likely to weigh heavily in the cognitive tasks of visual search,
signal detection, pattern classification, and discrimination. De-
tecting subtle anomalies in naturalistic stimuli is challenging
even after extensive experience. For example, in [4], medical
students and expert diagnosticians were asked to describe pho-
tographs showing prototypical symptoms of pancreatitis. A sur-
prising finding was the widespread failure of participants to
notice supposedly obvious features.

During anomaly detection, a human operator knows what
should be considered normal items and discriminates anomalies
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from a field of normal stimuli. This requires many resources
and close cooperation between the stimuli perception, attention,
working memory, and decision-making ability involved [5]. Be-
cause anomalies are typically characterized by ambiguity as to
what should be considered a feature, a person may focus on
features that are intrinsically salient but irrelevant to the task
[3], which increases the task difficulty and complexity.

Behavioral measures, such as detection accuracy and reaction
time (RT), might not be reliably sensitive to changes in task
demand. Implicit is the belief that as task difficulty increases,
anomaly detection performance usually decreases: reaction time
and error increase, and fewer anomalies are detected per unit
time. However, there exists strong evidence to show that this is
not always the case for monitoring, vigilance, or troubleshooting
applications [6]. As a result, mental workload (MW) that is more
sensitive to quantify the mental cost of performing anomaly
detection tasks is introduced in this paper to predict human
operator and system performance.

Recently, physiological signals have attracted attention in the
quest to understand a human operator’s cognitive and mental
processes in performing a task (e.g., [7]–[9]) due to their accu-
rate and perceiver-dependent objective data. Physiological sig-
nals are measured via instruments that read bodily events, such
as electroencephalography (EEG), heart rate change, electroder-
mal activity (EDA), and cardiac output. EEG-based indices are
sensitive to subtle changes in the mental workload. However,
traditional EEG systems are somewhat difficult to use, requir-
ing preparation of the skin, application of conductive gel, and
cleaning of the cap afterwards. Although alternative electrode
systems (e.g., dry electrode) have been developed, it still takes
time to provide evidence of good signal quality, comparable to
that of standard gel-based electrodes [10]. As a comparison,
peripheral physiological signals provide alternative approaches
for quick and practical application. Recent developments in the
field of wearable sensors and systems have resulted in devices
that require less preparation time and are more comfortable for
the wearer [11].

A key challenge in the development of a physiological-based
system to recognize the mental workload is the establishment
of a generalized model for different difficulty levels and tasks
that the human operator has not yet experienced. The cross-
task mental workload classification is the process in which
classifiers are trained on physiological features under one task
and applied in other tasks to recognize mental workload states
under different taskloads. In this paper, we present a real-time
physiological-based adaptive system to assess the cross-task
mental workload during anomaly detection, and we achieve
better classification accuracies than chance level. The proposed
real-time assessment method and system can be used to develop
situation-aware recognition systems of the mental workload
and adaptive human–computer interaction platforms. For
example, if a human screener in an X-ray security checkpoint is
recognized as having a high level of mental workload, a warning
message can be automatically sent to the security officer to
suggest a work shift or adjust the task demands (e.g., reduce the
amount of luggage X-rayed) via an adaptive human–machine
interface.

II. RELATED WORK

A. Mental Workload

Mental workload reflects the interaction of mental demands
imposed on operators by tasks they attend to [12] or the mental
cost of accomplishing the task demands [13]. Mental workload
depends upon the human operator and the interaction between
the operator and task. The same task demands do not result in an
equal level of the workload for all individuals. Individuals can
adapt their behaviors and cope with increasing demands to keep
the performance at the same level with an increase in effort.

Workload results from the aggregation of many different de-
mands, and there is no single measure that can evaluate all of
its components [14]. Although mental workload is difficult to
directly observe, the previous research has suggested that it can
be inferred from the measurement of physiological processes
[15]. Compared to subjective measures, physiological indices
have better performances in the aspects of sensitivity, diagnos-
tic ability, and nonintrusiveness, and they provide online meth-
ods for measuring mental workload in the practical and applied
activities involving human operators [16].

Both time-domain and frequency-domain measures of elec-
trocardiograms (ECGs) have been utilized to obtain information
about the workload. In the time domain, the average heart rate
(i.e., the number of beats per minute) during task performance
compared to a rest-baseline measurement is an accurate measure
of metabolic activity [17]. Compared to time-domain analysis,
the frequency analysis of heart rate variability (HRV) provides
additional information regarding the biological control mech-
anisms [18]. A decrease in power in the midfrequency band
(also called the “0.1-Hz component” after the main frequency
component) has been shown to be related to mental effort and
task demands [19]. It is sensitive to not only task–rest differ-
ences but also relatively low or moderate changes in the mental
workload. Second, endogenous eye blinks measured by an elec-
trooculogram (EOG) are meaningful indicators of the mental
workload. Previous studies have concluded that increased eye
blink rate is the most useful in the assessment of visual demands
[20]. Other eye blink data, such as blink duration and latency,
have been analyzed and used as workload measures in a series
of studies [21]. Third, measures of respiration (RSP) provide
an index of energy expenditure. Evidence has been found that
the respiration rate increases as a result of increased mental
workload or temporal demands [22]. Fourth, Kramer [23] con-
cludes in his review that EDA appears to be sensitive to general
information processing. Both mean skin conductance response
(SCR) amplitude and frequency have been extracted and used
as indices of the mental workload in the literature [24]. Finally,
the photoplethysmogram (PPG)-based vascular response index
(e.g., a relative amplitude ratio between two contours in a PPG
waveform) and changes in blood pressure variability have been
employed to assess cognitive load and mental stress [25].

