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Abstract—Caricature is a type of artistic style of human faces that attracts considerable attention in the entertainment industry. So far
a few 3D caricature generation methods exist and all of them require some caricature information (e.g., a caricature sketch or 2D
caricature) as input. This kind of input, however, is difficult to provide by non-professional users. In this paper, we propose an
end-to-end deep neural network model that generates high-quality 3D caricatures directly from a normal 2D face photo. The most
challenging issue for our system is that the source domain of face photos (characterized by normal 2D faces) is significantly different
from the target domain of 3D caricatures (characterized by 3D exaggerated face shapes and textures). To address this challenge, we:
(1) build a large dataset of 5,343 3D caricature meshes and use it to establish a PCA model in the 3D caricature shape space; (2)
reconstruct a normal full 3D head from the input face photo and use its PCA representation in the 3D caricature shape space to
establish correspondences between the input photo and 3D caricature shape; and (3) propose a novel character loss and a novel
caricature loss based on previous psychological studies on caricatures. Experiments including a novel two-level user study show that
our system can generate high-quality 3D caricatures directly from normal face photos.

Index Terms—Face reconstruction, 3D caricature, PCA representation, caricature shape space.

F

1 INTRODUCTION

T RADTIONAL 2D caricature is a type of rendered image
that uses exaggeration, simplification and abstraction

to express the most distinctive characteristics of people [1].
They are also used to express sarcasm and humor for po-
litical and social problems. Traditional caricatures drawn by
artists are 2D images. Although widely used, they are insuf-
ficient for many graphics applications, such as 3D printing,
3D special effects and animation in feature movies, etc.
(Figure 1). 3D caricatures are suitable for these applications,
but it is costly and time consuming for artists to create them
with professional 3D modeling tools.

In this paper, we study the problem of automatic genera-
tion of 3D caricatures from normal face photos. It is an extreme
cross-domain task where the input is a normal 2D images
and the output is an exaggerated 3D meshes whose space
and style are both distinct. In the literature, efforts have been
made to address problems that solve part of this task. Some
recent works aim to translate photos into 2D caricatures [2],
[3], [4], [5]. However, image translation mainly focuses on
warping and stylization of textures, which only works for
2D images. Wu et al. [6] propose a method to reconstruct
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Fig. 1. Physical prototypes of 3D caricatures with texture.

3D caricatures from 2D caricatures. However, its input and
output are both caricature styles and the focus is mapping
from 2D to 3D. Han et al. [7] propose a method for gen-
erating 3D caricatures from sketches, but the exaggerated
deformation is dominated by sketches, which cannot be
applied to normal face photos. Both methods [6], [7] require
some caricature information as input, which is not easy for
non-professional users to provide.

In summary, none of the existing methods can auto-
matically generate 3D caricatures directly from normal face
photos. For our extreme cross-domain problem, a straight-
forward baseline approach is to combine several existing
methods [5], [6], [8], i.e., first automatically generate 2D car-
icatures from photos and then generate 3D caricatures from
2D caricatures. However, this approach is time-consuming
and tends to lose information in intermediate steps —
because the output 3D caricature cannot directly make use
of the information in the input photos — which results
in the volatility between the input and the output. In this
paper, we present an end-to-end deep learning method for
the described problem, which is much more efficient and
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suitably regularized by making use of information in input
photos as much as possible and allows intuitive control.

Another related area to ours is 3D face reconstruction
from photos, which has been widely studied in recent
years. It is popular to use parametric models to represent
faces/heads due to the regular structure of faces. Some para-
metric models such as the well-known 3D Morphable Model
(3DMM) [9] are linear models based on principal component
analysis (PCA) of normal 3D faces, which are useful and
effective. However, such models do not work for caricature
faces due to their limited capability of extrapolation [6]. In
this paper, we build a PCA model for 3D caricature meshes,
and generate 3D caricature models that can be regarded as
interpolation in our PCA space, making the problem more
tractable.

