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Abstract— Motion planning for robots of high degrees-of-
freedom (DOFs) is an important problem in robotics with
sampling-based methods in configuration space C as one
popular solution. Recently, machine learning methods have
been introduced into sampling-based motion planning methods,
which train a classifier to distinguish collision free subspace
from in-collision subspace in C. In this paper, we propose
a novel configuration space decomposition method and show
two nice properties resulted from this decomposition. Using
these two properties, we build a composite classifier that works
compatibly with previous machine learning methods by using
them as the elementary classifiers. Experimental results are
presented, showing that our composite classifier outperforms
state-of-the-art single-classifier methods by a large margin. A
real application of motion planning in a multi-robot system
in plant phenotyping using three UR5 robotic arms is also
presented.

I. INTRODUCTION

Motion planning plays an important role in robotics, which
finds a collision-free path to move a robot from a source
to a target position. Configuration space C [1] is widely
used in robot motion planning, whose spatial dimensions
characterize the degrees-of-freedom (DOFs) of the robot and
each point in C represents a configuration of the robot.
By decomposing the space C into a free subspace Cfree
(i.e., the set of robot configurations without self-collision
or collision with obstacles) and an in-collision subspace
Cclsn = C \ Cfree, motion planning is equivalent to finding
a path completely within Cfree.

For robots of high DOFs (such as 6-DOF robotic arms
UR5) in complex or dynamic environments, the boundary of
Cclsn is very complicated and usually cannot be represented
analytically [1], [2], [3]. Sampling-based motion planning
(SBMP) methods (e.g., [4], [5]) were then proposed to use
sample points for characterizing Cfree and avoid explicitly
establishing the boundary of Cclsn. Some representative
researches include the classic probabilistic roadmaps (PRM)
[6], rapidly-exploring random trees (RRT) [7], [8], the vari-
ants of PRM and RRT (e.g., [5]), and some state of the arts
[9], [10].
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To implicitly define Cfree, a large number of samples are
required in SBMP methods and each sample is guaranteed to
be collision-free by passing an exact collision detector such
as GJK [11] or FCL [12], which is very time-consuming.
To speed up the collision checking procedure, machine
learning methods have been introduced into this area. As
summarized in Section II, these methods first use a small
subset of samples to train a classifier F . Then given an
arbitrary sample s in unknown regions in C, the classifier
can output a prediction F (s) that serves as a filter to quickly
identify obviously in-collision or collision-free samples, and
only a small set of samples with ambiguity need to be
finally checked by the exact collision detector. We call these
predictions by machine learning methods as approximate
collision checking. To ensure the success of these machine
learning methods, the trained classifier must have a high
accuracy.

SBMP methods can be used for both single query and
multiple queries. For single query, the RRT methods (e.g.,
[7], [8]) start at a source point in C and iteratively grow a
search tree. At each iteration, a randomly selected point is
used to drive the system with a small time step and this leads
to a new vertex that is added to the tree by an edge linking
it to the nearest vertex in the existing tree. The iteration
terminates when the target point is reached. For multiple
queries, the PRM method [6] and its variants (e.g., [5])
spread out sample points uniformly covering the whole space
Cfree. Then given any arbitrary source and target points,
a collision-free path is obtained by making use of these
uniform samples

The trained classifiers in learning-based methods can
improve the efficiency of both single and multiple queries
in two ways. The first way is to use the prediction of the
classifier to quickly identify the new collision-free samples
when adding new vertices into the existing search tree.
Pan and Manocha [13] propose a fast probabilistic collision
checking method and prove that the collision query predicted
by their classifier converges to the exact collision detection
when the size of sampling points increases. Therefore, online
learning is important, since the classifier needs to be online
updated to improve the classification accuracy when more
and more collision-free points are added into the data set.
The second way is that instead of using a large number of
samples to cover Cfree, a small set of samples can be used
to train the classifier and a large number of samples that
are predicted by a classifier as collision-free can be quickly
generated by the classifier. After a path is planned using these
samples, a final exact collision checking is applied for every
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(a) Rendered system design (b) A snapshot of real system

Fig. 1. An updated multi-robot plant phenotyping system [15]. By applying
our proposed composite classifier, 30% motion planning time can be saved.

sample in the path. For those samples that are in collision, a
local repairing operation [14] is performed to update the path.
In both way, the accuracy and query time of the classifiers
are critical for the performance of motion planning.