B. Mental Workload Classification

The aforementioned various physiological measures make it
possible to recognize different levels of mental workload [7],
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[26]–[28]. For example, Zhang et al. [7] proposed an adaptive
support vector machine (SVM)-based method to classify oper-
ator mental workload into a few discrete levels. Physiological
signals were recorded continuously while subjects performed
a process control operation. Combining adaptive exponential
smoothing algorithms and bounded SVM methods, their model
was able to recognize mental workload every 5 seconds with
higher temporal resolution and cross subject and cross-trial gen-
eralizability. Wilson and Russell [26] used an artificial neural
network (ANN) to classify the mental workload of highly trained
operators in a simulated air traffic control task. The authors ma-
nipulated different levels of task difficulty by varying either the
volume of traffic or the complexity of traffic at each of three
levels. The ANN model was trained for approximately 6 h for
each operator and achieved an average classification accuracy of
80%. Classification accuracies improved to an average of 85.8%
for ANNs trained on within-difficulty manipulation (i.e., ANNs
were trained on the three levels of traffic volume and tested on
the same three levels).

Moreover, physiological-based systems have been proposed
to monitor an operator’s mental workload in real time [29]– [31].
For example, Wilson and Russell [29] used ANNs to classify
operator states on a multitask combination of manual tracking,
visual and auditory monitoring, and the dynamic resource allo-
cation task. Two difficulty levels were manipulated by varying
the number of events that occurred within a 5-min trial. The
trained ANNs were used to determine the difficulty level of
the task while it was being performed in two 5-min blocks per
level. They achieved real-time classification accuracies ranging
from 82% under the low-workload condition to 86% under the
high-workload condition. These findings and systems facilitate
the development of real-time assessment and classification of
mental workload based on physiological signals that detect per-
formance degradation or breakdown in safety-critical human–
machine systems.

Recently, the state of the art research tried to establish a gen-
eralized model for different difficulty levels and tasks that the
operator has not yet experienced. Baldwin and Penaranda [31]
first attempted to train classifiers with two difficulty levels in one
working memory task, and then, predict two workload levels in a
different working memory task when the operator has little expe-
rience in performing either task. Classification accuracies were
higher when the classifiers were trained on examples from the
same task (M = 87.1%) than a set containing the to-be-classified
task (M = 85.3%). Cross-task classification accuracies (44.8%
on average) were much lower than the within-task accuracies,
indicating consistent misclassification for certain tasks in some
individuals (50% accuracy at random).

To improve cross-task classification accuracies, in this study,
we manipulated a number of task difficulty levels to increase the
differences in mental workload. Two anomaly detection tasks
were designed to contain a combination of visual monitoring,
pattern discrimination, manual tracking, and resource alloca-
tion among different visual stimuli. Moreover, we set up time
constraints under certain experimental conditions and provided
additional bonuses for participants with better detection
performance. These approaches aimed to evoke a higher level

Fig. 1. Electrode locations and connections for EOG (upper left), ECG (up-
per right), RSP (bottom, real amplifier module), GSR (bottom, real amplifier
module), and PPG (bottom, real amplifier module).

of arousal, mental effort, and energy demands, which are asso-
ciated with mental workload [32]. We propose a physiological-
based system to assess: 1) within- and cross-level mental
workload during anomalous image detection; and 2) real-time
cross-task mental workload during anomaly activity detection.
Our system achieves high within-level classification accuracies
of 95.29%, on average, and acceptable cross-level accuracies
of 72.2%, on average, compared to 25% for random chance.
Additionally, our cross-task classification accuracies (53.83%
on average) were much higher than random chance (33.33%).

III. REAL-TIME PHYSIOLOGICAL-BASED SYSTEM OF THE

CROSS-TASK MENTAL WORKLOAD

The objective of this study is to establish a real-time, gener-
alized, and multimodal physiological system to recognize dif-
ferent levels of mental workload during anomaly detection. To
achieve this objective, we employ various physiological mea-
sures and behavioral responses to train an SVM classifier when
the operator detects anomalous images. Trained classifiers are
tested on data from different difficulty levels of the same task
and from an abnormal activity detection task to verify the effec-
tiveness and generalizability of our system.

A. Acquisition of Physiological Signals

The proposed system employs five amplifier modules to
acquire physiological signals, including an electrocardiogram
(ECG100C), electrooculogram (EOG100C), respiration pneu-
mogram (RSP100C), electrodermal activity (GSR100C), and
photoplethysmogram (PPG100C) (see Fig. 1). The ECG100C
records a standard LEAD I with an additional R-wave detec-
tor to calculate the real-time R-R interval, R-wave amplitude,
and heart rate. The EOG100C is recorded via Ag–AgCl elec-
trodes placed above and below the participant’s right eye to track
his/her vertical eye movement. The RSP100C is placed around
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the body at the level of maximum respiratory expansion (gen-
erally approximately 5 cm below the armpits) to measure ab-
dominal or thoracic expansion and contraction. The GSR100C
provides a measure of skin resistance by positioning two Ag–
AgCl electrodes on the distal phalanges of the middle and index
fingers. The PPG 100C indirectly indicates the point of maximal
blood density in the respective location and blood pressure by
comparing the point of R-wave onset in the ECG to the point of
maximum blood density.