Training datasets are indispensable for learning to trans-
form photos to 3D caricatures. For the domain of photos,
we use CelebAMask-HQ dataset [10] which contains 30,000
portrait photos. For the domain of 3D caricatures, we are
not aware of any existing large-scale 3D caricature datasets,
so we create our own 3DCari dataset which contains 5,343
3D caricature meshes with the same connectivity. The two
datasets are unpaired because it is difficult to obtain the
corresponding 3D caricature for a photo. In this paper, we
present an end-to-end method named 3D-CariGAN for the
automatic generation of 3D caricatures from photos. To train
3D-CariGAN using unpaired training data, we propose
a novel character loss and a novel caricature loss, both
of which are based on previous psychological studies on
caricatures [11], [12], [13]. 3D-CariGAN achieves real-time
performance and allows users to interactively adjust the car-
icature facial shapes, with simple and effective user controls.
Experiments including a novel two-level user study shows
that our method produces high-quality 3D caricatures from
2D photos in real-time, which is significantly faster and of
better quality than the baseline method.

In particular, the contributions of this paper include1:

• We create a large dataset of 3D caricatures, and
based on this, build a novel PCA-based 3D linear
morphable model for 3D caricature shapes.

• We propose the first method to automatically gener-
ate 3D caricatures directly from normal face photos.
Our end-to-end solution addresses cross-domain and
cross-style challenges (2D to 3D, and normal photo to
caricature) by utilizing a caricature morphable model
and introducing novel cross-domain character loss
and caricature loss.

2 RELATED WORK

2D Caricature. Many works have studied generating 2D
caricatures from photos. The main differences between pho-
tos and caricatures are the 2D geometric shape and image
style. Some methods [2], [3] focus on geometric exaggeration
while other works [4], [14], [15] focus on stylization. The
work CariGANs [5] proposes a method that combines these
two aspects to generate 2D caricatures using two networks:
CariGeoGAN for geometric exaggeration and CariStyGAN

1. The dataset, PCA model and source code are available on
https://github.com/qq775193759/3D-CariGAN

for stylization. CariStyGAN disentangles a photo into the
style component and the content component, and then
replaces the style component by that of a reference or a
sample. CariGeoGAN translates the facial landmarks of a
photo from a normal shape to those of an exaggerated
shape, which are used to warp the image. WarpGAN [16]
generates caricatures by warping and stylization. It extracts
the content component from the photo, takes a sample in the
style latent space, and then transfers the style by combin-
ing the content component and sampled style component,
which is similar to CariStyGAN. It warps a photo into a
caricature while preserving its identity by predicting a set
of control points. The stylization in these methods can be
adapted to stylize textures for 3D caricatures, but geometric
exaggeration for 3D caricatures is more complicated, which
is a major focus of our paper.

3D Face Reconstruction. Generating normal 3D faces
from photos is well studied in computer graphics. The
reader is referred to [17] for a comprehensive survey and the
references therein. Due to the regular structure of faces, it is
popular to use parametric models to represent faces/heads.
3DMM [9], [18], [19], [20] and multi-linear models [21],
[22] are two major types of parametric models. 3DMM is
a PCA representation of faces including shapes and tex-
tures, and multi-linear models utilize a multi-linear tensor
decomposition on attributes such as identity and expression.
Parametric models provide a strong constraint to ensure the
plausibility of reconstructed 3D face shapes, while substan-
tially reducing the dimensionality of the generation space by
regressing the parameters. For this reason, they are widely
used for face reconstruction. Recent works [23], [24], [25]
use convolutional neural networks (CNNs) to regress the
parameters for face reconstruction. However, these methods
mainly work for normal photos and generate normal 3D
faces. Likewise, existing parametric models do not have
enough extrapolation capability to represent 3D caricature
faces [6]. This motivates us to build a new 3D caricature
parametric model and a new neural network for unpaired
cross-domain translation.

3D Caricatures. Although generating 3D caricatures
from 2D caricatures or normal photos is similar to 3D face
reconstruction, only a few works tackle the problem of
automatically generating caricatures. Sela et al. [26] present
a method for directly exaggerating 3D face models, which
locally amplifies the area of a given 3D face model based
on Gaussian curvature. A deep learning based sketching
system [7] is proposed for interactive modeling of 3D
caricature faces by drawing facial contours. A method by
Clarke et al. [27] generates a 3D caricature from a facial
photograph and a corresponding 2D hand-drawn caricature
which captures the artistic deformation style. However, the
method requires paired data as input which is difficult to
obtain. An optimization-based method [6] is proposed to
reconstruct 3D caricatures from 2D caricatures. This method
formulates 3D caricatures as deformed 3D faces. To support
exaggeration, their method uses an intrinsic deformation
representation which is capable of extrapolation. Therefore,
3D caricature reconstruction is turned into an optimization
problem with facial landmark constraints. However, all of
these methods rely on 2D sketches or 2D caricatures which
contain the information of how to exaggerate and deform
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the 3D surface, but normal 2D face photos do not have
such information. Our work addresses a new challenge
of automatically transforming normal 2D face photos to
3D caricatures, without any caricature information used as
input.
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Fig. 2. The pipeline of our method, including 3D-CariGAN for transform-
ing photos to 3D caricature meshes, and landmark based texture map-
ping for generating textured 3D caricatures. Our system also supports a
simple and intuitive user interaction for 3D caricature shapes.