In most previous machine learning methods, only one
binary classifier was trained to predict whether a query
sample point s ∈ C is in Cfree or Cclsn. In particular, the
subspace Cfree or Cclsn is learned as a single entity. In this
paper, we propose a novel decomposition of Cfree or Cclsn,
based on the DOFs of the robot. By decomposing Cfree or
Cclsn into a set of smaller subspaces related to the DOFs of
the robot, we construct a composite classifier that consists
of a set of simple classifiers and each classifier corresponds
to a decomposed subspace. The advantage of this composite
classifier is that the set of simple classifiers can be performed
as a set of hierarchical filters that quickly filter in-collision
samples from easy to hard levels.

Our composite classifier with the configuration-space de-
composition scheme is general and can work compatibly
with any previous machine learning methods using a single
classifier (e.g., [16], [13], [17], [14]). We show that our
composite classifier has a much higher accuracy and aver-
agely 2 times faster than previous single classifier methods
in most cases. We also apply our composite classifier in the
motion planning of an updated multi-robot plant phenotyping
system [15]. This updated system (Figure 1) consists of
three UR5 robotic arms and each arm is equipped with
an Intel RealSense SR-300 depth camera. To achieve fast,
precise and noninvasive measurements for high-throughput
plant phenotyping, all of three arms move simultaneously in
each round of phenotyping data acquisition. Our results show
that using the proposed composite classifier, 30% motion
planning time can be saved.

II. RELATED WORK

Collision detection is frequently executed in sampling-
based motion planning. In this section, we briefly review
the recent machine learning methods that are introduced to
speed up the time-consuming collision detection process.

An early work using machine learning is the neural
network approach [18] that can only handle the collision
detection for box-shaped objects. Pan and Manocha [3] de-
sign efficient GPU-based parallel k-nearest neighbors (KNN)
and parallel collision detection algorithm, and propose an
approximation representation for the configuration space
based on machine learning. Pan and Manocha [13] further
make use of KNN in online learning configuration space.

To achieve fast probabilistic collision checking, they use
locality-sensitive hashing techniques that only have a sub-
linear time complexity. Their probabilistic collision checking
can effectively improve the performance (up to 2x speedup)
of various motion planners such as RRT, RRT*, PRM and
lazyPRM. Das and Yip [14] propose another proxy collision
detector that can achieve efficient active learning by utilizing
lazy Gram matrix evaluation and a new cheaper kernel to
reduce the training and query time. Heo et al. [19] develop
a deep learning method that uses monitoring signals (i.e.,
external torque at every robotic joint) to estimate collision
detection, which is applicable for industrial collaborative
robots working with humans.

Most recent researches for speeding up the motion plan-
ning in SBMP methods use the idea to train a binary classifier
using a small set of samples in C with correct labels (i.e.,
in-collision or collision-free) and then approximate collision
checking can be quickly obtained using the prediction of
the trained classifier. Various classifiers have been applied,
including support vector machine (SVM) [16], k-nearest
neighbor (KNN) [13], Gaussian mixture models (GMM)
[17], [20] and the Gaussian kernel functions [14]. In this pa-
per, we propose a configuration-space decomposition method
that leads to a novel composite classifier. This composite
classifier consists of a set of binary classifiers and each of
them can be any of the above mentioned classifiers, i.e.,
our model orthogonally complements these previous machine
learning methods [16], [13], [17], [14]. We show that our
composite classifier can efficiently reduce the query time and
improve the accuracy of single-classifier methods.

III. DECOMPOSITION OF CONFIGURATION
SPACE

Motion planning in the configuration space C of high
DOFs is a great challenge in robotics. In this paper, we
propose a novel decomposition scheme of C and establish
a composite classifier based on the decomposed subspaces,
which performs significantly better than a single classifier
working directly on C.

