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This article presents a simple yet effective algorithm for automatically transferring
face colors in portrait videos. We extract the facial features and vectorize the faces
in the input video using Poisson vector graphics, which encodes the low-frequency
colors as the boundary colors of diffusion curves, and the high-frequency colors as
Poisson regions. Then, we transfer the face color of a reference image/video to the
first frame of the input video by applying optimal mass transport between the
boundary colors of diffusion curves. Next the boundary color of the first frame is
transferred to the subsequent frames by matching the curves. Finally, with the
original or modified Poisson regions, we render the video using an efficient random-
access Poisson solver. Thanks to our efficient diffusion curve matching algorithm,
transferring colors for the vectorized video takes less than 1 millisecond per frame.
Our method is particularly desired for frequent transfer from multiple references
due to its information reuse nature. The simple diffusion curve matching also
greatly improves the performance of video vectorization, since we only need to
solve an optimization problem for the first frame. Since our method does not require
correspondence between the reference image/video and the input video, it is flexible
and robust to handle faces with significantly different geometries and postures,
which often pose challenges to the existing methods. Moreover, by manipulating
Poisson regions, we can enhance or reduce the highlight and contrast so that the
reference color can fit into the input video naturally. We demonstrate the efficacy
of our method on image-to-video transfer and color swap in videos.

In the digital age, portrait and self-portrait photo-
graphs and videos are extremely popular and have
spread to every corner of the world. There are

many programs and apps allowing the user to retouch
the photos, such as editing eyes, brightening skin,
removing wrinkles, reshaping face, etc. However, edit-
ing videos is still a challenging task.

In this article, we are interested in automatically
transferring face color from a reference image/video
to an input video. Though color transfer has been
studied in the computer vision and graphics commu-
nity for almost two decades, there are only a few
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works for portrait photos. Shu et al.19 developed a
method to transfer both lighting and colors for portrait
photos. They applied shape from a shading technique
to estimate the face normal and then formulated the
transfer problem as an eight-dimensional (8-D) opti-
mal mass transport (OMT), considering colors, pixel
coordinates, and face normals. Though their method
produces excellent results, it takes a few minutes to
process an HD image. Such a high computational cost
diminishes its application to video color transfer. Fu
et al.2 proposed a vectorization-based method that
reduces the region color transfer problem to a bound-
ary color transfer, hereby is efficient. They solved a
Poisson’s equation to render the vector graphics.
However, since their results are highly sensitive to the
PDE’s boundary conditions, directly applying their
method to video leads to unpleasing visual artifacts,
such as flickering.

To overcome the challenges of the existing work,
we propose a simple yet effective method for transfer-
ring face color in videos. We extract the facial features
and vectorize the face(s) of the input video using Pois-
son vector graphics, which encodes the low-frequency
colors as the boundary colors of diffusion curves
(DCs), and the high-frequency colors in Poisson
regions (PRs). Then, we transfer the face color of a ref-
erence image/video to the first frame of the input
video by applying OMT between the boundary colors
of DCs. Next the DC boundary color of the first frame
is transferred to the subsequent frames by matching
the DCs. Finally, with the original or modified PRs, we
render the video using an efficient Poisson solver.
Thanks to our highly efficient DC matching algorithm,
transferring colors for the vectorized video takes less
than 1 millisecond per frame. Since we only apply OMT
to the first frame, our method is computationally effi-
cient and stable. For a single transfer from one refer-
ence image, the absolute performance of our
algorithm, including precomputation (i.e., vectoriza-
tion) and postcomputation (i.e., rendering) is compara-
ble to the conventional raster-image-based method,
which simply applies OMT to all frames. For frequent
transfer from multiple reference images, our method
runs one or two orders of magnitude faster than the
image OMT method, due to its information reuse
nature. The simple DC matching algorithm also greatly
improves the performance of video vectorization,
since we only need to solve an optimization problem
for the first frame. Since our method does not require
correspondence between the reference image/video
and the input video, it is flexible and robust to handle
faces with significantly different geometries and pos-
tures, which often pose challenges to the existing

methods. Moreover, by manipulating the PRs, we can
enhance or reduce the highlight and contrast so that
the reference color can fit into the input video natu-
rally. We demonstrate the efficacy of our method on
image-to-video transfer and color swap in videos.

We make the following contributions in this article.

› A simple yet effective method for vectorizing
portrait videos using Poisson vector graphics;
the method extracts only salient facial features
as a set of sparse DCs and encodes the high-fre-
quency details as PRs.

› An efficient method for transferring skin colors
between a reference image and the input video;
given an accurate skin segmentation, it can pro-
duce reliable transfer results and is robust to
lighting conditions. It also allows information
reuse, and has significant advantages over the
existing methods for multiple transfers on high-
resolution videos.

