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Abstract— The Next Best View (NBV) problem is important
in the active robotic reconstruction. It enables the robot system
to perform scanning actions in a reasonable view sequence,
and fulfil the reconstruction task in an effective way. Previous
works mainly follow the volumetric methods, which convert
the point cloud information collected by sensors into a voxel
representation space and evaluate candidate views through ray
casting simulations to pick the NBV. However, the process of
volumetric data transformation and ray casting is often time-
consuming. To address this issue, in this paper, we propose
a point cloud based deep neural network called PC-NBV to
achieve efficient view planning without these computationally
expensive operations. The PC-NBV network takes the raw point
cloud data and current view selection states as input, and then
directly predicts the information gain of all candidate views.
By avoiding costly data transformation and ray casting, and
utilizing powerful neural network to learn structure priors from
point cloud, our method can achieve efficient and effective
NBV planning. Experiments on multiple datasets show the
proposed method outperforms state-of-the-art NBV methods,
giving better views for robot system with much less inference
time. Furthermore, we demonstrate the robustness of our
method against noise and the ability to extend to multi-view
system, making it more applicable for various scenarios.

I. INTRODUCTION

Active robotic reconstruction has considerable significance
in many fields including medical, agriculture, industrial ap-
plications. Generally, obtaining a digital model of a three-
dimensional object is important for many downstream ap-
plications. To achieve efficient robotic reconstruction, view
planning is inevitable. It studies the problem of how to
efficiently find the next best view (NBV) for the robot system
sensor after each scanning. A practical view planner can
quickly plan a robot’s effective scan view sequence, enabling
the robot system to complete a full scan of a 3D object with
fewer views, thus makes the whole reconstruction faster.

Due to its importance for a wide range of robotic applica-
tions, the NBV problem has drawn much attention for a long
time [1][2][3][4]. Most works follow the classic generate-
and-test pipeline [2] to find the NBV. In this pipeline, first,
a couple of candidate views are sampled according to the
system constraints. Then, the view planner evaluates every
single view to predict their information gain, and decides
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Fig. 1. The complete motorbike model in the left is the target model for
reconstruction and the right partial point cloud is the current reconstruction
result. Our proposed PC-NBV network predicts the information gain of each
candidate view through partial point cloud and view selection states.

the next best view. The class of volumetric methods [5]
is the mainstream for view evaluation. It transforms raw
point cloud data — acquired by depth cameras — into voxel
representation, and performs simulated ray projection at each
candidate view to estimate the information gain. While this
kind of volumetric methods can reasonably evaluate the
contribution of views for object reconstruction, the computa-
tional costs in data transformation and ray casting are quite
high, making it inefficient for time-critical systems.
Recently, deep learning techniques have made break-
throughs in 3D computer vision, including point cloud
processing [6][7] such as classification, detection and seg-
mentation. As a data-driven approach, the neural network
could improve run-time efficiency at the expense of pre-
training calculations and model memory footprint, which is
suitable for the NBV problem. In this paper, we introduce a
novel PC-NBYV network to efficiently solve the NBV problem
based on point cloud representation. As shown in Fig. 1,
the network takes the point cloud data of the currently
scanned object surface and the view selection states as input,
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improvement on efficiency compared to previous baselines.
Moreover, the network implicitly learns 3D structure priors
from large-scale training data, and thus gives better view
planning results. The PC-NBV network also has strong
generalization ability. Once trained on a dataset, it can
directly apply on various 3D models to infer NBV without
fine-tuning. To the best of the authors’ knowledge, PC-NBV
is the first work to directly process point cloud data for
inferring the next best view.

In addition to predicting the next best view one by one,
our method can naturally extend to the multi-view setting.
For example, in a multi-robot collaboration system, the view
planner needs to select the best view simultaneously for
every robot. Our system uses an iterative erasing strategy to
enable the planning of arbitrary number of views at once. Our
experiments show that PC-NBV well utilizes the capacity of
multi-views, making it feasible for multi-robot collaboration
applications.

In this paper, extensive experiments are conducted on
the ShapeNet dataset [8], ABC dataset [9] and 11 complex
models from The Stanford 3D Scanning Repository and MIT
CSAIL Textured Models Database. We perform a simulated
reconstruction for 3D objects, and report the surface coverage
with inference time to check the performance of proposed
method. Results show that our PC-NBV network outperforms
state-of-the-art methods on both effectiveness and efficiency.
Specifically, we achieves 20 times faster inference speed with
better reconstruction quality compared to previous methods.
Moreover, by randomly permuting the point cloud input, we
demonstrate the strong robustness of our proposed method
against noise.