Nowadays, robots of high DOFs become ubiquitous, such
as robotic arms and humanoid robots. Our work is based
on the following important observation. Every robot1 R of
high DOFs can be separated into disjointed components,
satisfying

R = ∪nR
k=1Rk andRi∩Rj = ∅, ∀i 6= j, i, j ∈ {1, 2, · · · , nR}

(1)
where nR is the number of components. Let D =
{d1, d2, · · · , dn} be all the DOFs of R, where n is the
number of DOFs. For each component Ri, one or more
DOFs can be assigned to it, denoted as Di, such that

D = ∪nR
k=1Dk andDi∩Dj = ∅, ∀i 6= j, i, j ∈ {1, 2, · · · , nR}

(2)
All the components can be ordered in such a way that
the position and orientation of each component Ri can be

1In our study, we only consider the moving part of the robot; e.g., the
base of the UR5 in Figure 3 does not move and is not included.
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Fig. 2. (a) For easy illustration, we consider a degenerated 3-DOF UR5 robot R = {R1,R2,R3}, with one cubic obstacle (shown in red). Each of
three DOFs {d1, d2, d3} is ranged from −π to π. Each Ri, i = 1, 2, 3, is associated with a DOF Di = {di}, such that the position and orientation
of Ri are uniquely determined by the DOFs {D1, · · · ,Di}. (b) The in-collision subspace C1clsn (shown as the green bold line segment) in C1 spanned
by the DOF d1. (c) The expanded in-collision subspace C∗1clsn (shown in green box) in C as defined in Eq. (4). (d) The in-collision subspace C2clsn
(shown as the yellow area) in C2 spanned by the DOFs {d1, d2}. (e) The expanded in-collision subspace C∗2clsn (shown as the yellow volume) in C as
defined in Eq. (6). (f) The in-collision subspace C3clsn (shown as the blue volume) in C spanned by the DOFs {d1, d2, d3}. (g) The final in-collision
space Cclsn = ∪3i=1C∗iclsn (shown as the color volume) in C as defined in Eq. (7).
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Fig. 3. The decomposition of a 6-DOF UR5 robot R. We denote these 6
DOFs as D = {d1, d2, · · · , d6}. The base of UR5 does not move and is not
included intoR.R can be decomposed into six componentsR = ∪6i=1Ri.
Each Ri is associated with a DOF Di = {di}, such that the position and
orientation of each component Ri can be uniquely determined by the DOFs
{D1,D2, · · · ,Di}.

uniquely determined by the DOFs {D1,D2, · · · ,Di}. One
example of UR5 collaborative robot arm by Universal Robots
Corp is shown in Figure 3.

The dimension of the configuration space C of the robot R
is exactly n, i.e., the number of DOFs in R. Most previous
works partition C into a free subspace Cfree and an in-
collision subspace Cclsn = C \ Cfree, satisfying that the
robot configuration specified by any point in Cfree does not
have self-collision with R or collision with obstacles. Based
on the characteristics summarized in Eqs. (1-2), we further
decompose Cfree and Cclsn accordingly to each DOF of R
as follows.

Throughout this paper, we consider static environment

with arbitrary complex obstacles. First, we consider the
DOFs in D1 = {d1, · · · , dn1

}, where n1 is the number of
DOFs in D1. Let C1 be the subspace of C spanned by the
DOFs in D1. We define the subspace C1free of C1 as the
collection of all configurations of the component R1 that
do not have self-collision or collision with obstacles. In this
way, we partition C1 into the free subspace C1free and the in-
collision subspace C1clsn = C1 \C1free. We further define an
expansion operation ∗ that expands the dimension of C1free
from n1 to n:

C∗1free = {C : coordinates in the first n1 dimensions
are restricted in the range of C1free}

(3)

Similarly, we define

C∗1clsn = {C : coordinates in the first n1 dimensions
are restricted in the range of C1clsn}

(4)