RELATEDWORK
Color transfer has been studied extensively since 2000.
Reinhard et al.15 pioneered the color transfer method
that matches the mean and standard deviation of color
distributions of the source and reference images.
Hwang et al.10 applied probabilistic moving least square
for color transfer between images with the same scene
but different camera settings and illumination condi-
tions. Shih et al.17 proposed a style transfer technique
for portraits that can match the local contrast and the
overall lighting direction by transferring the local statis-
tics. Their method can produce visually pleasing results;
however, it requires a dense correspondence between
the source and the reference image. Shu et al.19 devel-
oped a relighting and color transfer method for head-
shots by solving OMT for 8-D data including RGB
colors, pixel positions, and normals. Fu et al.2 proposed
a vectorization-based method for transferring color
between portrait images. However, directly applying
their method to videos is time consuming and produ-
ces results with visual artifacts.

DC vectorization aims at converting a raster image
into a set of curve-based vector primitives. Orazan
et al.13 extracted DCs using Canny edges and fitted
their boundary colors by a least square method. Xie
et al.20 developed an automatic method for vectoriz-
ing raster images with hierarchical DCs. Their method
is efficient, accurate, and robust, working for both art
and natural images. However, it often extracts many
curves, making post-editing difficult. The proposed
PVG vectorization only takes the salient feature
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curves as DCs, which present the low-frequency skin
colors only. Furthermore, our method is also efficient,
since we only need to vectorize the first frame of the
input video. The boundary colors of DCs for the subse-
quent frames are obtained by a simple DC matching
algorithm.

Style transfer is also a closely related problem.
Recent years have witnessed great success of deep
learning techniques (e.g., the work by He et al.4). How-
ever, these methods either focus on nonphotorealistic
style or require a dense correspondence map between
the input and the reference. To our knowledge, there
is no deep learning approaches designed for face color
transfer in videos.

Generative adversarial network (GAN)3 is a power-
ful generative model. Karras et al.11 proposed a style-
based generator that uses face color as a high-level
attribute and transfers it to target images. The GAN
approaches do not require semantic segmentation
and can generate realistic images. However, training a
GAN is difficult due to large amount of training data
and some model-related issues, such as diminished
gradient, nonconvergence, and mode collapse.
Though some approaches, such as CycleGAN,9 can be
used for transfer color between images by taking color
as an attribute, it is unclear whether they can be used
for videos. Our method, built upon PVG vectorization

and OMT, is conceptually simple and easy to
implement.

OVERVIEW
As a precomputation method, our method first vector-
izes the input video and then performs color transfer
for arbitrary reference image/video.

To vectorize the video, we first detect the facial
landmarks, and obtain a face mask by extracting the
skin region for each frame. Next we use the extracted
facial landmarks and the boundary of the face mask as
DCs,13 whose boundary colors are computed by solving
a linear least square problem. We encode the low-fre-
quency skin colors using DCs and the high-frequency
details using PRs.7 We refer the reader to the sup-
plementary material, which is available in the IEEE
Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/MCG.2020.3024870,
for more details about DCs and PRs. The reference
image is also vectorized using Poisson vector graphics.

To transfer face colors, we adopt the OMT model
that matches the color distribution of the source and
the reference in an exact manner. Note that naïvely
applying OMT to all frames is obviously time consum-
ing. In our approach, we apply OMT only to the first
frame. Then, taking advantage of the vectorized video,

FIGURE 1. Algorithmic pipeline. Thanks to its information reuse nature, our algorithm is highly desired for frequent color transfer

from multiple reference images.
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we transfer the DC boundary colors to the subsequent
frames by our DC matching algorithm, which is effi-
cient and can also guarantee the smoothness of the
DC boundary colors in-between frames, hereby effec-
tively reducing flickering artifacts.

Figure 1 shows the pipeline of our color transfer
method and Algorithm 1 presents the pseudocode.
The most distinctive feature of our method is informa-
tion reuse. For frequent transfer from multiple refer-
ence images, our method runs one or two orders of
magnitude faster than the image OMT method.

VIDEO VECTORIZATION
Vectorization plays a critical role in our method. A naïve
method is to simply apply the image vectorization
method (e.g., the work by Fu et al.2) to each frame. Such
an approach, however, is time consuming, since one has
to solve a least square problem n times. In this article,
we propose a simple yet effective method for vectoriz-
ing face videos. Our key idea is to solve the optimization
problem only for the first frame and then transfer the
boundary colors of DC to the subsequent frames by
matching the curves. This simple strategy kills two birds
with one stone. First, since the computational cost of
DCmatching is significantly less than that of solving the
least square problem, our method is much faster than
repeating the image vectorization method. Second, it
allows us to easily solve some challenging situations,
such as large changes of lighting conditions.