3 METHOD

The pipeline of our method is illustrated in Figure 2. A 3D
caricature consists of three components: a 3D mesh, a 2D tex-
ture image and a texture mapping (represented by texture
coordinates). Automatically generating 3D caricatures from
photos is decoupled into three steps: (1) we develop 3D-
CariGAN to infer 3D caricature meshes from photos; (2) to
map the texture to 3D caricature mesh, we reconstruct a nor-
mal 3D head model with the same mesh connectivity as the
3D caricature mesh and consistent landmark positions when
projected onto the photo; and (3) we use the input photo
as the texture image and the projection matrix for texture
mapping (by transferring texture coordinates directly from
the normal 3D face to the generated 3D caricature mesh).

3.1 Representation of 3D Caricatures

Usually a head mesh has tens of thousands of vertices,
e.g., 11,510 vertices used in this paper. A straightforward
way is to directly use a neural network for predicting the
coordinates of each mesh vertex [28]. However, this requires
a very large training set and may produce noisy meshes due
to insufficient constraints, especially in our cross-domain
scenario. Three examples are shown in Figure 3 where we
adapt our pipeline to directly generate mesh vertices of 3D
caricatures (see Section 4.1 for more details). The resulting
meshes are rather noisy, indicating insufficient constraints
due to the amount of training data available.

In normal 3D face reconstruction, to address similar
issues, PCA models such as 3DMM provide a strong prior
and reduce the dimensionality of the generation space.
However, all the existing PCA models are only suitable for
interpolation in the shape space of normal 3D faces and they
do not work well for extrapolation in 3D caricature shape
space. To show this, we use a 100-dimensional PCA rep-
resentation of normal 3D faces from FaceWarehouse [22] to
represent caricature faces, but the recovered caricatures have
substantial distortions, as illustrated in Figure 4. Therefore

Fig. 3. 3D caricatures obtained by changing our pipeline to directly
generate mesh vertex coordinates rather than 3DCariPCA vectors. This
alternative approach produces noisy output meshes, due to the higher
dimensional space and lack of constraint.

3D Caricature 3D CaricatureRecovered Recovered 3D Caricature Recovered

Fig. 4. Using the PCA representation of normal faces to represent 3D
caricatures. For each group, the left shows the input 3D caricature model
and the right shows its corresponding model represented by the normal
PCA representation. These examples show that the representation does
not have sufficient extrapolation capability to faithfully reconstruct 3D
caricatures. This motivates us to create a PCA model for 3D caricatures.

it is necessary to build a parametric model specifically for
3D caricature shape space.

In our study, we build a PCA model for 3D caricature
meshes in the following steps, as illustrated in Figure 5.
Since we are not aware of any existing large 3D carica-
ture datasets, we first collect 5,343 hand-drawn portrait
caricature images from Pinterest.com and WebCaricature
dataset [29], [30] with facial landmarks extracted by a
landmark detector [31], followed by human interaction for
correction if needed. An optimization-based method [6] is
then used to generate 3D caricature meshes using facial
landmarks of 2D caricatures. We use this method to generate
N = 5,343 3D caricature meshes of the same topology. We
align the pose of the generated 3D caricature meshes with
the pose of a template 3D head using an ICP method, where
we use 5 key landmarks on the eyes, nose and mouth as
the key point constraints. We normalize the coordinates of
the 3D caricature mesh vertices by translating the center of
meshes to the origin and scaling them to the same size. A
3D caricature mesh, denoted as Mi (1 ≤ i ≤ N ), can be
represented as a long vector containing the coordinates of
all the vertices. We apply PCA to all the caricature meshes
{Mi}, and obtain the mean head h̄ (which is a 3nv-vector
containing the coordinates of nv mesh vertices), and d dom-
inant components αi (1 ≤ i ≤ d). Then, a new caricature
mesh can be represented as