The contributions of this work are summaried as follows:
1) We introduce a novel PC-NBV network to handle the
next best view problem, which is the first work to directly
process point cloud data to infer the next best view for
reconstruction; 2) Extensive experiments show that our PC-
NBV network improves the inference speed of NBV by
several magnitudes, and achieves better reconstruction results
compared to previous representative NBV methods; 3) The
proposed PC-NBV network generalizes pretty well to unseen
test data and has strong resistance to noise; 4) A simple
multi-view extension of the PC-NBV network is provided to
utilize multi-robot capacity.

II. RELATED WORK
A. Next best view methods

NBV is a long-standing problem in robotics and has
received much attention (e.g., [1], [2], [3], [4]) . Based
on different planning strategies, the NBV methods can be
broadly classified in synthesis methods and generate-and-test
methods. The synthesis methods directly calculate the pose
of next best view under certain system and task constraints.
Although they have low computational cost, the robustness
of these methods is poor and makes them not very stable.
Most works prefer the generate-and-test method because they
can achieve good balance between efficiency and the quality

of planning views. Our method proposed in this paper falls
in the generate-and-test methods.

Different 3D data structures have been used in different
NBV methods to represent the workspace, including point
cloud, voxels and meshes, etc. Some works use triangular
meshes to represent the surface of the scanned 3D object
[10][11]. However, the computation and storage costs of
meshes are high. Compared to mesh-based approaches, vol-
umetric approaches are more widely used. As early as the
1980s, Connolly [1] proposed the idea of sampling views un-
der spherical constraints and evaluating the information gain
of candidate view in the voxel space. Later bunch of works
followed this idea, evaluating sensor views through simulated
ray casting in the voxel space [12][13][14][15][16][17].
Daudelin et al. [18] integrated object probability to weight
cost functions in view evaluations. Monica et al. [19] fur-
ther utilized point cloud segmentation to detect saliency
for scoring the candidate views. Recently, Delmerico et
al. [5] summarized the volumetric approaches for the NBV
problem, and compared several formulation of evaluating
information gain by simulation experiments. Despite of the
simplicity of the idea and reasonably good view planning
performance, the volumetric methods still suffer from costly
data transformation from raw point cloud to voxel and ray
casting, which makes it hard to apply on time-critical tasks.
As for point cloud data, to the best of the authors’ knowledge,
so far the method that directly predicts NBV from point cloud
data for reconstruction does not exist.

B. Deep learning for point cloud processing

Recently deep learning has been sucessfully applied on
point cloud processing. PointNet [6] and PointNet++ [7] are
pioneers in this direction. They make use of multi-layer per-
ceptron (MLP) and the global symmetric function to handle
unordered point set, and achieve impressive performance on
point cloud classification and segmentation.

Following these two works, a variety of methods
[20][21][22][23][24] utilize deep neural network for a wide
range of point cloud applications such as detection, instance
segmentation, completion, generation, etc. The success of
these applications demonstrates the powerful ability of neural
network to learn valuable 3D shape priors from training data.

C. Deep learning for view planning

Deep learning has also been introduced into the field of
NBYV planning. Wu et al. [25] proposed a convolutional deep
belief network to achieve object completion based on depth
image information. Then the completion prediction from the
network is used to guide view planning for recognition. The
same idea is applied in [26] to complete the selection of view
groups through the point cloud completion network. In [26],
voxelization and ray projection are involved to evaluate the
candidate views, which are quite time-consuming. Different
from their work, our unified method directly produces the
NBYV without point cloud completion and further evaluation.

In the work [27], the convolutional neural network (CNN)
is used to find the view that matches with current view to
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maximize the object recognition rate. The work proposed by
Hepp et al. [28] uses a 3D convolution network to learn the
utility function for evaluating the candidate sensor views.
However, they focus on scene exploration rather than object
reconstruction. Recently, Mendoza et al. [29] proposed NBV-
Net to solve the NBV problem for 3D object reconstruc-
tion. NBV-Net adopts voxel representation and thus cannot
overcome the time-consuming bottleneck. Different from the
above mentioned methods, our proposed PC-NBV network
directly inputs point cloud data, and predicts the NBV in an
efficient way.