Extracting Facial Features
Facial landmark detection, also known as face align-
ment, is to locate a set of predefined Fiducial points on
2-D faces. As a core component of various face applica-
tions, it has been studied extensively in the last decade.
In our work, we implement a simple yet effective end-to-
end deep neural network for robust facial landmark
localization. We adopt MobileNetV216 as the feature
extractor with regression output layers. To deal with
imbalanced facial pose datasets, we use online hard
example learning.18 To further improve the accuracy, we
adopt the knowledge distillation method6 that migrates
knowledge from the high-precision model to the real-
time model by collecting a large amount of unlabeled
data. Our model is compact with a size of 2.2 Mb and
can run 125 fps per face for input size 160� 160 on
iPhone 7 Plus. Figure 2(b) shows the detected 106 facial
landmarks. Using the detected facial landmarks, we
crop the input video and vectorize only the region of
interest.

To extract the face mask, we adopt the YCbCr
color space, where Y is the luma component and Cb
and Cr are the blue-difference and red-difference

chroma components. As pointed out by Hsu et al.,8

skin colors are concentrated in the YCbCr space. Spe-
cifically, the pixels in the CrCb subspace follow an
approximately elliptical distribution, and the YCbCr
color space does not depend on luminance. Based on
this observation, we set a range [140,160] for the Cr
component to extract the domain of skin. Since the
domain may be disconnected and contain nonfacial
part, we adopt a simple heuristic by taking the largest
connected component. Then, we take its boundary as
the face mask [see Figure 2(c)]. Furthermore, the prob-
ability edge extraction12 can help us obtain more
robust skin mask from some cases whose skin color is
not located in the Cr range but clearly distinguished
from the background, e.g., Figure 7 bottom row. We
observe this simple technique works very well for face
videos with various colors and postures.

Algorithm 1. PVG-Guided Face Color Transfer for
Videos
Require: The input video with n frames I ¼ Iif gni¼1, a

reference image R, and (optional) � 2 ½0:7; 1:5� the
PR coefficient.

Ensure: The output video I 0 ¼ I 0i
� �n

i¼1
with transferred face

color

" Precomputation: vectorize I

for i ¼ 1 : n do

Extract facial features and skin mask for Ii
Construct DCs gi using the extracted features

if i > 1 then

Compute pi�1 : gi�1 ! gi

end if

end for

Compute g1 for I1 by solving (3)

Compute PRs f1 for I1 using (4)

for i ¼ 2 : n do

gi ¼ gi�1 p�1
i�1 gið Þ

� �
Compute PRs fi for Ii using (4)

end for

" Transfer DC boundary colors

Transfer color to I1 using OMT g
0
1 ¼ cðg1; grÞ

for i ¼ 2 : n do

Transfer color to Ii using g
0
i ¼ g0i�1 p�1

i�1ðgiÞ
� �

end for

" (Optional) Edit contrast and highlight

for i ¼ 1 : n do

Update PRs for Ii by f
0
i ¼ �fi

end for

" Render vector primitives

for i ¼ 1 : n do

Compute I 0i by solving (1) with f
0
i and g

0
i

end for
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Computing Boundary Color g for DCs
Given an image I and the specified feature curves
consisting of the facial landmarks and the boundary of
the skin mask, our algorithm assigns colors of DCs
and evaluates PRs automatically. The DCs represent
significant boundaries containing the main color
derived from the image boundaries. The PRs represent
highlights/shadows and geometric details derived
from image regions (skin mask in our implementation)
with pixel Laplacians. Figure 2 illustrates the face vec-
torization algorithm.

To render and update the vector images, we solve
the Poisson’s equation

DuðxÞ ¼ f; x 2 Vn@V
uðxÞj@V¼ g; x 2 @V

�
(1)

where f is the Laplacian constraints (PRs), g is the
Dirichlet boundary condition of colors (the boundary
colors are defined on the DCs) and V is a 2-D compact
domain.

Using harmonic B-splines,1 we can explicitly
express the solution of Poisson’s equation as

uðxÞ ¼
Xn
i¼1

�ifiðxÞ (2)

where �i is the control coefficient (which will be
solved later), and fiðxÞ is the basis function of har-
monic B-splines.

To determine the color g of boundaries g , we build
a quad tree to tessellate the skin region and then

construct a harmonic B-spline whose basis functions
fiðxÞ are defined on the nodes of the quad tree. Then,
we compute the control coefficients �i by fitting the
input image I in a linear least square

argmin
�j

X
�jfjðxÞ � I

� �2
: (3)

We obtain the boundary color g by evaluating the color
function u on the boundaries g ¼ ujg .

After that, we compute the Laplacian constrains f

by applying the Laplacian operator to all interior pixels

f ¼ D IjV þ gð Þ: (4)

Figure 3 illustrates the idea of Poisson vector
graphics guided color editing. The image is vectorized
into DCs for low-frequency colors and PRs for high-fre-
quency details. To change the color, we simply modify
the boundary colors of the DCs and keep all PRs
unchanged. Since there are only a few DCs in PVG vec-
torized results, editing them is easier than the tradi-
tional vectorization approaches (e.g., Xie et al.20),
which usually produce a large amount of DCs.

