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Emotion Distribution Learning Based on
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Abstract—Emotion analysis based on peripheral physiological signals has attracted increasing attention recently in affective
computing. Previous works usually predict emotional states using a single emotion label for each discrete time. However, in real-world
scenarios, it is not sufficient due to the fact that the real-world emotional state is usually a mixture of basic emotions. In this paper, we
formulate the emotion analysis as an emotion distribution learning (EDL) problem and make two contributions. First, we establish a
standardised dataset containing four negative emotions (anger, disgust, sadness, fear) and three positive emotions (tenderness, joy,
amusement), which could be a useful benchmark for the EDL task. Second, we propose an emotion distribution prediction system
which has the following distinct characteristics: (1) after processing raw peripheral physiological signals, we compute totally 89
representative features from four channels, i.e., GSR, SKT, ECG and HR, (2) an adaptive feature selection strategy based on recursive
feature elimination (RFE) is used to select the most significant features in our EDL task, and (3) we design a dedicated EDL model
based on convolution neural networks that takes information from both the feature correlation and the time domain into consideration.
Experiments were conducted to validate our proposed system, and the results indicated that (1) the proposed feature selection
strategy effectively selects significant features and improves algorithmic performance, and (2) the proposed EDL model can obtain
good results in terms of six evaluation measures and outperform existing methods.

Index Terms—Emotion recognition, distribution learning, peripheral physiological signals, feature selection.

✦

1 INTRODUCTION

EMOTION recognition has attracted increasing interests
in recent years in affective computing and human-

computer interaction (HCI). Emotion is the psychological
and physiological human response raised by neurophysio-
logical changes, and various kinds of measures for emotion
recognition have been studied [1]. These measures can be
broadly classified into audio-visual based and physiological
based categories [2].

Audio-visual based measures detect emotions from be-
havioral signals, such as speech sequences, facial expres-
sions and gestures. Compared to behavioral signals, physi-
ological signals are difficult to conceal. For example, people
can disguise a smile during negative emotional experience
[3]; however, it is unlikely to control physiological reactions
such as electroencephalography (EEG), heart rate, skin tem-
perature, etc. Moreover, according to Levenson’s research
on Americans and the Minangkabau of West Sumatra, there
is cross-cultural consistency of autonomic nervous system
(ANS) representation between different nations [4]. These
findings indicate the advantage of using physiological sig-
nals for emotion recognition. As summarized in Section 2,
both brain signals (e.g., EEG) and peripheral physiological
signals have been studied for emotion analysis. Due to the
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population of portable peripheral devices such as smart
wrist watches, in our study, we pay attention to peripheral
physiological signals including electrocardiogram (ECG),
heart rate (HR), galvanic skin response (GSR) and skin
temperature (SKT).

To characterize emotions, two representative emotion
models exist [5]: the discrete model and the dimensional
model. The former uses a fixed number of basic emotions
and the six-basic-emotion form [6] is such a typical example.
The latter describes emotion in a continuous 2D or 3D space
in which every point represents a specified subtle emotion.
Widely used dimensional models includes the 2D valence-
arousal (VA) model and the 3D valence-arousal-dominance
(VAD) model. According to the cognitive theory [7], [8],
valence indicates whether emotion is positive or negative,
arousal indicates the intensity of emotion, and dominance
refers to the degree of human control over the emotion.
Although the dimensional model is easier to describe much
more emotion types, when two or more discrete emotions
are close in the VA or VAD space, the dimensional model
becomes difficult to distinguish them, while the discrete
model is easy to characterize them by their unique be-
havioral responses [9]. In our study, we use the discrete
model to study a mixture of positive emotions (tenderness,
joy and amusement) and negative emotions (anger, disgust,
sadness and fear), which are frequently induced in real-
world scenarios.