B. Signal Processing and Feature Extraction

All the physiological signals are recorded at a 1000-Hz
sampling rate and later downsampled to 256 Hz to reduce
the real-time data processing time. Basic filter methods with
recommended settings are applied to remove linear trends
and artifacts. We compute channel statistics after removing
each piece of segmented data to determine whether to remove
this segment or the entire channel. In the case that abnormal
waveforms may still exist (e.g., a distorted ECG waveform), we
select normal ECG waveform patterns that the user recorded
in the resting period and set them as a template. Then, we
compare each piece of segmented data with the template to
remove abnormal data based on the degree of correlation.

An external 5-V digital input is recorded simultaneously to
mark the beginning and end of each anomaly detection task.
Specifically, the presence of each anomaly detection task and
the time a participant clicks the button to continue the next
task generates a transient voltage change. Based on these digital
inputs, continuous physiological signals are segmented to suc-
cessive epochs, and each epoch (i.e., a few seconds, depending
on task completion time) contains only one anomaly detection
task. In each epoch, the first and last 10% of the physiological
signals from the beginning and end of each task are excluded
from the analyses to eliminate transience.

The BIOPAC MP150 system provides various presets to cal-
culate and extract features from raw physiological signals in
real time. For example, after setting up an ECG channel, the
system allows us to select the R-R interval, heart rate, and R
wave amplitude presets. The preset and customized calculation
functions are able to extract all time-domain features and a
majority of frequency-domain features (e.g., HRV). The other
frequency-domain features are computed using the BIOPAC
script function. Data are smoothed using the Hanning window
and are transformed into power spectra with fast Fourier transfer
analysis. The power in the target frequency range is integrated
to obtain frequency-domain features. Because of large individ-
ual differences in physiological signals, extracted features are
normalized between 0 (representing no mental workload) and
1 (representing maximum mental workload) for further analysis.

C. Classification of the Mental Workload

All features are extracted from peripheral physiological
responses based on the extensive literature review of the mental
workload. As shown in Table I, there are 42 physiological
indices in total (i.e., 9 ECG features, 5 EOG features, 11
RSP features, 12 GSR features, and 5 PPG features). For

TABLE I
FEATURES EXTRACTED FROM PHYSIOLOGICAL AND BEHAVIORAL DATA

Signal Extracted Features

ECG (9) Average and standard deviation of HR, R-R interval, square
root of the mean squared differences of successive R–R
intervals, R-wave amplitude, T-wave amplitude, HRV
power spectrum in the low-frequency band [0.02, 0.06] Hz,
midfrequency band [0.07, 0.14] Hz, and high-frequency
band [0.15, 0.5] Hz

EOG (5) Eye blink rate, duration, and latency, average and standard
deviation of blink intervals

RSP (11) Average and standard deviation of RSP, average of its
derivative, average and standard deviation of RSP rate, four
spectral power in the frequency bands from 0 to 1 Hz,
average peak-to-peak interval and amplitude

GSR (12) Average and standard deviation of SCL, average SCR
amplitude and frequency, average peak-to-peak interval and
amplitude, crossing rate of skin conductance, slow response
in the frequency bands [0, 0.08] Hz and [0, 0.2] Hz, 4
spectral power in the frequency bands from 0 to 1 Hz

PPG (5) Average and standard deviation of PPG, average
peak-to-peak interval and amplitude, relative ratio of two
contours in a PPG waveform

RT and Error (3) Detection reaction time, miss rate, false alarm rate

a detailed description of these 42 extracted features, see
Section II—related work and the literature [6], [21], [23], [33],
[34]. In addition, there are three behavioral indicators (i.e.,
detection reaction time, miss rate, and false alarm rate).

Linear discriminant analysis (LDA) is performed for feature
reduction, which projects high-dimensional features with la-
bels into a low-dimensional space with good class separability
by maximizing the Fisher separation criterion. Feature reduc-
tion is achieved by finding a subset of features that have the
largest Fisher separation value. However, when the number of
selected features is still larger than the number of observations,
the within-class covariance matrix of the features becomes sin-
gular. To solve this problem, we apply the sparse LDA (SLDA)
[35], which overcomes this limitation by performing LDA with
a sparseness criterion imposed such that classification and fea-
ture selection are performed at the same time [36]. The SLDA
algorithm will perform the elastic net regression with early stop-
ping at a particular value (i.e., the value of the parameter STOP)
of the L1 regularization parameter. Therefore, STOP is an in-
teger that determines the desired number of nonzero variables
[36], [37].

After the participant completes each anomaly detection task,
he or she has to click the button to continue the next task, which
will trigger the processing of physiological signal and feature
extraction as described in Section III-B. The selected features
are entered as input features to an SVM for classification. In our
implementation using MATLAB, we apply the SpaSM toolbox
for SLDA and the LIBSVM toolbox for the SVM. We optimize
the parameter STOP in the SpaSM toolbox. In the LIBSVM
toolbox, we choose the radial basis function kernel function and
optimize the cost parameter c and the gamma parameter g using
SVMcgForClass [38]. In this study, the SVM classifiers are
trained on data from some task difficulty levels of one anomaly
detection task, and then, tested on the following data:
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Fig. 2. Set of 15 images was randomly arranged in a 5 × 3 matrix. In this
example, there was only one anomalous image (snow-covered trees) at the cross
section of the second row and third column among 14 distracting images (Snow
Mountain).