We apply the abovemethod only to the first frame of
the input video and obtain g1 : g1 ! R3. For the subse-
quent frames, we do not need to compute the boundary
colors gi, i > 1, for the DCs. Instead, we match the DCs
and then transfer g from the first frame to the remaining
frames. This simple strategy not only reduces computa-
tional cost significantly, but also ensures the skin colors
are consistent in all frames.

FIGURE 2. Face vectorization. (a) Two frames of an input video. We detect 106 feature points for each frame (b) and obtain a face

mask by extracting skin colors (c). We use the feature points and the boundary of the mask as DCs (d). We compute their bound-

ary colors (e) by solving a linear least square problem. To improve the performance, we use harmonic B-spline solver which is

built upon a quad-tree data structure. DCs encode the low-frequency (LF) colors (g) and PRs encode the high-frequency (HF)

details. (f) Color-coded PRs. Using DCs and PRs, we can faithfully reconstruct the input video (h). Moreover, by changing the

coefficients of PRs, we can edit contrast and highlight (i) and (j). (a) Input. (b) Feature points. (c) Skin mask. (d) DCs g. (e) Bound-

ary colors g. (f) PRs. (g) LF. (h) LF+HF. (i) LF + HF�0:7. (j) LF + HF�1:5.
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The 106 facial landmarks are semantically labeled,
hence providing a one-to-one correspondence
between frames. Denote by pi : gi ! giþ1 the map
between two consecutive frames. Given the boundary
color gi : gi ! R3 of the ith frame, we compute the
boundary color of the ðiþ 1Þth frame by

giþ1 ¼ gi p�1
i giþ1

� �� �
(5)

where i ¼ 1; 2; . . . ; n. Figure 4 illustrates the above
method for matching DCs’ boundary color.

PVG-GUIDED COLOR TRANSFER
OMT is a powerful technique for image-to-image color
transfer. Denote by I and J the input and reference
images with NI and NJ pixels, respectively. It com-
putes a transport map between the input color distri-
bution I ¼ fci ci 2 R3�1

		 �NI

i¼1
and the reference color

distribution J ¼ fcj cj 2 R3�1
		 �NJ

j¼1
with a minimum

cost, where ci and cj are the pixel colors. To ensure all
the instances of a color in the input are transferred to
a single color, we adopt the Monge’s formulation to
compute the transport T : fcig ! fcjg:

argmin
T

XNI

i¼1

Hci ci � T ðciÞk k2 (6)

with constraints HT ðIÞ ¼ HJ; where HI and HJ are the
normalized histograms of I and J .

Since Monge’s formulation may not always pro-
duce a solution, we adopt the sliced Wasserstein dis-
tance algorithm14 to obtain an approximate solution
cðI; JÞ such thatHT ðIÞ � HJ

T ðkþ1ÞðIÞ ¼ ð1� bÞT ðkÞðIÞ

þ buMðu�1T ðkÞðIÞ; u�1JÞ (7)

with initial condition T ð1ÞðIÞ ¼ I , where k is the itera-
tion count, b 2 ½0; 1� is a linear parameter balancing
convergence speed and stability of the result, u 2 R3�3

is a randomly generated orthogonal matrix, and M :

R3�NI �R3�NJ ! R3�NI is the histogram matching
operator.

A naïve implementation is to simply compute the
OMT map between each frame and the reference
image. This is obviously time consuming. In our
method, we compute the OMT map only for the DCs
of the first frame as follows:

T ðkþ1Þðg1Þ ¼ ð1� bÞT ðkÞðg1Þ þ buMðu�1T ðkÞðg1Þ; u�1grÞ
(8)

with initial condition T ð1Þðg1Þ ¼ g1, where g1 and gr,
respectively, represent the DCs of the first frame I1
and the reference image R. In our experiment, we set

FIGURE 3. Poisson vector graphics guided color editing. The

ice cream image (a) is vectorized into a set of DCs (colored,

solid lines) and PRs (dotted regions) (b), where the former

encodes the low-frequency color and the latter encodes the

high-frequency details. To change the ice cream’s color, we

only need to edit the boundary colors of the DCs (d). Diffusing

the new boundary colors produces an image with a totally

new looking (c). Intuitively speaking, we formulate the region-

based color editing into a problem of editing the color of its

boundary. The only difference between (b) and (d) is the

boundary colors of DCs. (a) Original. (b) DCs and PRs. (c)

Result. (d) DCs with new boundary colors.

FIGURE 4. DC boundary color matching. The boundary color

of the first frame g1 is computed by (3). With the boundary

color gi for the ith frame and the correspondence map pi :

gi ! giþ1 , we compute the boundary color giþ1 for the

ðiþ 1Þth frame by the inverse map p�1
i .