Obviously, C∗1clsn ⊆ Cclsn.
The above definition can be easily extended to Ci, 1 < i ≤

nR, which is the subspace spanned by the DOFs in Di =
∪ij=1Dj . We denote the number of DOFs in Di as ni. Any
element in Di specifies a configuration of the component
Ri. We define the subspace Cifree of Ci as the collection
of all configurations of the component Ri that do not have
self-collision with ∪ij=1Ri or collision with obstacles. Then
we can partition Ci into the free subspace Cifree and the
in-collision subspace Ciclsn = Ci \ Cifree as

C∗ifree = {C : coordinates in the first ni
dimensions are restricted in the range of Cifree}

(5)
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C∗iclsn = {C : coordinates in the first ni
dimensions are restricted in the range of Ciclsn}

(6)

The decomposed subspaces {C∗1free, C∗2free, · · · , C∗nRfree}
and {C∗1clsn, C∗2clsn, · · · , C∗nRclsn} have the following two
important properties:

∪nR
i=1C

∗
iclsn = Cclsn (7)

∩nR
i=1C

∗
ifree = Cfree (8)

See Figure 2 for an example.

IV. COMPOSITE CLASSIFIER

In this section, we show that the properties in Eqs. (7-
8) can lead to an efficient composite classifier. Our proposed
composite classifier is orthogonal to previous machine learn-
ing methods that train a single binary classifier to distinguish
Cfree from Cclsn (e.g., [16], [13], [17], [14]). Let f be an
elementary classifier that can be any one in these previous
works.

Given a set of samples with ground-truth labels (in-
collision or collision-free) in C, we train an elementary
classifier fi for each robotic component Ri in the subspace
Ci, i = 1, 2, · · · , nR, i.e.,

fi(x) =

{
1 if x ∈ Cifree
0 otherwise , x ∈ Ci (9)

Then our composite classifier F can be defined as

F = f1 ∧ f2 ∧ · · · ∧ fnR (10)

where ∧ is the logistic AND operation, meaning that F (x) =
1 if and only if all of its operands are true, i.e., fi(x) = 1
for i = 1, 2, · · · , nR, x ∈ C.

The advantage of the composite classifier F is of three-
fold:
• Each elementary classifier in {f1, f2, · · · , fnR} works

in a subspace Ci of C, in which the boundary between
Cifree and Ciclsn is much simpler than the boundary
between Cfree and Cclsn in C (see Figures 2b, 2d, 2f,
2g for an example), and thus the classification accuracy
of each elementary classifier (as well as the composite
classifier) is much higher than that of a single classifier
directly working on C;

• Except for fnR , all other elementary classifiers work
in lower-dimensional subspaces Ci with simpler class
boundaries than that of the full configuration space C
and thus the classification speed is faster than that of a
single classifier;

• The elementary classifiers {f1, f2, · · · , fnR} act as a
hierarchical set of filters that filter in-collision samples
from the lowest to the highest dimensions, i.e., not all
the in-collision samples need to be checked by all the
filters. Therefore, the overall classification speed is still
faster than a single classifier directly working on C.

Our experimental results in Section V show that averagely
the classification accuracy of our composite classifier is
improved 10%-20% and 2 times faster than a single classifier
directly working on C in most cases.

To take the full advantage of the composite classifier F ,
it is worth noting the following implementation details.

Effective DOFs in R. In different application scenarios,
not every DOF of the robot is of the same importance. For
example, for the UR5 robot shown in Figure 3, if a dexterous
hand is attached to the end of component R6, the rotation
of R6 caused by the 6-th DOF may make the dexterous
hand collide with obstacles, and thus the 6-th DOF should be
seriously considered. However, if a cylindric platform (like
the one for the 3D printing in [21]) is attached to the end of
component R6, the rotation of R6 caused by the 6-th DOF
only changes the orientation of the cylindric platform but not
its collision status. Therefore, the 6-th DOF is not effective.
In most cases, it is easy to determine the effectiveness of
each DOF in R using a simple input from the user. For non-
effective DOFs Dj , we don’t need to build the subspace Cj

or train the classifier fj .
Online learning. As aforementioned in Section I, to apply

the proposed composite classifier F in a single query of
the RRT methods [7], [8], it must have the ability of
online learning, i.e., efficiently updating F when more and
more samples are obtained during the sampling process.
Online updating F equals to online updating its elementary
classifiers {f1, f2, · · · , fnR}. For commonly used elementary
classifiers, their online learning schemes are available, e.g.,
online learning of SVM [22], KNN [13], GMM [17], [20]
and the Gaussian kernel functions [14].