h = h̄+
d∑

i=1

hiαi = h̄+ Hα, (1)

where α = (α1, α2, . . . , αd)T is a collection of d compo-
nents, and H = [h1, h2, . . . , hd] is a d-dimensional vec-
tor that compactly represents the 3D caricature. The PCA
model has only one hyperparameter, i.e, the number of
components. Balancing the amount of information against
the number of components, we set d = 200, where the
sum of explained variance ratios is 0.9997, which means it
contains almost all the information from the 5,343 meshes.
We refer to the above representation as 3D Caricature PCA
(3DCariPCA), and use it in our translation network.
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Fig. 5. An illustration of PCA-based 3D caricature representation. To build this representation, we have collected 5,343 3D caricature meshes by
detecting facial landmarks on 2D caricature photos (with manual correction if needed) and reconstructing 3D caricature meshes from them. We
represent them as a 200-dimensional vector by applying PCA.

In Eq. (1), the representation is a linear combination of
principal components and only involves matrix multiplica-
tion, which can be efficiently implemented on the GPU. The
gradients of these operations are also linear so the losses
related to the mesh can be computed and their gradients
can be back-propagated. Therefore, the PCA representation
is ideal for our neural-network-based method.

3.2 Normal Head Mesh Reconstruction from Photos

In our pipeline, to generate the 3D caricature, we reconstruct
a normal 3D head mesh (which has the same connectivity
as our caricature meshes) from the input photo. To do so,
we first use the method [32]2 to reconstruct a normal 3D
face mesh (i.e., only a front face mesh without ears, neck or
the back of the head) from the input photo. Then we use
the NICP method [33] to register a template 3D head mesh
(which is taken from FaceWarehouse [22]) to the resulting
face mesh, and simultaneously use the method [34]3 to
register the face PCA to the head PCA, i.e., building a
correspondence between the two PCA models. The template
head mesh registration is performed as follows: (1) we use
facial landmarks as the landmarks for NICP and (2) in the
outer loop of NICP, we decrease the stiffness from 50 to 0.2
and decrease the landmark weights from 5 to 0.

The registered head model (including ears, neck and the
back of the head) is used as a bridge to transfer the informa-
tion from the input photo to the output 3D caricature in two
parts: (1) we define a perceptual contrast between a normal
3D head mesh and 3D caricature, to measure the character
similarity and caricature style (Section 3.3), and (2) we use
the texture mapping on the normal 3D head model as the
texture mapping on the 3D caricature (Section 3.4).

3.3 Generating Caricature Meshes from Photos

We now describe our network architecture for translation
from a 2D photo to a 3D caricature. It is an extreme cross-
domain task where the input is a normal face image and
the output is an exaggerated 3D mesh whose forms and
styles are both totally distinct. We use CelebAMask-HQ

2. We use the source code and the pre-trained model at https://
github.com/changhongjian/Deep3DFaceReconstruction-pytorch

3. https://github.com/nabeel3133/combining3Dmorphablemodels

dataset [10] which contains 30,000 portrait photos and our
3DCari dataset containing 5,343 full-head 3D caricatures as
the training datasets, which are naturally unpaired.

Our network tries to learn the PCA parameters from
the photos using a GAN (generative adversarial network)
structure, so that it can generate 3D caricature meshes
automatically. Denote by P the domain of photos and C the
domain of PCA representation of 3D caricature meshes. The
input to our network is a normal face photo p ∈ P and the
output is a 3D caricature mesh c ∈ C, represented by our
3DCariPCA representation, to make learning more efficient
and incorporate 3D caricature constraint to improve gener-
ation results. Our network consists of a generator G and a
discriminator D. G generates a 3DCariPCA representation
G(p) from an input photo p, while D discriminates whether
an input 3DCariPCA representation is real or synthesized.

Network architecture. Since our network deals with
both 2D images (for which CNNs and residual blocks [35]
are effective) and 3D caricature meshes in the 3DCariPCA
space as a d-dimensional vector (for which fully connected
layers are suitable), both structures are used in our architec-
ture. The network maps a 2D face photo to a 3D caricature
mesh. This involves a sequence of down-sampling convolu-
tional layers, residual blocks, reshaping and fully connected
layers. We use 1D batch normalization for fully connected
layers and 2D batch normalization for convolutional layers
and residual blocks.