FIGURE 5. Iterative computation of the OMT map T . We

show a few representative intermediate results I 01jk of the

first frame in the top row and their corresponding histograms

HT ðkÞðg1Þ
in the bottom row. The iterative algorithm converges

quickly and produces the final result in only 20 iterations.
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b ¼ 0:2 and N ¼ 20 which is sufficient to produce
visually pleasing result (see Figure 5). Then, we com-
pute the transferred boundary color g1 as
g1 ¼ cðg1; grÞ , T ðNÞðg1Þ.

The DC boundary colors of the next frame are
obtained by transferring the boundary colors from the
the previous frame gi ¼ gi�1 p�1

i�1 gið Þ
� �

, 2 � i � n.

RESULTS
We implemented our algorithm in C++ and evalu-
ated it on a PC with an Intel i7 CPU2.80 GHz.
Table 1 reports the running time of our method and
the raster-image-based method.

We examine the time complexity of our method,
the naïve image-based OMT that computes OMT for
all frames, and the extended Fu et al.’s method2 that
applies their vectorization-based method for all
frames. Denote by n the number of frames, m the
number of reference images, TR�OMT the time for
computing image-based OMT for one frame, TV the
time for vectorizing one frame, TV�OMT the time for
computing vectorization-based OMT for one frame,
TDC�M the time for matching DCs between adjacent
frames, and TR the time for rendering PVG.

The image-based OMT method takes mnTR�OMT

time, since it computes the OMT map for every frame
and every reference. The extended Fu’s method con-
sists of three steps: vectorization takes nTV time,
since it solves the linear least square problem n times;
color transfer takes mnTV�OMT time, since it com-
putes an OMT map for every frame and every refer-
ence; PVG rendering takesmnTR time.

Our method also consists of three steps: vectoriza-
tion takes only TV þ ðn� 1ÞTDC�M time, since we only
solve the linear square problem for the first frame;
color transfer takes mTV�OMT þmðn� 1ÞTDC�M , since
we compute the OMT map only for the first frame;
PVG rendering takes mnTR time. Since TDC�M �
TR�OMT , TDC�M � TV�OMT , and TR � TR�OMT , our
method has significant advantage for long videos (i.e.,
with large n) and multiple references (i.e.,m > 1).

We evaluate our method on various face videos.
Figure 7 shows our results on several celebrities. Since
our method does not require correspondence
between the input video and the reference, it is flexi-
ble and robust to handle persons wearing glasses (see
Figure 6).

Our method can also handle the cases with chang-
ing lighting conditions (see Figure 8). Note that the
skin colors are extracted from the first frame and
encoded as DCs, and the light changes in the subse-
quent frames are all encoded as PRs. Since PVG
explicitly separates hues (DCs) and tones (PRs), it can
automatically blend PRs (which are the relative or off-
set values) with DCs, no matter how their boundary
colors are changed. This again demonstrates the
advantages of PVG vectorization and justifies the
effectiveness of our strategy for obtaining DC colors
from only the first frame. Figure 9 shows the color
swap result in a video. See also the supplementary
material for video demonstrations, available online,
due to the space limitation.

Now we examine the quality of the results. We
observe that both our method and the image-based
OMT obtain results of similar quality (which is hard to
distinguish by naked eyes), but our method runs signif-
icantly faster. The extended Fu’s method has a similar

TABLE 1. Statistics. The timingsweremeasured inmilliseconds.

FIGURE 6. Transferring face colors to person wearing glasses.

We extract the facial features to form the DCs and then com-

pute their boundary colors by solving a linear least square for

the first frame. DCs encode the low-frequency skin colors

and PRs encode the high-frequency details (including

glasses). Given a vectorized reference image (with or without

wearing glasses), we only need to transfer the boundary col-

ors between the DCs and keep the PRs unchanged. Due to

change of camera positions, the resolutions of the two facial

regions are different, which are 318� 449 and 512� 689,

respectively. Our method can directly apply to the raw

images and is insensitive to the resolution. For better visuali-

zation, we scaled the images here. (a) Input. (b) DCs w/ g. (c)

LF. (d) DCs with g0. (e) LF. (f) LF+HF.
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run-time performance as ours for a single transfer, but
their method produces results with flickering artifacts,
since it computes the DC boundary color g separately
and there is not guarantee of smoothness between
adjacent frames. Our method does not compute g for
frames i � 2, instead it simply transfers the g from the
previous frame. As a result, our method is not only sta-
ble but also efficient.

To quantitatively evaluate the quality, we compute
the PSNR metric P for each frame of the original video
and the transferred video. Then, we measure their dif-
ference as shown in Figure 10. We observe that the dif-
ference curve of our method is almost a constant,
meaning that our result consistently mimics the input,
differing only by a constant which is independent of
the frame index. In contrast, we observe the extended

FIGURE 7. Transferred results of celebrities. Each person is transferred from four references. We observe that the transferred

colors are highly consistent and show the first, the second, the middle, and the last frames as the representative frames. Note

that the first frame is computed via OMT and the subsequent frames are obtained via DC matching. The last two rows show the

transferred results of persons wearing glasses. See Parts 3 and 4 in the accompanying video.
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Fu’s method has large changes frame by frame, imply-
ing that their results are not stable.