V. EXPERIMENTS

Using the 6-DOF UR5 robot as the experiment platform,
we implement the proposed configuration space decomposi-
tion method and the composite classifier F in MATLAB.
To train F , we randomly sample the parametric domain
of the configuration space with a uniform distribution in
a C++ ROS environment, and the label for each sample
is specified by an exact collision detector called Flexible
Collision Library (FCL) [12]. All the running time reported
in this section is recorded in a PC with an Intel i7-8700 CPU
(3.20GHz) and 16GB RAM.

TABLE I
THE COMPARISON OF SINGLE-CLASSIFIER (SC) METHODS (SVM [16]

AND KNN [13]) AND OUR COMPOSITE-CLASSIFIER METHOD USING

SVM AND KNN AS ELEMENTARY CLASSIFIER RESPECTIVELY IN TEST

ENVIRONMENTS WITH 1K, 10K AND 100K RANDOM SAMPLES IN THE

CONFIGURATION SPACE WHOSE WORKING ENVIRONMENT CONSISTS OF

A 6-DOF UR5 ROBOT AND CUBIC OBSTACLES. WE RANDOMLY

GENERATE 3 WORKSPACES, EACH WITH 4 OBSTACLES, AND THE QUERY

TIME AND ACCURACY ARE AVERAGED RESULTS.

Elementary Number Accuracy Query time (µs)
classifier of samples SC Ours SC Ours

SVM
1K 0.736 0.878 23.7 15.2

10K 0.820 0.946 114.9 45.7
100K 0.923 0.980 998.9 263.4

KNN
1K 0.707 0.846 3.8 4.5

10K 0.775 0.921 16.1 16.2
100K 0.852 0.961 107.2 55.4
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A. Classification Accuracy and Time

The existing approximate collision detection methods can
be categorized into the kernel and clustering approaches.
To prove the universality of our approach, we choose two
representative single-classifier methods – SVM [16] (kernel)
and KNN [13] – as the baselines to compare with our
composite classifier. We denote the composite classifier F
that uses SVM or KNN as the elementary classifier as
FSVM or FKNN , respectively. We generate 3 workspaces by
randomly placing four cubic obstacles around the position
of 6-DOF UR5 robot. For each workspace, we randomly
sample 1K, 10K and 100K points in the configuration
space C as the training set, respectively. And another 10K
points are randomly sampled in C for test. The averaged
classification accuracy and query time among 3 workspaces
are summarized in Table I. The following four phenomena
are observed from these results.

First, the accuracy of the composite classifier is much
higher (improving 10%-20%) than that of the single clas-
sifier. This is because our composite classifier F decom-
poses the configuration space C into a set of subspaces
{C1, C2, · · · , CnR}, in which each subspace Ci has a simple
boundary between Cifree and Ciclsn, and can be approxi-
mated with a much lower error by an elementary classifier
fi, when compared to the accuracy of using a single classifier
to directly classify Cfree and Cclsn in C.

TABLE II
THE IN-COLLISION AND COLLISION-FREE PERCENTAGES (%) OF 10K

TESTING SAMPLES ARE REPORTED FOR ALL 3 WORKSPACES. FOR

IN-COLLISION SAMPLES, THE DETAILED PERCENTAGES (%) FOR

C1clsn, C2clsn, · · · , C6clsn ARE ALSO REPORTED.