III. PROBLEM IDENTIFICATION

Due to self-occlusion of complex 3D objects and physical
limitation of sensors, 3D object reconstruction requires the
sensor to move across different views around the object to
capture new information. The task of view planner is to
decide a serials of views Vi, = {vili = 0,1,2,....,n} CV
for the sensor to completely cover the surface of the object
with as few views as possible, where V = R? x SO(3)
represents the sensor view space. However, even with the
prior knowledge of object geometry, the problem of finding
the best view sequence Vi, is still an NP-C problem [30].

It is common to use greedy search for this problem. That
is, at the beginning of the entire reconstruction process, a
number of candidate views have been sampled according to
the system constraint, which form the candidate viewpoint
space V.. Initially, the first view vg is randomly selected
in V. to start the scanning process. After each round of
scanning, all candidate viewpoints will be re-evaluated by
utility function f,,; to select the next best view vpey € V.
Different works define f,,; in different ways. In this paper,
we propose a point cloud network called PC-NBV to learn
the utility function, which measures the improvement of
object surface coverage.

IV. LEARNING NBV

In this section, we first present the technical details of
PC-NBYV network, including the details of training data, the
definition of utility function and the network architecture.
Then we present the iterative-erasing strategy that enables
PC-NBYV to be naturally extended to multi-view systems.

A. Training supervision

To train PC-NBYV network for NBV prediction, it is vital to
build effective training supervision, i.e. pairing input data and
target ground-truth. We perform a simulated reconstruction
process on synthetic 3D object models to get these training
pairs. The process is summarized in Alg. 1.

This preparation process needs the object mesh model O,
the complete point cloud P,, the candidate view space V,,
and the maximum scanning number max;,, as input. Mesh
model O and complete point cloud P, of objects are easy to
acquire from synthetic 3D datasets like ShapeNet [8]. For
the candidate view space V., we choose a common spherical
sampling method to define it. By uniformly sampling view-
points on sphere around object, a generous view space V.

Algorithm 1: NBV training data preparation

Input: O, P,, V;, maxisr.
1 VE, 0 (k=1,23,..m)
2 iter <+ 0
3 Ppypy — O
4 i+ Random(1 :m)

5 while iter < maxy., do

6 Vsilate <_ 1

7 Ppare+ = P(v;,0)

8 max < 0

9 foreach j<«+ 1:m do

10 if C(P},,,) > max then
1 max < C(Pilew)

12 i+ j

13 end

14 end

15 Save(Ppart;Vsrateac(Pnew))
16 iter++

17 end

can be obtained, where ||V,|| = m. The sensor could obtain
a depth map of the object at each view v; € V. and project
it to get point cloud P(v;,0).

To make the network learn to efficiently select views and
reconstruct objects, we directly use surface coverage score
as the supervision signal. Given a partial point cloud P and
its target complete point cloud P,, the surface coverage is
defined as:

1
[Pl

aP) = g LU (i lo-pla—e)
pEP Po€F,

Where U is the Heaviside step function, and € is a distance
threshold.

The training supervision pair for PC-NBV network
is defined as (Ppars, Vstare;C(Prew)). The network takes
(Ppart, Vstare) as input and is supposed to output prediction
close to groundtruth C(Py,,). The input P,,, indicates the
partial point cloud of the object, and the V4. indicates the
selection status of the candidate view space and is defined
as follows:

; 1, v € Vielected
Vl — ? l Se' ecte 2
state { 0, otherwise 2
Where Viecreq 1 the set of candidate views that are already
used by sensor. The groundtruth C(P,,,) € R™ is a vector
containing m surface coverage scores for each newly added
point cloud P,{ew from candidate view v;. The newly added

point cloud Pl,,, from view v ;j is defined as:
Pr{ew:{Pv|Pv€P(VjﬂR))a min ||p, — p|la>¢€} (3)
PEPpart

In each iteration, after fusing the point cloud (concatena-
tion is used for simplicity) from the current view into Py,
the values of all the views in C(P,,,) are updated. So a
tuple (Ppars, Vstares C(Prew)) 18 saved as a training pair for PC-
NBV network. After repeating this process for each model
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Network Architectures. The network first extracts the global feature of the partial point cloud. Then, the global feature, partial point cloud, and

view selection state are fused together to predict the information gain of each candidate view.

from a 3D model dataset, we can obtain the entire NBV
training data. The training pairs come from all stages of the
reconstruction process, so the network can learn to evaluate
views in different situations.