Many previous researches recognize emotions using a
single emotion label for each discrete time. However, in
our daily life, the real induced emotions are unlikely to
be a single pure emotion state, but rather a mix of sev-
eral emotions with different intensities (especially for the
positive emotions). Therefore, in this paper, we formulate
the emotion recognition as an emotion distribution learning
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(EDL) problem. In the learned emotion distribution, each
component of the distribution corresponds to an intensity
of a basic emotion in the discrete model. To the best of
authors’ knowledge, there is no publicly available dataset of
peripheral physiological signals with emotion distribution
labels. In this paper, we construct such a dataset and pro-
pose an emotion distribution learning (EDL) model based
on convolution neural networks. The contributions of this
paper are two folds:

• We construct a standardized emotion distribution
dataset with peripheral physiological signals. In or-
der to evoke reliable target-specific emotions, real-
istic movie clips with high ecological validity are
selected and used as inducing materials. We label
the dataset according to the subjects’ self-reports and
transform these labels into emotion distributions;
therefore our dataset provides a useful benchmark
for the EDL task.

• We proposed an emotion distribution prediction
system which incorporates a novel feature selec-
tion strategy and a 2D convolution neural network
model for EDL. Experiments show that our proposed
method can achieve good results and outperforms
existing methods.

2 RELATED WORK

2.1 Emotion Induction
Emotion induction is a necessary prerequisite in emotion
analysis, in which the selection of stimulus materials plays
an important role. Visual materials are one of the most
commonly used stimulus materials, and some well-known
datasets of visual materials include Affective Norms for
English Words (ANEW), Affective Norms for English Text
(ANET), International Affective Picture System (IAPS) [10],
[11], [12]. Another form is auditory materials, and one rep-
resentative dataset is International Affective Digital Sounds
(IADS) [13], [14], which collects birdsong, explosive sound
and the sound of rain, etc. Many studies have shown
that music evokes emotional responses [15], [16]. Some
researchers also use music to elicit emotional state [17],
[18], [19]. In recent years, many studies (e.g., [20]) use the
combination of audio-visual stimuli (such as film clip and
music video) to induce emotions.

In this paper, we follow the work [20] to use film clips
for eliciting emotions, by considering the following reasons.
First, films share the most advantages that pictures offer and
they are dynamic which are more similar to our realistic
life [21]. Second, real-world emotions are often elicited by
dynamic visual and auditory stimuli which are similar to
films, and therefore, films have high degree of ecological
validity [22]. Finally, the dynamic combined audio-visual
stimuli can induce emotions without deception [20], [22].

2.2 Emotion Recognition Using Physiological Signals
Emotion analysis based on physiological signals is a hot
topic in affective computing. At present, many studies focus
on discrete emotion recognition using EEG signals. Ruiz-
Padial et al. [23] used Higuchi fractal dimension (HFD) of
EEG and heart rate variability (HRV) of ECG as features, to

investigate their relationships with four discrete emotions
(i.e., disgust, fear, humor and neutrality). They found that
brain complexity changed similarly as HRV in response
to different video clips which induce specific emotions.
Liu et al. [20] built a real-time discrete emotion system
based on EEG, and they used movie clips to induce eight
emotions including joy, amusement, tenderness, anger, dis-
gust, fear, sadness and neutrality. In this work, EEG data
were collected by using the Emotiv EPOC system, and the
accuracy was up to 60.55% by importing prior knowledge
into their proposed 3-layer support vector machine (SVM)
based recognition system.

Deep learning technology has also been used for EEG-
based emotion recognition. Zheng et al. [24] employed
deep belief networks (DBNs) to recognize three valences
of emotions (i.e., positive, neutral and negative emotions),
and their results showed the superiority of DBN over SVM,
logistic regression (LR), and k nearest neighbor (kNN). Tang
et al. [25] introduced a Bimodal Long Short-Term Memory
(LSTM) network which takes temporal information of mul-
timodal signals into consideration for emotion recognition.
In addition, in order to explore the relations among dif-
ferent EEG channels and minimize the feature distribution
shift between different sessions and/or subjects, Du et al.
proposed an attention-based LSTM model named ATDD-
LSTM [26]. By introducing both attention mechanism and
domain discriminator, ATDD-LSTM achieves state-of-the-
art performance on subject-dependent, subject-independent
and cross-session evaluation.