Workspace In-collision Collision
id C1clsn C2clsn C3clsn C4clsn C5clsn C6clsn free
1 16.7 19.4 9.5 2.1 5.8 0.2 46.3
2 40.7 23.5 6.3 0.9 3 0 25.6
3 0 24.3 15.0 2.5 8.2 0.1 49.9

Second, the query time of the composite classifier is faster
than that of the single classifier in most cases. This is because
although the composite classifier may need to check multiple
elementary classifiers, the query time of each elementary
classifier is faster and only a few samples need to pass
all these elementary classifiers. In addition, the dimension
and number of features of each elementary classifiers are
also less than that of a single classifier. To further reveal
the latter property, we report the in-collision and collision-
free percentages of 10K testing random samples in Table
II, showing that 40%-60% samples are filtered by the first
three elementary classifiers in the subspaces {C1, C2, C3}
in complex environment. In Table I, the composite KNN
classifier is not as fast as a single classifier under a small
number of sampling points or in a simple environment.
However, as the number of training points increases or in
more complex environments, the composite classifier still
outperforms the single classifier.

Third, the more sampling points, the higher the accuracy of
both the composite and single classifiers would be. However,

even with 100K samples, the accuracy of the composite
classifier is still 10% higher than that of the single classifier.

TABLE III
ABLATION STUDY ON THE NUMBER OF DOFS. WE ONLY TEST ON THE

WORKSPACE 1 FOR SIMPLICITY.
Elementary Number Accuracy Query time (µs)

classifier of DOFs SC Ours SC Ours

SVM
4-DOF 0.915 0.972 43.0 22.3
3-DOF 0.964 0.976 21.8 15.5
2-DOF 0.993 0.993 19.05 9.51

KNN
4-DOF 0.852 0.955 14.45 16.6
3-DOF 0.919 0.961 12.1 11.8
2-DOF 0.975 0.990 7.51 7.89

Fourth, the performance gains increase with the number of
DOFs, showing that our method could better handle complex
robots compared to a single classifier. Note that even for
the 2-DOF robot, our classifier is still more advantageous in
accuracy and query time.

TABLE IV
EXPERIMENT ON COMPLEX ENVIRONMENTS WITH A LARGE NUMBER OF

SMALL CUBIC OBSTACLES. WE USE 10K SAMPLES FOR TRAINING. THE

COMPOSITE CLASSIFIER CONSISTENTLY OUTPERFORMS THE SINGLE

CLASSIFIER BY A LARGE MARGIN. WHEN THE NUMBER OF OBSTACLES

IS LARGE, THE SINGLE CLASSIFIER CANNOT DISTINGUISH COLLISION

OR FREE SAMPLES AND LABELS ALMOST ALL THE TESTING SAMPLES AS

IN-COLLISION, WHILE THE COMPOSITE CLASSIFIER WORKS WELL.

Elementary Num of Collision Accuracy Query time (µs)
classifier obstacles free SC Ours SC Ours

SVM
50 38.94 0.789 0.908 74.6 34.4

100 20.62 0.796 0.905 75.4 26.6
200 7.43 0.926 0.952 36.1 14.8

KNN
50 38.94 0.744 0.897 15.2 11.9

100 20.62 0.785 0.884 10.8 8.4
200 7.43 0.918 0.947 11.9 7.8

TABLE V
THE IN-COLLISION AND COLLISION-FREE PERCENTAGES (%) OF 10K

TESTING SAMPLES FOR THE GENERATED COMPLEX ENVIRONMENT. FOR

IN-COLLISION SAMPLES, THE DETAILED PERCENTAGES (%) FOR

C1clsn, C2clsn, · · · , C6clsn ARE ALSO REPORTED.

Num of In-collision Collision
obstacles C1clsn C2clsn C3clsn C4clsn C5clsn C6clsn free

50 9.05 27.84 15.7 2.55 5.88 0.04 38.94
100 9.6 44.94 18.74 2.43 3.64 0.03 20.62
200 18.1 56.36 14.56 1.84 1.68 0.03 7.43

To further prove the effectiveness of our method in more
complex environments, we generate a new workspace by
randomly placing 50, 100 and 200 small cubic obstacles
around the position of 6-DOF UR5 robot. And we randomly
sample 10K points in the configuration space C as the
training set and randomly sample another 10K points for
testing. Same as Table II, we report the in-collision and
collision-free percentages of the 10K testing samples of this
new generated workspace in Table V. Note that these new-
generated cubic obstacles are smaller than those used in
Table II, but the much larger number of these small obstacles
makes the workspace more complex for collision checking.