B. Network architecture

The architecture of the PC-NBV network is illustrated
in Fig. 2. First, a partial point cloud P, is processed by
feature extraction unit proposed by [24]. This unit extracts
features from different network layers and integrates them
through dense connections to get point-wise feature Fy. Then
the global feature Gy is obtained through max pooling.
Subsequently, the network duplicates Gy and another input
Vitate, concatenates them with Fp to get augmented point-wise
feature Fj. A self-attention [23] module is used to better
integrate the features from the partial point cloud, global
feature and view selection state. Then, followed by another
shared MLP and max-pooling, a final global feature G is
computed, which contains all the essential information about
current reconstruction. Finally, views scores Sy, € R™ are
obtained by MLP from Gj.

We use the mean squared error (MSE) to calculate the
loss between Sg; and S,;. The Sy is exactly the coverage of
new point cloud C(By,,), which is defined in the previous
section. At the testing phase, the next best view is chosen
according to the scores S, predicted by PC-NBV network.
Specifically, vpes = vi+, " = argmax; St

Experiments in Section V show that the network structure
can effectively learn the ideal utility function and quickly
provide a reasonable score for all candidate viewpoints
during reconstruction. By picking the NBV according to S,
reconstruction tasks can be performed in an efficient manner.

C. Extension to multi-view systems

We propose an iterative erasing strategy, so that PC-NBV
can efficiently select multi-NBVs for multi-view systems,
without modifying the network architecture or retraining
the network. The pseudo-code of multi-NBVs selection is
summarized in Alg. 2. The details of this strategy is as
follows.

After selecting one view v; based on the output S, of PC-
NBV network, we mark it as used in V4. Then, the updated
view space state Vyqe and partial point cloud P, are fed to
the network again to get new scores. This process is iterated
for r times until the system obtains all » planing views for
the next round. Through the pseudo-marking, the network is
forced to avoid those selected views when picking a new

NBV. Our experiments in Section V demonstrate that by
only updating the view selection state, our PC-NBV model
can make good predictions for view planning, i.e., efficiently
selecting a group of views before each round scanning, which
enables the multi-robot collaborations.

Algorithm 2: Multi-view selection though PC-NBV
Input: Py, Vitare
Output: V.

1 foreach i< {1,2,...,r} do

2 Snet — chfNBV (Ppart7‘/stare)

3 Jj* < argmax;S},,

4 Vbi5,+ =V

5 Vitate 1

6 end

7 return Vj,y

V. EXPERIMENT

In this section, all experiments are conducted on a PC
with Inter(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz and
Nvidia Geforce RTX 2080 Ti GPU. We train PC-NBYV using
the training dataset built from ShapeNet [8] and perform
tests on our testing split of ShapeNet [8] , ABC dataset [9]
and 11 scanned complex object models. Scanned complex
models are from Stanford 3D Scanning Repository' and
MIT CSAIL Textured Models Database?. We compare PC-
NBYV with state-of-the-art volumetric methods [14][5] and
voxel-based deep learning method called NBV-Net [29].
We also verify the noise-insensitivity and check the NBV
performance of our multi-view extension. Code will be made
publicly available.

A. Network training

NBYV dataset. We choose the large 3D CAD model dataset
ShapeNet [8] as the main model dataset. Following the
train/test split of the ShapeNet object categories of [21],
we randomly pick 4,000 models from the 8 categories
(airplane, cabinet, car, chair, lamp, sofa, table, and vessel)
as training models, 400 models as validation models, and
400 as similar testing models. Likewise, we randomly pick
400 models from another unseen 8§ categories (bus, bed,
bookshelf, bench, guitar, motorbike, skateboard, pistol) as
novel testing models. Fig. 3 shows some object examples

'graphics.stanford.edu/data/3Dscanrep/
2people.csail.mit.edu/tmertens/textransfer/data/

7053



(a) Airplane (b) Cabinet (c) Car (d) Chair
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Example models from ShapeNet dataset. The first row shows sample models from the 8 categories used for both training and testing (similar

testing dataset), and the second row contains models from the 8 novel testing categories (novel testing dataset).

in ShapeNet from 16 categories. The training and testing
models both contain some complex shape categories such as
Lamp, Vessel, Bookshelf, Motorbike, etc.