Perception of caricatures. A good caricature optimally
selects and exaggerates the most representative facial re-
gions in an artistic way, while humans can still perceive the
same identity of the input normal face and the output cari-
cature. To offer a good measure of caricature perception and
define good loss terms, we follow the recent neuroscience
and psychology studies on caricatures [11], [12], [13]. These
studies show that in a face space F , the difference between
a face f ∈ F and the neutral face (i.e., the mean face in
3D normal face space) represent the identity of f , and we
use this difference as the feature vector of f . Then the face
identity consistency of two faces in F can be defined as
the cosine of the angle between the feature vectors of them,
i.e., the dot product of two normalized feature vectors, we
call this the cosine measure. A good caricature increases the
perceptual contrast while maintaining the face identity. In
our application, we define an exaggeration equation:



1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3126659, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

0%

125% 150%100%

75%50%

Photo

Fig. 6. Exaggeration between a reconstructed face (100%) and the
mean face (0%). The larger the exaggeration coefficient (125% and
150%), the more exaggerated the style is.

C(p, u) = Hmean + u(H(p)−Hmean), (2)

where Hmean is a vector containing coordinates of mean
mesh vertices in the normal head space, u is the exagger-
ation coefficient and H(p) is the reconstructed normal 3D
head from the input photo p. Note that (1) H(p) − Hmean
is the feature vector of H(p); and (2) Hmean is obtained
by registering a template head mesh to the mean normal
face in BFM model [9], which has the same connectivity
as caricature meshes. All the caricature head models C(p, u)
have the same face identity asH(p), and the larger the value
u (s.t. u > 1), the more exaggerated the style is. An example
is shown in Figure 6. Below we use the cosine measure to
define two novel loss terms.

Loss terms. Adversarial loss Ladv is useful, however, it
is insufficient to ensure that the input and the output are
the same character, leading to the generation of random
persons. We introduce two novel perceptual losses, i.e.,
character loss Lcha and caricature loss Lcari, to constrain
the identity of generated caricatures. All of three loss terms
Ladv, Lcha and Lcari are used for training 3D-CariGAN.

Adversarial loss. Ladv is the adversarial loss which ensures
the distribution of c′ = G(p) is the same as that of c. We
adapt the adversarial loss of LSGAN [36] as

Ladv(G,D,P, C) = Ep∼P(‖D(G(p))‖22)

+ Ec∼C(‖1−D(c)‖22).
(3)

Character loss. We propose Lcha which aims to measure char-
acter similarity between the input photo and the generated
3D caricature, penalizing the identity change. As the input
and output domains are rather different, we first reconstruct
the 3D head of the input photo using the method introduced
in Section 3.2. Based on the cosine measure, Lcha is defined
as:

Lcha(G,P) = Ep∼P [1− dG · dP ], (4)

where dG = v(G(p)) − Hmean and dP = H(p) − Hmean are
the feature vectors of G(p) and H(p), respectively. v(G(p))
is the vector containing the vertices’ coordinates of the mesh
represented by caricature PCA parameter G(p), where v̄ is
the normalized vector of v and · is the dot product.

Caricature loss. The cosine of the angle between the two
feature vectors measures the face identity consistency of two
faces, while the length of a feature vector v measures the
caricature style, i.e., the larger the magnitude ‖v‖ (‖v‖ > 1),

Fig. 7. The second option provided by our pipeline, which assigns color
to each vertex of the full 3D caricature mesh.

the more exaggerated the style is [11]. Therefore, we propose
a novel caricature loss Lcari to constrain the caricature style:

Lcari(G,P) = Ep∼P

[
exp

(
−
(
dG · dP

) ‖dG‖
‖dP ‖

)]
, (5)

which penalizes identity inconsistency and insufficient ex-
aggerations. The exponential form helps the magnitude
to converge to a proper value: to decrease the loss term,
‖dG‖ will tend to be large, meanwhile since the exponential
coefficient is negative, its gradient will decay exponentially.
Furthermore, the adversarial Ladv can constrain the magni-
tude of dG and make it converge to a proper value.

Overall loss function. The overall loss function for 3D-
CariGAN is:

Lobj = Ladv + λchaLcha + λcariLcari,

where λcha and λcari are the weights for balancing the
multiple objectives. For all experiments, we set λcha = 2,
λcari = 20. We use the Adam solver to optimize the objective
function for training the neural network.

3.4 Caricature Texture Generation
Texture is essential for the appearance of 3D caricatures. In
our pipeline, we provide two options so that a user can
choose the best for their application.