The classification accuracy and query time are summarized
in Table IV, from which the same conclusions can be drawn
as those from Table I. Moreover, when there are a very
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TABLE VI
THE SUCCESS RATE (THE FIRST NUMBER IN THE BRACKET) AND AVERAGE GENERATING TIME (THE SECOND NUMBER IN THE BRACKET, IN

MILLISECOND) FOR MOTION PLANNING IN 100 RANDOMLY GENERATED PAIRS. EACH PAIR CONSISTS OF TWO COLLISION-FREE POINTS (ONE SOURCE

AND ONE TARGET) IN THE CONFIGURATION SPACE. WE TEST IN THE WORKSPACE CONSISTING OF A 6-DOF UR5 ROBOT AND 2, 4, 8 CUBIC

OBSTACLES, RESPECTIVELY. WE COMPARE THE BASIC RRT METHOD WITH FCL, AND THE VARIANTS OF RRT METHODS WITH LEARNING-BASED

COLLISION CHECKING, INCLUDING FASTRON [14], SVM [16], KNN [13] AND OUR COMPOSITE CLASSIFIERS FSV M AND FKNN .

Obstacle Basic RRT Variants of RRT with learning-based collision checking
number with FCL Fastron SVM FSV M KNN FKNN

2 (56%, 850.5) (49%, 524.4) (38%, 1329.6) (73%, 1058.1) (37%, 1330.0) (51%, 1130.7)
4 (51%, 880.9) (36%, 562.7) (35%, 1592.9) (69%, 1101.9) (39%, 1866.3) (46%, 1216.8)
8 (5%, 1000.1) (0%, not available) (2%, 2806.7) (27%, 2398.8) (6%, 2090.1) (14%, 1529.0)

Fig. 4. Snapshots of a motion sequence of an updated multi-robot
plant phenotyping system [15] using the learning-based method with our
composite classifier. See accompanying demo video for more details.

large number of obstacles, e.g., 200 obstacles in the working
environment, the single classifier will lose the ability of
classifying the collision-free samples from in-collision ones
and predict almost all the samples as in-collision. See the 200
obstacles case in Table IV for example. Note that the single
SVM classifier can achieve 92.6% accuracy for 200 obstacles
because the single SVM classifier labels all testing samples
as in-collision and there are exactly 92.6% in-collision sam-
ples in this workspace environment. Even under this setting,
the composite classifier still works well, demonstrating its
strong capability for complex environments.

B. Motion Planning Efficiency

As aforementioned in Section I, the learning-based colli-
sion checking can help improve the efficiency of both single-
query and multiple-query sampling-based motion planning.
In this section, we use the single-query RRT method as the
baseline for comparison.

We use the open motion planning library (OMPL2) [23],
which provides an optimized implementation of the RRT
method. The RRT algorithm uses a biased search to quickly
explore the large unsearched space. Using enough time, RRT
will eventually build a random space-filling tree and thus find
a path between source and target points. For practical usage,
we set the parameter MaxTime (i.e., maximum planning time
used by RRT) to be 3 seconds. Therefore, the faster collision
detection, the higher the success rate of path planning.

We set up the basic RRT method implemented by OMPL
for the single-query motion planning by using FCL [12] for
exact collision detection, which is very time-consuming. For
comparison, we replace FCL by four learning-based collision

2http://ompl.kavrakilab.org/

detectors, i.e., Fastron [14], SVM [16], KNN [13] and our
composite classifiers FSVM (using SVM as the elementary
classifier) and FKNN (using KNN as the elementary clas-
sifier). Note that the prediction by trained classifiers only
provides approximate collision checking. Once a path is
planned by RRT with approximate collision checking, a final
exact collision checking by FCL is needed for every sample
in the path. For those samples that are in-collision, a local
repairing operation proposed in the implementation of [14]
is evoked. Therefore, the more accurate the classifier, the
fewer samples need to be repaired and the more efficient the
motion planning with the learning-based method would be.