Our method requires the input video has a minimal
resolution for extracting the salient facial features. We

observe that DCs can be accurately extracted when
the facial regions have size > 200� 200. Our DC
matching algorithm efficiently transfers the boundary
color of the first frame to the subsequent frames. This
strategy works well for short video clips. Since vectori-
zation errors often accumulate in long video clips, an
easy way to reduce the error is to “reset” the DC
boundary colors by solving the least square (3) after a
certain number of frames. In our implementation, we
set the default clip length as 120 to balance efficiency
and accuracy. Resetting DCs may cause a slight color
jump in the video. However, for a typical video
sequence with frame rate 25fps, the jump lasts only
0.04 s, which is too short to be observed by naked
eyes. Figure 11 illustrates the vectorization errors of a
600-frame video clip with different resolutions. We
can also see that our method is insensitive to video
resolution, as long as each frame is large enough to
extract salient edges and facial landmarks.

CONCLUSIONS
We developed a simple yet effective method for auto-
matically transferring face colors in videos. Taking
advantage of PVG guided vectorization, our method
computes only an OMT map for the first frame and
then transfers the DC boundary colors for the subse-
quent frames by matching the DCs. Thanks to its infor-
mation reuse nature, our method is highly desired in

FIGURE 8. Varying lighting conditions. Row 1 shows 10 consecutive frames of a video with large color changes due to flash. Rows

2 and 3 show our results and the results by Fu et al.,2 respectively. The reference image is shown in an inset with red frame. Since

their method vectorizes each frame separately, the light changes are taken as low-frequency signals, which are encoded by DCs.

Therefore, their method does not compute a stable skin color and their transferred results have undesired skin color changes

(e.g., column 4, row 3). In our approach, skin colors are obtained in the first frame only, and all the color changes in the subse-

quent frames caused by the varying lighting conditions are encoded as high-frequency PRs. With DC matching strategy, the skin

colors remain stable in all frames, and they can naturally be blended with the PRs (which encode lighting changes). See Part 5 of

the accompanying video.

FIGURE 9. Face color swap. Row 1 shows two frames of the

original video. Row 2 shows the results by swapping the

boundary colors of DCs and keeping the PRs unchanged.

Row 3 shows the results by updating PRs with coefficients

0.8 (Lemon) and 1.2 (Cuomo), respectively. We observe that

the results with updated PR coefficients have more natural

contrast and highlight. See also the accompanying video.

160 IEEE Computer Graphics and Applications November/December 2021

FEATURE ARTICLE

Authorized licensed use limited to: Tsinghua University. Downloaded on April 11,2024 at 07:31:40 UTC from IEEE Xplore.  Restrictions apply. 



frequent color transfer from multiple references. Since
our method does not require correspondence
between the input video and the reference, it is flexi-
ble and robust to handle faces with significantly differ-
ent geometries and postures. Moreover, it also allows
the user to edit the highlight and contrast by changing
the coefficient of PRs. Experimental results demon-
strate the effectiveness of our method.

Limitations. High-quality color transfer requires
accurate skin mask and facial feature extraction. For
the skin mask, we adopted Hsu et al.’s algorithm8 for
skin extraction. We observed that Hsu’s method works
well if skin colors are clearly different from the back-
ground. However, this method often computes wrong
masks if the assumption does not hold. Figure 12
shows a failed example where skin and hair have simi-
lar colors. In the future, we will improve our method by
adopting state-of-the-art deep learning techniques

(e.g., He et al.5) for skin mask extraction. Our facial fea-
ture extraction neural network works for a wide range
of head poses and camera angles. However, when
there are large topological changes of features in a
sequence of video frames (e.g., the number of features
drop significantly from front face to side face), DC
matching may fail due to many unmatched features. A
robust partial DC matching algorithm is demanded to
solve this issue.
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FIGURE 10. Quality analysis. We transfer Reference A and

Reference B to the first and second half of the input video

and compute the difference of PSNR between the original

video and the transferred video. The more constant the dif-

ference, the more consistence with the input video, hence

the less dependence of the frame index and the less flicker-

ing artifacts. The x-axis is the frame index and the y-axis is

the squared difference of PSNR between the original video

and the transferred video. Both our curve (red) and the curve

of the image-based OMT (green) are almost constant, indicat-

ing the comparable quality of the results. However, our

method runs significantly faster. We observe that simply

applying Fu’s method2 to the video frames produces results

with flickering artifacts. The large variation of the blue curve

confirms Fu’s results are unstable. The PSNR deviations of

our method, the image-based OMT, and Fu’s method are

0.0656, 0.0838, and 0.6248, respectively. See Part 2 of the

accompanying video.

FIGURE 11. Accuracy. We evaluate the vectorization accuracy

on a 600-frame video with two different resolutions and visu-

alize the vectorization errors using heat color map, where

warm colors denote large error and cold colors small error.