1) data from the same task difficulty levels (i.e., within-level,
offline classification);

2) data from the other task difficulty levels of the same task
(i.e., cross-level, offline classification);

3) data from the other anomaly detection task (i.e., cross-
task, real-time prediction of mental workload).

Obviously, cross-task classification is more challenging than
cross-level classification, which in turn is more difficult than
within-level classification.

IV. METHODS

A. Participants

We recruited 40 undergraduate and graduate students (20
males and 20 females) whose average age was 22.2 years (range
= 19–26, SD = 1.76). Participants were screened to ensure
that they were right handed with normal or corrected-to-normal
visual acuity and hearing. We recruited novices who lacked
sufficient knowledge to make use of top-down expectancies and
focused on conspicuous features rather than the features relevant
to the task.

B. Task Description

1) Anomalous Image Detection: In Task I, participants were
asked to identify a variable number of anomalous images from a
set of different distracting images (see Fig. 2). Our interest lies
in two dimensions of task demands that influence the invest-
ment of mental resources: changing the number of anomalies
and distracting stimuli (i.e., set size) and manipulating the time
pressure (i.e., changing the information rate in essence). The
image set size consisted of four levels: a set of 15 images ar-
ranged in a 5 × 3 matrix (i.e., a set of 5 × 3 images), a set
of 7 × 3 images, a set of 7 × 4 images, and a set of 9 × 4
images. The time pressure consisted of two levels: self-paced or
under time pressure. Take a set of 5 × 3 images, for example. At
the beginning of each task, a sample image with a highlighted
keyword was displayed for 3 s to reduce individual differences
in the comprehension of image contents. Then, a set of 15 dif-
ferent images was arranged in a 5 × 3 matrix. Participants were
instructed to select all anomalous images by clicking the left
mouse button. Double clicking the left mouse button revoked

the selection. After completing ten successive tasks, participants
took a 2-min break, and then, started another trial.

The ratio of the number of anomalous images to the number
of distracting images in each trial was 0.1. In the last example of
a 5 × 3 matrix, there were 1–2 anomalous images in each task,
amounting to 15 anomalous images in that trial (i.e., 15 anoma-
lous images/150 images = 0.1). Similarly, there were 1–3, 2–4,
and 3–5 anomalous images when a set of 21, 28, and 36 images
were arranged in corresponding matrices, respectively. Because
the number of anomalous images was unknown, participants
had to perform an exhaustive search in each trial (i.e., check
the entire set of images one by one). When experiencing time
pressure, participants were required to complete the detection
task as soon as possible without sacrificing accuracy.

Images (anomalous and distracting images) were selected
from different categories of items, such as household equip-
ment, home appliances, and natural scenes, including beaches,
city streets, forests, highways, mountains, and offices. The
natural scene images were originally used in [39], and the
remainder were downloaded from Flicker under the Creative
Commons license. Images were visually inspected and selected
by three experienced experimenters to control the similarity
between anomalous and distracting images (i.e., avoid pop-out
anomalies) as well as the similarity between distracting images.

2) Anomaly Activity Detection: In Task II, the same partic-
ipants were instructed to monitor one or a few video windows
in accordance with different task difficulties and to identify
all abnormal events that were publicly available in the UCSD
Anomaly Detection Dataset [40]. This video dataset involves
bidirectional pedestrian traffic from two camera viewpoints.
The crowd density in the walkways is variable, ranging from
sparse to very crowded. In this dataset, there are 50 video clips
containing only normal pedestrian frames and 48 video sam-
ples containing at least some anomalous frames, such as the
presence of abnormal objects (e.g., bikers, skaters, small carts),
anomalous pedestrian motions and spatial abnormalities (e.g.,
walking across a walkway). Each video clip includes 200 in-
dividual frames in TIFF format. Each video was played at 20
frames per second and lasted for 10 s.

The anomaly detection task was manipulated with three levels
of difficulty: only one video clip was played at the easy level, two
were played simultaneously at the medium level, and four were
played simultaneously at the difficult level. Fig. 3 demonstrated
an example of the easy level of task difficulty, in which only one
video sequence was played. Each trial was constituted by 50%
normal and 50% abnormal activities for each level of task dif-
ficulty. More specifically, when only one video clip was played
(easy level), five normal and five abnormal activities were ran-
domly presented in a trial. When two video clips were played
at the same time (medium level), ten normal and ten abnormal
activities were randomly presented. For each detection task in a
trial, two video clips could be any of the three normal–abnormal
combinations (e.g., 2–0, 0–2, or 1–1), in case, participants could
predict the presence of normal or abnormal events. The proba-
bility of the presence of the 1–1 normal–abnormal combination
was higher than that of the other two combinations. Similar
to the difficulty level, there were 20 normal and 20 abnormal
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Fig. 3. Example of normal pedestrians walking and an abnormal biker in the
walkway (marked by a red rectangle). All video clips were downloaded from
the UCSD Anomaly Detection Dataset [40].

activities in a trial, three normal–abnormal combinations (e.g.,
3–1, 1–3, or 2–2) and a higher chance of the presence of the 2–2
normal–abnormal combination for each detection task.