Parameters details. For training, validating and testing,
each model follows Alg. 1 to perform simulated reconstruc-
tion and collect input and ground truth data. We uniformly
sample 16,384 points from object mesh O as P,. We set
€ =0.00707m for surface coverage calculation, the candidate
view number m = 33 and maxj;,, = 10. When performing the
back-projecting to obtain Py, we adopt the camera intrinsic
parameters from the Kinect sensor. The network is trained by
Adam [31] optimizer with base learning rate of 0.0001 and
mini-batch size of 32. The input point cloud are randomly
down-sampled to 512 points for training, and 1,024 points
for testing. After every S0K iterations, the learning rate is
decayed by 0.7. We use L2 loss for weight regularization
and set A = 0.0001. When testing the NBV methods, we
iteratively scan the object with the predicted camera views
and terminate the reconstruction after 10 iterations. Fixed
number of iterations is used in experiments for clear compar-
ison of different NBV methods. For the real-world practice,
the reconstruction process would be terminated when the
information gain of a new view is less than a defined
threshold.

B. Network ablation study

We evaluate the performance of PC-NBV and conduct
ablation experiments to test the contribution of each module
in PC-NBV network. We use the loss value and spearman’s
rho to measure the performance of PC-NBV. The loss value
can help judge how well the network fits in the validation
and testing datasets. The spearman’s rho value indicates the
rank correlation between the network output and ground truth
scores, which is directly related to view selection.

Table III summarizes the ablation study results. “Valid”
represents the validation dataset. “Test S” represents the
similar testing dataset, and “Test N” represents the novel
testing dataset. “No V4"~ represents removing Vi input.
“No Py represents only feed Vg to MLP for obtaining
Sner- “Baseline” represents removing feature extraction unit
[24] and self-attention unit [23] from our PC-NBV network.

The results in Table III show that the input of Vi, is
significant for score prediction, and the addition of Py
can greatly reduce the loss of the network and improve
sphearman’s rho value by about 0.1. Feature extraction [24]
and self-attention unit [23] generally upgrade the network
capacity and extract better features from point cloud by
fusing global and local information, thus make the network
more robust.

C. Reconstruction performance on ShapeNet

°

—+— PC-NBV

—— NBV-net

—— ProximityCount
AreaFactor

—— Random

PC-NBV

—— NBV-net

—— ProximityCount
AreaFactor

—+— Random

o

Surface coverage
°

Surface coverage

°

10 10

3 G § 3 3 s
Number of rounds Number of rounds

(a) Similar testing dataset  (b) Novel testing dataset

Fig. 4. Comparison of reconstruction process on ShapeNet testing
dataset. Results clearly show that PC-NBV has the highest reconstruction
performance in both similar testing dataset and novel testing dataset.

We perform simulation experiments on ShapeNet testing
dataset. We also include a random selection method as
baseline. To give a quantitative analysis of reconstruction
efficiency, following [5], we use area under the curve (AUC)
to measure the performance. The value of AUC varies
between 0.0 and 1.0, and is higher for better and faster
reconstruction. It is worth mentioning that we only use the
training set of ShapeNet to train the PC-NBV model once,
and then test it on ShapeNet testing dataset and other datasets
without further fine-tuning. For baseline methods [5][14], we
use the default parameter setting provided in their codes. For
learning-based method [29], we train their network under the
same setting with ours and report the performance.

Table I reports the average AUC values of different meth-
ods in each category of ShapeNet testing dataset. The first
eight categories are from the similar test dataset. The rest
are from novel test dataset. Results show that our method
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TABLE I
COMPARISON ON SHAPENET TEST DATASET. AUC RESULTS ARE REPORTED ON EACH CATEGORY. PC-NBV ACHIEVES THE BEST PERFORMANCE ON
MOST CATEGORIES COMPARED TO STATE OF THE ARTS.