Based on the normal 3D head H(p) reconstructed from
input photo p, we detect common facial landmarks on
both H(p) and p. Then we compute a projection matrix
according to the correspondence between these two sets of
facial landmarks. This projection matrix enables us to build
a texture mapping that maps the photo p to the 3D head
model H(p). Since we ensure that the 3D caricature mesh
G(p) has the same connectivity as H(p), there is a one-
to-one correspondence between vertices of G(p) and H(p);
therefore, the same texture mapping can be applied to G(p).
This texture mapped version of the 3D caricature is our first
option. This option has a high texture resolution, but the
texture only exists in the (non-occluded) front of the face.

The first option does not have texture on the back of the
head. In some applications such as 3D printing, the color
on the entire head is needed. To achieve this, in our second
option, we store the color for each vertex at the front of
the face of the 3D caricature (using the first option), and
make up the color for remaining vertices. To do so, we use a
smooth interpolation scheme which minimizes the Dirichlet
energy by solving a linear system [37]. This interpolation is
too smooth and lacks high-frequency texture information.
To obtain a more natural texture, we calculate the variance
of the front face texture and add random noise of the same
variance to the remaining vertices. Two examples are shown
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in Figure 7. This second option specifies the color at each
vertex, and is therefore of a lower resolution than the first
option; however, colors are assigned over the full head.

3.5 Simple User Interaction

u1
1.510.5

0.5

1

1.5

O

u2

Normal Head
H(𝑝𝑝)

Caricature
G(𝑝𝑝)

Input Photo 𝑝𝑝

Fig. 8. Examples of user control with different combinations of u1 and
u2 in Eq.(6), i.e., u1 = 0.5, 1, 1.5 and u2 = 0.5, 1, 1.5.

Input only 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 w/o 𝐿𝐿𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎 w/o 𝐿𝐿𝑐𝑐𝑐𝑎𝑎 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜

Fig. 9. Results for ablation study. The results with only Ladv are highly
random. The results without Lcari are not exaggerated properly. The
results without Lcha have low quality. Only whole method can generate
ideal results.

A fully automatic method is convenient for users. How-
ever, sometimes they may not be satisfied with the results
of fully automatic methods. Therefore, allowing users to
control the output in a simple way is desired. In our
pipeline, given a 3D caricature G(p) (automatically gener-
ated by 3D-CariGAN) and a normal 3D head model H(p)
(automatically reconstructed from input photo p), we extend
the exaggeration equation in Eq.(2) to provide two simple-
to-use and intuitive parameters (i.e., u1 and u2) for user
control:

C(p, u1, u2) = Hmean + u1dG + u2dP , (6)

where dG = v(G(p)) − Hmean and dP = H(p) − Hmean
are feature vectors of G(p) and H(p), respectively. Two
parameters u1 and u2 have clear geometric meaning: (1)
u2 controls the exaggeration degree of H(p) with the strict
face identity; (2) u1 controls the exaggeration degree of G(p)
with diverse exaggeration style; and (3) if u1 + u2 = 1,
the result is an interpolation between G(p) and H(p). An
example of user control with different combinations of u1

and u2 is shown in Figure 8.

Landmark
Detecting

Optimization-based
Reconstruction

CariStyGAN
& Warping

Texture mapping

CariGeoGAN

Fig. 10. The baseline method consists of several steps: landmark de-
tection, landmark exaggeration using CariGeoGAN, image warping and
generating 3D caricature meshes using facial landmarks.

4 EXPERIMENTS

We have implemented the proposed 3D-CariGAN, Cari-
GeoGAN [5] and normal 3D head reconstruction in Py-
Torch. We have also implemented the optimization-based
method [6] in C++, as a baseline for comparison. We tested
them on a PC with an Intel E5-2640v4 CPU (2.40 GHz) and
an NVIDIA GeForce RTX 2080Ti GPU. The resolution of face
photos in the CelebAMask-HQ dataset is 1024× 1024. They
are resized to 256× 256 as input to 3D-CariGAN.

In addition to the results presented in this section, the
dataset details (Appendix A), evaluation of 3DCariPCA
(Appendix B), implementation details (Appendix C) and
more experimental results (Appendix D) are summarized
in the appendix.