C. Apparatus

Physiological data were continuously recorded using the
MP150 data acquisition system (BIOPAC systems Inc.). The
MP150 system recorded multiple channels with variable sam-
ple rates to a connected Dell Workstation (OPTIPLEX 380, Intel
Pentium E5800 at 3.2 GHz). Videos and images were presented
at the center of a 22-in touch screen with a recommended 1680
× 1050 pixel resolution. The touch screen was located 60 cm
from the participants’ eyes.

D. Experimental Procedure

As shown in Fig. 4, participants were first asked to sign a
consent document before engaging in this study. In Task I, par-
ticipants went through a 15–20 min practice session to famil-
iarize themselves with the detection task and user interface and
to ensure their detection accuracy would maintain a stable level
before the formal test.

During the formal test, participants were first instructed to
take a 20-min rest while keeping their eyes open (i.e., the base-
line condition). In each trial, participants completed ten con-
secutive tasks. After each trial, participants were asked to as-
sess their mental workload, immediately followed by a 2-min
break. There were 16 trials in total (4 set sizes × with/without
time pressure × 2 replications with different images), and the
run order was counter-balanced to avoid a potential confound-
ing effect. All participants experienced Task I first because the
data from Task I were collected to train the classifier that was
used to recognize the real-time state of the mental workload in
Task II. In Task II, participants were provided several video
clips in the practice session to familiarize themselves with the
detection task, normal pedestrians, and all possible abnormal
activities. Similarly, participants first took a 20-min rest while

keeping their eyes open (baseline condition). Each trial of the
formal test consisted of ten consecutive detection tasks, with
a short break (5, 10, or 20 seconds with an increased level of
task difficulty) between tasks. During the short break, partici-
pants were asked to write down the type of anomaly (e.g., biker,
skater, small cart, walking across a walkway) using simple let-
ters or symbols in the corresponding position of the video win-
dow. Each difficulty level appeared once, and the run order was
counter balanced. The entire experiment lasted 2.5–3 h. Partic-
ipants were paid USD$10 per hour and an additional USD$10
bonus was provided for the top three participants in terms of
their detection performance.

E. Measurement

Physiological signals were continuously recorded during all
experimental trials and resting periods. In addition to the phys-
iological measures, two behavioral responses were recorded in
Task I. Detection reaction time (RT) per image measured the
amount of time (in seconds) that a person spent looking for
anomalous images divided by the image set size. Errors oc-
curred when an observer failed to identify an anomalous image
(i.e., miss) or chose a distracting stimulus as a target item (i.e.,
false alarm). Detection error ratio (i.e., the number of errors
divided by the image set size) was used to reflect detection ac-
curacy. Self-report assessments of the mental workload were
obtained using the NASA-Task Load Index (TLX) rating scale
[41]. Self-ratings after each task difficulty level compared to
the baseline assessment (i.e., task-rest difference) was used as
the perceived mental workload during each task difficulty level.

F. Data Analysis

A repeated measures analysis of variance (ANOVA) was
performed with the image set size and time pressure as two
within-subjects factors. Significant interactions or main effects
were followed-up with post hoc pair-wise comparisons (e.g.,
Bonferroni’s test) to assess the effects each factor had on the
dependent variables. When the sphericity assumption was not
met, the Greenhouse–Geisser correction was applied for the
repeated measures ANOVA, which had more than one degree
of freedom to control type-I error.

Eight task difficulty levels were involved in Task I: image set
size (15, 21, 28, or 36) × with (W)/without (N) time pressure.
The following three classifications were of interest to us (see
Table II).

1) Within level: Physiological and behavioral data from four
task difficulty levels (15 N, 21 W, 28 N, 36 W) were di-
vided into four categories according to subjective ratings
of mental workload. The four categories captured the en-
tire range of the mental workload (15/21/28/36 × W/N):
two extremes (15 N and 36 W) and two equidistant levels
from these extremes (21 W and 28 N). The SVM classi-
fiers were trained on these physiological and behavioral
data to predict the mental workload categories of the same
four task difficulty levels in Task I.

2) Cross level: Physiological and behavioral data from four
task difficulty levels (15 N, 21 W, 28 N, 36 W) were
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Fig. 4. Framework procedure and flowchart of the experiment.

TABLE II
TASK DIFFICULTY LEVELS AND DATA USED IN THE CLASSIFICATION OF

WITHIN- AND CROSS-LEVEL AND CROSS-TASK MENTAL WORKLOAD

Task I Task II

Task Description Detect anomalous images
from a set of different
distracting images

Detect abnormal
activities from
surveillance video
streams

Task difficulty
levels

Eight Levels: Image set size
(15, 21, 28, or 36) × with
(W)/without (N) time
pressure

Three Levels: One, two,
or four video streams
were played
simultaneously

Within level
(offline
classification)

Training and Testing Data:
Data from four task
difficulty levels (15 N,
21 W, 28 N, 36 W) were
divided into four categories
according to subjective
ratings of MW

Cross level
(offline
classification)

Training Data: Data from
four task difficulty levels
(15 N, 21 W, 28 N, 36 W)
were divided into four
categories according to
subjective ratings of MW
Testing Data: Data from
four task difficulty levels
(15 W, 21 N, 28 W, 36 N)
were divided into four
categories according to
subjective ratings of MW