>
3 A ¥ & o
& & N Q Q & S
NG & Q @ 3 & S & S J > R
Random 0.745 0.545 0.542 0.724 0.770 0.589 0.710 0.674 0.609 0.619 0.695 0.795 0.795 0.672 0.768 0.614 | 0.678
Proximity Count [5]|0.800 0.596 0.591 0.772 0.803 0.629 0.753 0.706 0.646 0.645 0.749 0.829 0.854 0.705 0.828 0.660 | 0.723
Area Factor [14] [0.797 0.585 0.587 0.751 0.801 0.627 0.725 0.714 0.629 0.631 0.742 0.827 0.852 0.718 0.799 0.660 | 0.715
NBV-Net[29] 0.778 0.576 0.596 0.743 0.791 0.599 0.693 0.667 0.654 0.628 0.729 0.824 0.834 0.710 0.825 0.645 | 0.706
PC-NBV 0.799 0.612 0.612 0.782 0.800 0.640 0.760 0.719 0.667 0.662 0.740 0.845 0.849 0.728 0.840 0.672 | 0.733

TABLE II

COMPARISONS ON COMPLEX MODELS. AUC RESULTS ARE REPORTED. WE CONDUCT THE RECONSTRUCTION FOR 10 TIMES AND THE RESULTS ARE
AVERAGED TO REDUCE RANDOMNESS.

Lion Dragon Gargoyle  Bust Bunny Head Bird Buddha Column Owl  Armadill
; 47 74 ) \ 2 o N
VP e X G 0 © w B I
W &g & D W B & A P N
Random 0.781 0.777 0.778 0.802 0.773 0.786 0.817 0.740 0.809 0.776 0.795 0.785
Proximity Count [5]| 0.838 0.803 0.813 0.846 0.835 0.831 0.852 0.774 0.833 0.827 0.811 0.824
Area Factor [14] 0.833 0.798 0.802 0.761 0.797 0.732 0.838 0.769 0.767 0.711 0.805 0.783
NBV-Net [29] 0.828 0.790 0.779 0.825 0.818 0.776 0.788 0.782 0.779 0.824 0.764 0.796
PC-NBV 0.842 0.822 0.822 0.843 0.840 0.829 0.849 0.818 0.848 0.838 0.834 0.835
TABLE III
NBV-Net
ABLATION STUDY OF PC-NBV ON SHAPENET. THE LOSS VALUE AND
SPEARMAN’S RHO VALUE ARE REPORTED.
Network Loss value Spearman’s rho
Valid | Test S | Test N | Valid | Test S | Test N
No Viate 0.711 0.612 1.754 0.395 0.396 0.248
No Ppar 0.412 0.394 0.667 0.758 0.761 0.706
Baseline | 0.194 | 0.180 | 0.333 | 0.853 | 0.864 | 0.796 Proximity
PC-NBV | 0.189 | 0.176 0.316 | 0.857 | 0.866 0.799 Count
TABLE IV
COMPARISON OF INFERENCE TIME FOR EACH NBV PREDICTION.
PC-NBYV IS FASTER THAN TRADITIONAL METHODS BY ABOUT 20
TIMES. COMPARED WITH DEEP LEARNING METHOD NBV-NET, OUR
METHOD STILL RUNS IN MUCH LESS INFERENCE TIME. PC-NBV
PC AF NBV-Net | Ours(CPU) | Ours(GPU)
Time(s) | 2.126 | 2.166 0.952 0.106 0.034
outperform all the other methods in most categories, except
for in several categories where PC-NBV is only slightly (a) 1 round (b) 2 rounds (¢) 3 rounds

inferior to Proximity Count method [5].

Fig. 4 shows the reconstruction process of all five methods.
It shows that our PC-NBV model can reconstruct the com-
plete object faster and has higher efficiency than all other
methods. Note that since the inside of models cannot be
illuminated, the surface coverage typically converges to a
value smaller than 90%.

D. Reconstruction performance on other datasets

To demonstrate that the network model trained on
ShapeNet can successfully apply in more practical cases and
handle more complex shapes, we further conduct experi-
ments on ABC dataset [9] and 11 object models selected

Fig. 5. Reconstruction progress comparison on Dragon model. The surface
coverage number is labeled on the upper right corner of each point cloud.
PC-NBV makes more effective selections for NBV on this complex model.

from Stanford 3D Scanning Repository and MIT CSAIL
Textured Models Database.

ABC dataset [9] is an huge collection of Computer-
Aided Design (CAD) models, and mainly includes various
industrial models (See Fig. 6). We use the 10k testing patches
subset introduced in its Normal Estimation Benchmark for
testing. We only train the network on our training split of
ShapeNet and directly test on the ABC testing subset without
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Fig. 6. Left: Some example models in ABC dataset. Right: Comparison
of reconstruction on ABC dataset [9]. The results show that PC-NBV still
outperfroms other methods in the new dataset without retraining.

re-training or further fine-tuning. As shown in Fig. 6, PC-
NBV still outperforms other methods, demonstrating great
potentials for mechanical model scanning and reconstruction.