4.1 Ablation Study
We first show the benefits and necessity of using our PCA
representation for 3D caricatures. As an alternative, we
show the results of a variant of our method that instead uses
the mesh vertex coordinates to represent 3D caricatures.
Some results are shown in Figure 3, which are very noisy
and visually unacceptable, due to the higher dimensional
space and lack of the facial constraint.

We then perform an ablation study to demonstrate the
effectiveness of each loss term and some results are shown
in Figure 9. We successively add adversarial loss, character
loss and caricature loss to the objective function. The adver-
sarial loss only ensures that the generation results are 3D
caricatures, but the results are highly random. The character
loss constrains the generation results such that the identity
and expression match those of input photos, which make the
generation results look like the input photos. The caricature
loss strengthens the exaggeration style of the generation re-
sults. Character loss and caricature loss work well together.
They ensure the generation results have good exaggeration
styles and maintain good face identities. However, using
only one of them cannot obtain good results.

4.2 Comparison with Baseline Method
To the best of the authors’ knowledge, there is no existing
method for generating 3D caricatures directly from pho-
tos. We build a baseline method by concatenating three
methods. So far the optimization-based method [6] is the
only method for generating 3D caricature meshes from 2D
caricature images. However, it needs facial landmarks of
caricature images as input, which are difficult to obtain
automatically. CariGeoGAN [5] is a method that exaggerates
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TABLE 1
Running time comparison of baseline and our method, averaged over
100 results. The input is a 256× 256 face photo and the output mesh

has 12,124 vertices and 24,092 triangles. The running times of
3D-CariGAN on both CPU and GPU platforms are presented.

Methods Step Time (s)

Baseline

Landmark Detection 0.086
Warping 7.431

CariGeoGAN 0.001
Optimization-based reconstruction 14.510

3D-CariGAN Face Reconstruction (CPU) 1.109
Other parts (CPU) 0.091

3D-CariGAN Face Reconstruction (GPU) 0.215
Other parts (GPU) 0.011

the facial landmarks extracted from face photos. We can
warp the photo with the guidance of exaggerated landmarks
using differentiable spline interpolation [8]. Therefore, one
possible way for generating 3D caricature meshes is to use
a sequence of steps as shown in Figure 10. Obviously, the
baseline method cannot allow users to adjust generation
results interactively, while our method offers a simple tool
for users to interactively adjust the generation results. For
fair comparison, we use the same texture for the baseline
method and our method.

Some comparison results of the proposed 3D-CariGAN
and the baseline are shown in Figure 11. More results
are shown in the appendix. For the baseline method, the
exaggerated 2D facial landmarks are not directly designed
for 3D caricatures, so the results of the baseline method
can be too common or too strange. As a comparison, our
method has a good exaggeration effect. In Section 4.3, we
further conduct a user study for comparing the baseline and
our method, which further demonstrates the advantage of
our method. We also summarize the running times of both
methods in Table 1, demonstrating that our method is much
faster than the baseline.

4.3 User Study
Caricature is a kind of artistic style and so far there is still a
lack of suitable objective evaluation methods. Therefore we
design a two-level user study to compare our method with
other methods.

First we searched the Internet for caricature-related
characteristics, and collected eleven terms: Uniform style,
Reasonable structure, Clear theme, Color richness, Cultural
connotation, Art skill, Creativeness, Similarity, Distinctive-
ness, Weirdness/Grotesque, and Exaggeration. We invited
seven artists and asked them to select 3-5 of the most
important characteristics for 3D caricatures. The selection
results showed that the following four characteristics —
Reasonable structure, Similarity, Distinctiveness and Weird-
ness — received more than half of the votes, and they
characterized different aspects of 3D caricature. Then in the
second-level user study, we invited participants to evaluate
them by presenting the following criteria and explanations:

• Reasonable Structure (RS). The 3D caricature has
reasonable structure looking like a human head.
Please select the one which is most similar to a
human head’s structure.

• Similarity (Sim). The 3D caricature has the same or
similar identity to the input face photo. Please select
the one which is most similar to the face photo.

Input Photo

Baseline Method

Our Method

Fig. 11. Visual comparison between our method and baseline. Our user
study in Section 4.3 shows that our method has the best performance
on RS, Sim and Dist, while baseline has the best performance on
Weirdness.

TABLE 2
The average scores of four caricature characteristics in user study. The

larger the score, the better the method is.