Cross task
(real-time
classification)

Training Data: Data from
eight task difficulty levels
(15 N/W, 21 N/W, 28 N/W,
36 N/W) were divided into
three categories according
to subjective ratings of MW

Testing Data: Data from
Task II were divided into
three categories
according to subjective
ratings of MW

divided into four categories according to subjective ratings
of the mental workload. The SVM classifiers were trained
on these physiological and behavioral data to predict the
mental workload categories of the other four task difficulty
levels (15 W, 21 N, 28 W, 36 N) in Task I. In particular, we
used all data from four levels (15 N, 21 W, 28 N, 36 W)
for training at the same time, and predicted the mental

workload categories of each level in 15 W, 21 N, 28 W,
and 36 N.

3) Cross task: Physiological signals from eight task difficulty
levels (15 N/W, 21 N/W, 28 N/W, 36 N/W) were divided
into three categories according to subjective ratings of the
mental workload. The SVM classifiers were trained on
these physiological data to predict the mental workload
categories of the Task II in real time using each individual
participant’s data.

V. RESULTS

A. Manipulation of Task-I Difficulty Levels

In Task I, the task difficulty levels were manipulated by chang-
ing the number of anomalies/distracting stimuli (15, 21, 28, or
36) and the time constraint (with or without). To confirm that
such manipulation evoked different levels of the mental work-
load, we first examined the effects of image set size and time
pressure on the subjective ratings of the mental workload, as
well as post hoc comparisons.

The main effect of the image set size was significant for the
subjective ratings of the workload (F (2.4, 93.79) = 20.13, p <
.001, η2 = 0.34) (see Fig. 5). Post hoc pair-wise compar-
isons (Bonferroni’s test) revealed that participants perceived less
workload when images were presented in a 5 × 3 matrix than
when images were presented in the 7 × 3 matrix (mean differ-
ence and 95% CI for difference: −4.1 (−6.36,−1.84), p <
.001), 7 × 4 (−4.61 (−7.38,−1.84), p < .001), and 9 ×
4 (−6.28 (−9.05,−3.51), p < 0.001) set sizes. Moreover, the
subjective ratings of workload significantly increased with time
pressure (F (1, 39) = 21.29, p < 0.001, η2 = 0.35). The im-
age set size × time pressure interaction was not significant for
this measure.

According to the subjective ratings of the mental workload,
we selected physiological and behavioral data from 15 N (i.e.,
5 × 3 image set size without time pressure), 21 W (i.e., 7 ×
3 image set size with time pressure), 28 N, and 36 W to train
the SVM classifiers. Data from the other four conditions (15 W,
21 N, 28 W, and 36 N) were tested to validate the model’s
cross-level within-task performance.
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Fig. 5. Subjective ratings of mental workload for the four image set sizes
with/without time limit (error bars indicate ±1 standard error).

B. Statistical Analysis of Task-I Performance

A repeated measures ANOVA was performed with image set
size and time pressure as two within-subjects variables. Sig-
nificant findings were followed-up to assess the magnitude of
the effects that each independent variable had on the behavioral
measures.

A significant image set size × time pressure was revealed for
the average detection RT per image (F (1.97, 76.7) = 4.33, p =
0.017, η2 = 0.10). Post hoc pair-wise comparisons (Bonfer-
roni’s test) showed that the 9 × 4 set size, on average, led
to a shorter detection RT per image than the 7 × 4 set size,
which was better than the 7 × 3 and 5 × 3 set sizes, inde-
pendent of the manipulation of time pressure (p < .01). The
average detection RT per image decreased as the number of
images increased. There was no significant difference in the
average detection RT per image between the 7 × 3 and 5 ×
3 set sizes. Additionally, both main effects of the image set
size (F (2.11, 82.35) = 59.5, p < 0.001, η2 = 0.60) and time
pressure (F (1, 39) = 42.57, p < 0.001, η2 = 0.52) were sig-
nificant for this measure. Larger image set sizes and time pres-
sure shortened the average detection RT per image.

The main effect of the image set size was significant for the
number of errors (F (2.58, 100.57) = 90.36, p < 0.001, η2 =
0.70). Post hoc pair-wise comparisons (Bonferroni’s test) indi-
cated that the 5× 3 set size led to a smaller number of errors than
the 7× 3 set size, which was smaller than the 7 × 4 (p < 0.001),
showing a linear increase of the number of detection errors as a
function of the set size. Alternately, the 9× 4 set size resulted in a
smaller number of errors than the 7× 4 set size (mean difference
and 95% CI for difference: −0.82 (−1.43,−0.21), p = 0.003).
The main effects of the time pressure and the image set

Fig. 6. Proportion of correct classification of mental workload based on sub-
jective ratings at cross-level and within-level within the same anomalous image
detection task (error bars indicate ±1 standard deviation).

size × time pressure interaction were not significant for this
measure.