To verify the performance of PC-NBV on complex mod-
els, we perform experiments on 11 object models with
complex surfaces and asymmetrical shape. The object models
and results are shown in Table II. For each object, we
repeat the reconstruction for 10 times and average the results
to reduce the random noise. Results show that PC-NBV
performs best on most of the models and achieves the highest
score for averaged AUC value. Fig 5 shows a comparison of
the reconstruction process on the dragon model. Compared
with traditional voxel methods or voxel-based deep learning
methods, the views chosen by PC-NBV is more conducive
to quickly improving surface coverage and reconstructing
objects.

E. Inference time

In Table. IV, averaged inference time per round are
reported for four methods. Our proposed PC-NBV network
improves the speed of NBV prediction significantly. The
CPU-based PC-NBV method is nearly 20 times faster than
the traditional voxel method. By utilizing the computation
capacity of GPU, our method can even run faster. The reason
is that (1) the network does not need to perform complex data
transformations and ray projection operations, and (2) more
importantly, the network can evaluate all views through one
calculation in parallel.

F. Noise resistance results

(a) None (b) Low (c) Medium (d) High
Fig. 7. Noisy point cloud with varying degrees of disturbance. The point
cloud gradually loses model details and becomes fuzzy. At the high level

of noise interference, we could see many outliers.

TABLE V
EVALUATION OF NOISE RESISTANCE.

Medium
0.733

Low
0.733

None
0.733

Degree of Noise
AUC value

High
0.732

Following the work of [28], We test the noise immunity
of our method. When performing the same reconstruction on
ShapeNet testing dataset, we perturb the depth image value
using normal distribution. Our method is naturally resistant
to the random discard of point clouds. This is mainly because
that our network only uses a small number of points sampled
from original point cloud to predict in both training and
testing stage. Specifically, the projected depth maps often
contain more than 10,000 points while we only randomly
sample 512 or 1024 points to feed into network for training
or testing. Thus the network only needs the approximate
shape of partial point cloud to infer the NBV.

Fig. 7 shows the noisy point cloud under different dis-
turbance levels. To define the disturbance degree of noise,
we set 0 = 0.002m for low degree, ¢ = 0.01m for medium
degree and o = 0.05m for high degree. We conduct this
experiment on ShapeNet testing dataset. Table V shows the
performance of PC-NBV under different noise degrees. AUC
values are calculated by ground truth depth images using the
same view sequences. The results show that undergoing the
noise interference, the AUC values remain almost the same.

G. Multi-view system evaluations

We also verify the effectiveness of PC-NBV on multi-
view systems. Experiments are performed on our test split
of ShapeNet. As shown in Fig 8, iterative erasing is our
proposed method, and “random” represents picking multiple
candidate views in a time with a random manner. “Ideal”
indicates the PC-NBV result that is obtained by updating
point cloud after selecting each view. Updating point cloud
after selecting each view is not feasible in multi-view setting
since the system needs to select multiple views before the
next scanning, so we use it as an ideal results. Our proposed
iterative erasing method is very close to the result of Ideal,
which shows the efficiency of this algorithm. Furthermore,
when using multiple views, the reconstruction speed is im-
proved significantly when compared to using a single robot.
This makes multi-robots collaboration possible.
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Fig. 8. Multi view results of PC-NBV on all test models of ShapeNet.

r is the view number. The results show that our proposed iterative erasing
method is very close to the ideal upper bound.

VI. CONCLUSIONS

In this article, we introduce a point-cloud-based network
called PC-NBV to solve the NBV problem. The network
uses the scanned point cloud information to directly score
all candidate viewpoints without any other pre-processing.
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Experimental results show that our method is nearly 20 times
faster than traditional methods and has higher reconstruction
effectiveness. The PC-NBV network only needs to be trained
once and then can perform well on a variety of models
that PC-NBV has never seen before. Experiments on large
mechanical dataset and complex object models verify its
ability in various real world applications. In addition, the
PC-NBV network is insensitive to noise and can be easily
extended to a multi-view system. Integrating the PC-NBV
network into practical robot systems with careful designs
about sensor noise and evaluating the whole view planning
system considering the time to execute predicted camera
trajectory would be interesting future directions.
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