The frame ids are 1, 5, 30, 60, 120, 240, 480, and 600, respec-

tively. The top (resp. bottom) 3 rows show the low-resolution

(resp. high-resolution) video, in which the size of the facial

regions is 200� 274 (resp. 800� 1096). The value below each

figure is the mean error. We observe that the high-resolution

video has slightly lower errors than the low-resolution input.

In this figure, we do not reset DCs so that accumulation

errors can be visualized. In other figures, we reset DCs every

120 frames to stop error propagation.

November/December 2021 IEEE Computer Graphics and Applications 161

FEATURE ARTICLE

Authorized licensed use limited to: Tsinghua University. Downloaded on April 11,2024 at 07:31:40 UTC from IEEE Xplore.  Restrictions apply. 



for the Development of Distinguished Young Scien-
tists of ISCAS (Y8RC535018), and in part by Youth
Innovation Promotion Association CAS (No. 2018495).
This article has supplementary downloadable material
at http://ieeexplore.ieee.org, provided by the authors.

REFERENCES
1. P. Feng and J. Warren, “Discrete bi-laplacians and

biharmonic b-splines,” ACM Trans. Graph., vol. 31, no. 4,

pp. 115:1–115:11, Jul. 2012.

2. Q. Fu, Y. He, F. Hou, J. Zhang, A. Zeng, and Y.-J. Liu,

“Vectorization based color transfer for portrait images,”

Comput.-Aided Des., vol. 115, pp. 111–121, 2019.

3. I. Goodfellow et al., “Generative adversarial nets,” in

Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 2672–

2680.

4. M. He, J. Liao, D. Chen, L. Yuan, and P. V. Sander,

“Progressive color transfer with dense semantic

correspondences,” ACM Trans. Graph., vol. 38, no. 2,

2019, Art. no. 13.

5. Y. He et al., “Semi-supervised skin detection by network

with mutual guidance,” in Proc. IEEE Int. Conf. Comput.

Vis., 2019, pp. 2111–2120.

6. G. Hinton, O. Vinyals, and J. Dean, “Distilling the

knowledge in a neural network,” 2015, arXiv:1503.02531.

7. F. Hou et al., “Poisson vector graphics (PVG),” IEEE

Trans. Visual. Comput. Graph., vol. 26, no. 2, pp. 1361–

1371, Feb. 2020.

8. R.-L. Hsu, M. Abdel-Mottaleb, and A. K. Jain, “Face

detection in color images,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 24, no. 5, pp. 696–706, May 2002.

9. X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz,

“Multimodal unsupervised image-to-image translation,”

in Proc. Eur. Conf. Comput. Vis., 2018, pp. 172–189.

10. Y. Hwang, J.-Y. Lee, I. S. Kweon, and S. J. Kim, “Color

transfer using probabilistic moving least squares,” in

Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2014,

pp. 3342–3349.

11. T. Karras, S. Laine, and T. Aila, “A style-based generator

architecture for generative adversarial networks,” in

Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019,

pp. 4401–4410.

12. M. Leordeanu, R. Sukthankar, and C. Sminchisescu,

“Efficient closed-form solution to generalized boundary

detection,” in Proc. Eur. Conf. Comput. Vis., 2012, pp.

516–529.

13. A. Orzan, A. Bousseau, H. Winnem€oller, P. Barla,

J. Thollot, and D. Salesin, “Diffusion curves: A vector

representation for smooth-shaded images,” ACM

Trans. Graph., vol. 27, no. 3, pp. 92:1–92:8, 2008.

14. J. Rabin, G. Peyr�e, J. Delon, and M. Bernot, “Wasserstein

barycenter and its application to texture mixing,” in

Proc. Int. Conf. Scale Space Variational Methods

Comput. Vis., 2011, pp. 435–446.

15. E. Reinhard, M. Adhikhmin, B. Gooch, and P. Shirley,

“Color transfer between images,” IEEE Comput. Graph.

Appl., vol. 21, no. 5, pp. 34–41, Jul./Aug. 2001.

16. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and

L.-C. Chen, “Mobilenetv2: Inverted residuals and linear

bottlenecks,” in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit., 2018, pp. 4510–4520.

17. Y. Shih, S. Paris, C. Barnes, W. T. Freeman, and

F. Durand, “Style transfer for headshot portraits,” ACM

Trans. Graph., vol. 33, no. 4, pp. 148–171, 2014.

FIGURE 12. Failed case due to wrong skin extraction. The skin

color clustering algorithm computes wrong masks (green)

which include part of her hair. As a result, skin colors are also

transferred to the hair. The artifacts are highlighted in the red

boxes. See also the accompanying video. (a) Input. (b) Skin

masks (green). (c) Transferred results.

162 IEEE Computer Graphics and Applications November/December 2021

FEATURE ARTICLE

Authorized licensed use limited to: Tsinghua University. Downloaded on April 11,2024 at 07:31:40 UTC from IEEE Xplore.  Restrictions apply. 