As indicated in Section V-A, our proposed composite
classifier has much better accuracy and less query time than
each single classifier, and then will lead to a more efficient
motion planning process. This conclusion is demonstrated by
the motion planning results summarized in Table VI. These
results are generated in the same working environments
consisting of a 6-DOF UR5 robot and 2, 4, 8 cubic obstacles
as in Section V-A. Because the query time of FCL method is
about 60µs, we use 5000 samples for training classifers. We
randomly generate 100 pairs of collision-free source and tar-
get points in the configuration space. The motion planning is
applied to plan a path between each pair of source and target
points. In the limited maximum planning time (3 seconds),
not every pair can have a successful motion planning and we
define the success rate as the ratio s

100 , where s is the number
of pairs that have a successful motion planning and 100 is the
number of total pairs. We also define the average generating
time as the time of generating successful paths averaged on
s successful paths. The results in Table VI show that (1) the
larger the number of obstacles is, the lower the success rate
is, (2) our composite classifier can significantly improve the
success rate of single classifiers, (3) RRT with composite
classifier FSVM significantly improves the success rate of
the basic RRT with FCL, and (4) the average generating
time of RRT with composite classifier is much shorter than
that of RRT with each individual classifier.

C. Application

We apply the proposed composite classifier in an updated
multi-robot plant phenotyping system [15] for improving the
efficiency of motion planning. This system was designed
to provide fast, precise and noninvasive measurements for
robot-assisted high-throughput plant phenotyping. To achieve
this goal, this system was equipped with three UR5 robotic
arms that can be moved simultaneously in each round of
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phenotyping data acquisition, using the depth camera (Intel
RealSense SR-300) mounted at each robotic arm. The config-
uration space of this system has a very complicated boundary
between Cfree and Cclsn due to the high possibilities of
collision (with plant leaves) and self-collision (among robotic
arms). See Figure 1 for a motion planning example.

To satisfy the requirement of high-throughput plant phe-
notyping, the motion planning has to be fast. Using the
state-of-the-art RRT implementation in OMPL on a PC with
Intel(R)Xeon(R)Gold 6146 CPU @3.20 GHz, 128 GB RAM
and NVIDIA Titan V, the average motion planning time for
each round is about 1 second, while using the learning-based
method with our composite classifier, the average motion
planning time is shorten to 0.692 seconds (only successful
cases are counted). Here our method is deployed on this
multi-robot system by training separate composite classifier
for each robot, i.e. using three composite classifiers to filter
the configuration samples during motion planning. We will
discuss more sophisticated composite classifier implementa-
tion for the multi-robot setup in future work.

D. Discussion
Our system works well under most scenarios and sig-

nificantly improves the performance of single classifiers.
However, it may have a performance degrade when the
environment is too simple or the manipulators have overly
simple geometry structure. Under these cases, the collision
barely happens or happens only for the last few DOFs, thus to
distinguish whether a configuration sample is collision or not,
our method needs to pass through almost all the decomposed
classifiers. For extreme cases, e.g., with no obstacles, the
query time of our composite classifier may exceed that of a
single classifier by up to 1.5 times.

VI. CONCLUSIONS
In this paper, we propose a simple yet effective configura-

tion space decomposition method based on the characteristics
inherent in the DOFs of robot, which leads to a novel com-
posite classifier with a much better classification accuracy
than single classifiers. Our method work compatibly with
previous method by using them as elementary classifiers.
Experimental results on both artificial environments with
increasing complexity and a real environment of a multi-
robot plant phenotyping system [15] demonstrate that our
method can significantly shorten the time of motion planning.
Introducing sparse learning or more powerful elementary
classifier could further improves the performance, which
is an interesting direction for future work. Application in
dynamic environment will also be discussed in future work.
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