C. Classification of the Within-Task Mental Workload

Within-task classification accuracy was evaluated from two
levels: within- and cross level. Physiological and behavioral data
from four task difficulty levels (15 N, 21 W, 28 N, 36 W) were
divided into four categories according to subjective ratings of
the mental workload. The range of NASA-TLX scores and the
number of training data in each category were provided as fol-
lows: 8–20 (n = 80), 21–31 (n = 78), 32–49 (n = 81), and 50–83
(n = 81). The SVM classifiers were trained on the physiological
and behavioral data to predict the mental workload categories
of the same four task difficulty levels in Task I (i.e., within-
level classification). The leave-one-subject-out cross-validation
method was applied for the within-level classification of the
mental workload. Specifically, we used 39 participants as the
training set, and the rest formed the testing set. The within-
level classification accuracy was averaged over 40 results (the
number of participants involved in this experiment) since each
individual would be the testing set in turn.

Alternately, the SVM classifiers were trained on the same
physiological and behavioral data (15 N, 21 W, 28 N, 36 W)
combined from all 40 participants to predict the mental workload
categories of each individual when he or she experienced the
other four task difficulty levels (15 W, 21 N, 28 W, 36 N) in Task I
(i.e., cross-level classification). The range of NASA-TLX scores
and the number of testing data for the cross-level classification
were: 8–20 (n = 78), 21–32 (n = 83), 33–50 (n = 80), and
51–85 (n = 79). Each individual would be the testing set in turn,
so the cross-level classification accuracy was averaged over 40
results.

As shown in Fig. 6, the within-level proportion of correct
classifications (mean = 95.29%, range = 89.76–99.35%) was
higher than the cross-level proportion of correct classifications
(mean = 72.2%, range = 68.7–73.85%). For the within-level
classification, the higher the level of self-reported mental work-
load was, the lower the classification accuracy was. In contrast,
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Fig. 7. Proportion of correct classifications of high, medium, and low mental
workload categories of the abnormal activity detection task (error bars indicate
±1 standard deviation).

the highest and lowest subjective ratings of the mental workload
led to lower cross-level classification accuracies.

Moreover, using only physiological indices, the overall ac-
curacy was very similar to the results using both physiological
and behavioral features. Therefore, we used only physiological
features to recognize the real-time cross-task mental workload
in Task II.

D. Real-Time Recognition of the Cross-Task Mental Workload

To recognize the cross-task mental workload, physiological
signals collected from Task I were divided into three categories
(high, medium, and low MW) according to participants’ subjec-
tive ratings of the mental workload to train the SVM classifiers.
The range of NASA-TLX scores and the number of training
data in each category were: 8–24 (n = 215), 25–44 (n = 211),
and 45–85 (n = 214). The classifiers predicted mental workload
of the abnormal activity detection task (Task II) at each of the
three levels (see Fig. 7). The range of NASA-TLX scores and
the number of testing data in each category were: 6–21 (n =
41), 22–42 (n = 43), and 44–78 (n = 36).

Not surprisingly, the cross-task classification accuracy was
lower than the within-task accuracy. The proportion of correct
classifications was 53.49% (SD = 10.27%) for the low MW,
55.13% (SD = 8.72%) for the medium MW, and 52.88% (SD =
10.28%) for the high MW. The classification accuracy demon-
strated an evident decline, while the variability of the model’s
correct classifications obviously increased, which indicates con-
sistent systematic cross-task misclassification in some individu-
als. In addition, when the participant responded to each task (i.e.,
click the button to continue to the next task), our system pre-
dicted the level of the mental workload. The average execution
time of our proposed system was 1.67 s.

In SLDA, the nonzero values in the outcome sparse vector
can be used to select features: the larger the nonzero value in
the outcome sparse vector, the more important the feature to
the correct classification of the mental workload. As shown in
Table III, when removing the least important features (from the
full feature set to the top ten features to the top five features),

TABLE III
CLASSIFICATION ACCURACIES WITH DIFFERENT NUMBERS OF FEATURES

Physiological Indices Classification Accuracy
Within Level Cross Level Cross Task

Top five features 76.01% 51.12% 52.4%
Top ten features 82.55% 63.35% 52.61%
Full featuresa 95.29% 72.2% 53.83%

a45 features (42 physiological indices and 3 behavioral measures) for within-
and cross-level classification and 42 physiological features for cross-task clas-
sification.

the classification accuracy decreased, but the rates of decline
were different among the within-level, cross-level, and cross-
task mental workload. Specifically, the prediction of cross-task
mental workload relied on fewer physiological features than that
of within-level and cross-level mental workload. The difference
in the classification accuracy between the top five features and
the full feature set was only 1.43%. During the prediction of the
cross-task mental workload, the top three physiological features
were the power in the 0.1-Hz component of HRV, the average
respiration rate, and the average heart rate.

VI. DISCUSSION

This paper proposed a real-time physiological-based system
to assess the cross-task mental workload during anomaly detec-
tion. Forty participants were recruited to perform an anomalous
image detection task (Task I) and an abnormal activity detec-
tion task (Task II). Five categories of peripheral physiological
signals (ECG, EOG, RSP, GSR, and PPG) were recorded. More
than 40 features sensitive to the changes of mental workload
suggested in the literature were extracted and entered into the
SVM as inputs.