18. A. Shrivastava, A. Gupta, and R. Girshick, “Training

region-based object detectors with online hard

example mining,” in Proc. IEEE Conf. Comput. Vision

Pattern Recognit., 2016, pp. 761–769.

19. Z. Shu, S. Hadap, E. Shechtman, K. Sunkavalli, S. Paris,

and D. Samaras, “Portrait lighting transfer using a mass

transport approach,” ACM Trans. Graph., vol. 36, no. 4,

pp. 1–15, 2017.

20. G. Xie, X. Sun, X. Tong, and D. Nowrouzezahrai,

“Hierarchical diffusion curves for accurate automatic

image vectorization,” ACM Trans. Graph., vol. 33, no. 6,

pp. 1–11, 2014.

QIAN FU is currently working toward the Ph.D. degree with

the School of Computer Science and Engineering, Nanyang

Technological University, Singapore. Her research interests

fall into the areas of computer graphics, computer-aided

design, and computational geometry. She received the bach-

elor’s and master’s degrees from the College of Information

Science and Technology, Beijing Normal University, Beijing,

China. She is the corresponding author of this article.

Contact her at qfu004@e.ntu.edu.sg.

YINGHE is currently an Associate Professorwith the School of

Computer Science and Engineering, Nanyang Technological

University, Singapore. His research interests fall into the gen-

eral areas of visual computing and he is particularly interested

in the problems which require geometric analysis and compu-

tation. He received the B.S. andM.S. degrees in electrical engi-

neering from Tsinghua University, Beijing, China, and the Ph.D.

degree in computer science from Stony Brook University,

Stony Brook, NY, USA. Contact him at yhe@ntu.edu.sg.

FEI HOU is currently a Research Associate Professor with the

Institute of Software, Chinese Academy of Sciences, Beijing,

China. His research interests include geometry processing,

image-based modeling, data vectorization, medical image

processing, etc. He received the Ph.D. degree in computer

science from Beihang University, Beijing, China, in 2012. He

was a Postdoctoral Researcher with Beihang University from

2012 to 2014 and a Research Fellow with the School of Com-

puter Science and Engineering, Nanyang Technological Uni-

versity, from 2014 to 2017. Contact him at houfei@ios.ac.cn.

QIANSUN is currently an Associate Professor with the College

of Intelligence and Computing, Tianjin University, Tianjin,

China. Her current research interests include human–

computer interaction and computer graphics. She received the

Ph.D. degree in computer science fromNanyang Technological

University, Singapore. Contact her at qian.sun@tju.edu.cn.

ANXIANG ZENG is currently a Senior Staff Algorithm Engi-

neer and the Director of Alibaba, Hangzhou, China, who is

head of the globalization search and recommendation. He is

currently working toward the Ph.D. degree with Nanyang

Technological University, Singapore. He focuses on the field

of search and recommendation and reinforcement learning,

and has authored or coauthored more than ten papers in top

conferences. He has been working in the searching and rec-

ommendation field for more than 10 years. Contact him at

renzhong@taobao.com.

ZHENCHUAN HUANG is currently an Algorithm Engineer

with the content algorithm team of Search and Recommend

Business Unit with Alibaba Group, Hangzhou, China. His

research interests are object keypoint detection, metric

learning, and applications of computer vision. He received

the B.Sc. and M.Sc. degrees in computer science from Nanj-

ing University, Nanjing, China, in 2014 and 2017, respectively.

Contact him at zhenchun.hzc@alibaba-inc.com.

JUYONG ZHANG has been a Faculty Member with the

School of Mathematical Sciences, since August 2012. His

research interests fall into the areas of computer graphics,

computer vision, and machine learning. He received the

bachelor’s degree in computer science and engineering from

the University of Science and Technology of China, Hefei,

China, in 2006, and the Ph.D. degree from the School of Com-

puter Science and Engineering, Nanyang Technological Uni-

versity, Singapore, under the supervision of Prof. Jianfei Cai

and Prof. Jianmin Zheng. From 2011 to 2012, he first worked

as an Intern Student and then a Postdoctoral Research Fel-

low in LGG of EPFL, Switzerland. Contact him at juyon-

g@ustc.edu.cn.

YONG-JIN LIU is currently a tenured Full Professor with the

Computer Science Department, Tsinghua University. His

research interests include computational geometry, com-

puter graphics, computer-aided design, and pattern analysis.

He received the Ph.D. degree from the Department of

Mechanical and Aerospace Engineering, Hong Kong Univer-

sity of Science and Technology, Hong Kong. He received the

Ph.D. degree in 2004 from Hong Kong University of Science

and Technology. Contact him at liuyongjin@tsinghua.edu.cn.

November/December 2021 IEEE Computer Graphics and Applications 163

FEATURE ARTICLE

Authorized licensed use limited to: Tsinghua University. Downloaded on April 11,2024 at 07:31:40 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