Method RS ↑ Sim ↑ Dist ↑ Weirdness ↑
Baseline 0.20 0.23 0.34 0.53

only Ladv 0.80 0.69 0.43 0.44
w/o Lcari -0.28 -0.29 -0.03 0.11
w/o Lcha -2.39 -2.38 -2.19 -1.49

Ours 1.66 1.75 1.45 0.41

• Distinctiveness (Dist). The 3D caricature highlights
the most significant part in the input face photo,
instead of random deformation. Please select the one
that catches the most significant characteristics of the
face photo.

• Weirdness. The 3D caricature has weird and eerie
aesthetic feeling. Please select the one which is most
weird but makes you feel novel and beautiful.

Five methods were compared: baseline, three methods in
the ablation study (only Ladv, w/o Lcari and w/o Lcha) and
our method 3D-CariGAN. 20 participants were recruited
to conduct this user study. 10 face photos were used, and
each photo has five 3D caricatures corresponding to five
methods. For each photo, we randomly selected 5 pairs of
3D caricatures — e.g., (Ap, Bp), (Ap, Cp), (Ap, Dp), (Ap, Ep)
and (Bp, Cp) from five caricatures {Ap, Bp, Cp, Dp, Ep} cor-
responding to the photo p — and presented each pair to 10
participants. Finally 100 pairs of 3D caricatures were used
and each participant watched 50 pairs. For each pair, the
better one was selected for each of the four characteristics.
Then we convert the votes into a score using the ranking
equation [38]:

scorep(Ii) =
∑

Ij∈Ωp\Ii

si − sj
smax

, (7)

where Ωp = {Ap, Bp, Cp, Dp, Ep} = {Ii}5i=1 is a set of
5 caricature results for each photo p, si is the number
of votes for the result Ii ∈ Ωp, and smax = 40 is the
maximum votes that each result can get. The range of score
in Eq.(7) is [−4, 4]. The larger the score, the better quality
the 3D caricature has. Finally for each characteristic, the
scores were averaged over 10 photos. The averaged scores
for four characteristics are summarized in Table 2. These
results show that our method achieves the best quality on
RS, Sim and Dist, while the baseline has the best quality on
Weirdness. A possible reason is that the baseline explicitly
uses 2D caricature information to guide the generation of 3D
caricature, without imposing the constraint on face identity
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to the input photo, so it can generate a better weirdness
effect but is worse on the other three characteristics. As a
comparison, our method achieves a good balance on all four
characteristics.

5 DISCUSSIONS & CONCLUSIONS

Identity and Expression Preservation Ability. We design a quan-
titative evaluation for identity and expression preservation
ability of our method. The details and results are presented
in the appendix.

Limitations. In this paper, we only generate exaggerated
geometry and directly use the texture of a photo. It is
difficult to generate texture for a 3D caricature because
2D caricature is not a suitable reference. To address this
challenge, 3D caricatures with textures created by artists
are helpful. We could simultaneously model geometry and
texture using neural networks if we had this kind of dataset.
Another limitation is that the complete textures is defined
as colors at mesh vertices. Generating complete texture in
terms of texture mapping needs to be explored in the future.

In this paper, we propose an end-to-end deep neural
network model that transforms a normal face photo into
a 3D caricature, which is an extreme cross-domain task.
To accomplish this task, we build a 3D caricature dataset,
establish a PCA model, and propose two novel loss terms
based on previous psychological studies. Our method is fast
and thus makes further interaction control possible. We also
propose a simple and intuitive method that allows a user
to interactively adjust the results. Experiments and a user
study demonstrate the effectiveness of our method.
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M. Stamminger, M. Nießner, and C. Theobalt, “State of the art
on monocular 3D face reconstruction, tracking, and applications,”
Computer Graphics Forum, vol. 37, no. 2, pp. 523–550, 2018.

[18] P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vetter, “A
3D face model for pose and illumination invariant face recogni-
tion,” in IEEE International Conference on Advanced Video and Signal
Based Surveillance (AVSS), 2009, pp. 296–301.

[19] J. Booth, A. Roussos, A. Ponniah, D. Dunaway, and S. Zafeiriou,
“Large scale 3D morphable models,” Intl. J. Comp. Vis., vol. 126,
no. 2-4, pp. 233–254, 2018.

[20] H. Dai, N. Pears, W. A. Smith, and C. Duncan, “A 3D morphable
model of craniofacial shape and texture variation,” in IEEE ICCV,
2017, pp. 3085–3093.

[21] D. Vlasic, M. Brand, H. Pfister, and J. Popović, “Face transfer with
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