For the offline classification/prediction of the mental work-
load, physiological and behavioral data from four task difficulty
levels were divided into four categories according to subjec-
tive ratings of the mental workload. The SVM classifiers were
trained on these data to predict the mental workload categories
of: 1) the same four task difficulty levels (within-level); and
2) the other four task difficulty levels in Task I (cross level).
We found that the within-level classifications (95.29% on av-
erage) were more accurate than the cross-level classifications
(72.2% on average), which were much higher than the random
level (25%). For the within-level classification, the lower the
level of self-reported mental workload was, the better classi-
fication accuracy was. As a comparison, the medium level of
the mental workload led to the highest classification accuracy
for the cross-level classification. In the applied environment,
recognition of an operator’s functional/cognitive states from
physiological-based indices largely relies on the classification
accuracy and acceptability of the data acquisition and process-
ing methods [29]. This requires that these functional assess-
ment methods be highly accurate. The previous studies have
suggested that within-level classification accuracy between two
task difficulty levels must approach 95% to be acceptable [29],
[42]. In this paper, our system achieved an overall accuracy of
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95.29% (ranging from 89.76 to 99.35%) for within-level classi-
fications. Because there were four task difficulty levels (i.e., 25%
accuracy at random), our system undoubtedly met the within-
level criteria.

A key challenge in the development of real-time and adaptive
systems for recognizing the mental workload is the development
of accurate machine-learning algorithms for tasks and difficulty
levels that the participant has not yet experienced. In this paper,
the three-class SVM classifiers were trained on physiological
data from Task I and tested on Task II (cross task) using each
individual participant’s (subject dependent) data. We presented
such a generalized system to predict the subjective mental work-
load in a different task, and we achieved better classification
accuracies than the chance level. To the best of our knowledge,
the classification accuracies of the cross-task mental workload
in the previous studies were below or just around chance levels
[31], [43]. Compared to these two studies, our proposed system
achieved a higher cross-task classification accuracy of 53.83%
than 33.33% accuracy at random. One possible reason was that
we used more-portable and practical devices to collect periph-
eral physiological measures, and all features were selected based
on the extensive literature review of mental workload.

In our study, the top three features that made the greatest con-
tribution to the assessment of relatively low-moderate changes
in mental workload were the power in the 0.1-Hz component
of HRV, the average respiration rate, and the average heart rate.
These results are consistent with previous findings: the 0.10-Hz
component is sensitive to low or moderate changes in mental
workload [19], [22]. Cardiac functions and respiration are sen-
sitive indices of mental workload and are sensitive to changes
in task difficulty [14], [44]. Moreover, lower mental workload
was observed when people performed a self-paced detection
task. From the perspective of energetic resources, the effective-
ness of adaptation includes its costs in terms of psychological
and physiological energy. This cost is based on the assump-
tion that biological systems seek equilibrium states of minimal
energy expenditure. When task demands increase (e.g., the ma-
nipulation of time pressure in this study), the human adaptation
system becomes instable: Performance is maintained or even
enhanced at the cost of compensatory effort manifested in mea-
sures of workload. These costs can eventually render people
more vulnerable to task failure as a result of depleted energetic
resources [45].

Detecting subtle perceptual features can be highly challeng-
ing, especially within a time limit. Brooks et al. [4] observed
a widespread failure of medical expert diagnosticians to notice
supposedly obvious prototypical symptoms of diseases such as
pancreatitis, and they explained that this stemmed in part from
the fact that naturalistic stimuli were typically characterized by
ambiguity as to what should be taken as a feature. Our study
presented in this paper hints that physiological-based assess-
ment methods have potential application in the development
of situation-aware recognition systems of real-time mental
workload or adaptive human–computer interaction platforms.
According to the predicted levels of the operator’s mental
workload, our proposed system may have great practical value
through sending a warning signal to suggest a work shift or short

break or freezing the task to probe whether the individual is
suffering from a high level of mental workload. Such responses
will help adjust and customize the sensitivity and efficiency of
the system according to individual preference. Our proposed
system can also adjust the task difficulty level adaptively
via a human–machine interface (HMI). Future work includes
developing a human–machine interaction system that can both
monitor real-time mental workload and provide concurrent feed-
back to minimize the risk of working with high task demands
for a long period of time (i.e., adaptive aiding and training).

In addition, our preliminary success in the classification
of cross-task mental workload, which was much higher than
chance level, indicated that multimodal physiological indices
can be applied in a wide range of visual anomaly detection
contexts, such as security, medical diagnosis, monitoring, and
quality control. Unlike the manipulation of task difficulty lev-
els under laboratory conditions, it is difficult to identify task
demands in the actual working environment (e.g., count the
number of images or video streams presented simultaneously).
In addition, the same task demands do not result in an equal level
of workload for all individuals. Human operators can adapt their
behaviors and cope with increasing demands. As a result, it is
impossible and inaccurate to predict the mental workload rely-
ing solely on task demand. In our study, we not only manipulated
different task difficulty levels but also evaluated each individual
participant’s ratings of mental workload to ensure that both task
demands and subjective feelings were consistent. For example,
with the aid of wearable and mobile sensors [46], a human
screener in a security checkpoint X-raying passenger bags can
be monitored in real time. If the predicted level of mental work-
load exceeds the predefined threshold, the transmission belt can
slow down to reduce the amount of luggage that enters the gate.

This study did not measure brain activities, future work
might benefit from a combination of the peripheral and EEG
indices in the prediction of cross-task mental workload. The
high cross-level and cross-task classification accuracies indi-
cate that machine-learning methods have great potential to be
developed for predicting the task and difficulty levels that the
participant has not yet experienced. It is also interesting to inves-
tigate the underlying cognitive mechanism for these cross-level
and cross-task implications in our future work.
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