Besides EEG signals, peripheral physiological signals
have also been used for emotion recognition. Peripheral
physiological signals including cardio activity, skin conduc-
tance, etc., were used in [27] to recognize amusement and
sadness for representing positive and negative emotions,
respectively. However, only recognizing two emotion types
seriously limited the scope of applications. Kragel et al. [28]
collected electrodermal, cardiac, respiratory and gastric data
using the BIOPAC MP150 system, and these signals were
used together with self-report measures in a seven-emotion
recognition task. The accuracy is up to 58.0% by using only
peripheral physiological signals, and their results showed
that the discrete model is better to characterize emotions
in peripheral physiological signals than the dimensional
model. Observing that emotion is usually expressed in
multiple modalities, Zhang et al. [29] collected 3D dynamic
imaging, 2D video, thermal videos and peripheral physi-
ological signals. In their work, peripheral data including
heart rate, blood pressure, respiration and skin conductivity
(Electrodermal activity, EDA) were captured by the BIOPAC
MP150 system, and extracted multi-modal features were fed
into SVM for classifying five discrete emotions.

All above works only classified or predicted a single
emotion type for a specific signal sample (collected in a
short time). To make the classification more closer to real-
world scenarios, in this paper, we propose a model which
predicts a distribution of basic emotions.

2.3 Label Distribution Learning

In the real world, the human emotion state at every mo-
ment is often a mix of basic emotions, and then it is not
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sufficient to use a pure emotion to describe the emotional
state. To remedy this defect, multi-label learning (MLL)
was proposed (e.g., [30] in text emotion analysis), which
assigns multiple emotion labels to an instance. However,
MLL cannot provide a weight for each emotion label, i.e., it
cannot solve the emotion label ambiguity problem [31]. In
order to describe the weight or role of each label, a new
learning paradigm called label distribution learning (LDL)
was proposed [32], [33]. In LDL, each label was assigned
a non-negative real number (defined as description degree)
which represents the degree of how the label describes the
instance. For any instance, the sum of description degrees
of all labels is 1, indicating a full description of this instance
[32]. Compared to MLL, LDL is more suitable to deal with
the emotion ambiguity.

So far, several representative LDL algorithms have been
proposed for various specific applications [32], [33], [34],
[35], [36]. In the work [33], Geng et al. proposed three
strategies to design LDL algorithms. The first strategy, called
problem transformation, is to transform a LDL problem into
a single label learning (SLL) problem. The key is to construct
a single label training set (from original training samples
with distribution labels) using resampling technology. To
do so, two representative algorithms are PT-Bayes and PT-
SVM. The second strategy is to use algorithm adaptation
which extends some existing learning methods to deal with
label distribution. For this strategy, algorithms including
AA-kNN and AA-BP can be used. The third strategy is to
use specialized algorithms such as the conditional probabil-
ity neural network (CPNN) proposed in [32] which learns
the conditional probability density function.

Yang et al. [35] improved CPNN by introducing binary
encoding for label and distribution augmentation strategies.
Their proposed BCPNN and ACPNN were used for image
sentiment distribution learning. Furthermore, Yang et al.
[34] and Zhang et al. [36] proposed multi-task frameworks
for image sentiment distribution learning and text emotion
distribution, respectively. Different from the existing label
distribution learning tasks such as image and text sentiment
distribution mentioned above, in this paper, by treating
emotion types as general labels, we study the emotion dis-
tribution learning (EDL) problem for human beings using
peripheral physiological signals.

Due to the fact that emotion distribution studied in this
paper is significantly dependent on the individuals, our task
is more challenging compared to the the sentiment analysis
on image or sentence. Furthermore, the datasets, features
and algorithms for analyzing peripheral physiological sig-
nals are significantly less than those used for images or text
sentiment analysis, which makes our task more difficult.
In order to predict the emotion distribution of individu-
als using peripheral physiological signals, we constructed
a dataset and proposed a emotion distribution prediction
system which includes a novel feature selection strategy
and a convolution neural network model that takes feature
correlation information and time domain information into
consideration.

3 CONSTRUCTING DATASET OF PERIPHERAL
PHYSIOLOGICAL SIGNALS

One great challenge in our study is the lack of a dataset of
peripheral physiological signals with emotion distribution
labels. In this section, we construct such a dataset, which
provides a useful benchmark for the EDL task.

3.1 Emotion Induction by Movies

Ge et al. [37] established a standardised database of Chinese
emotional film clips, which has been shown to be effective
in inducing emotional states according to the validation
on a large sample [38]. To construct the database, nine
trained research assistants first collected more than 1,000
Chinese film excerpts, from which 111 clips were selected
by three cognitive psychologists by evaluating the potential
to successfully elicit the target emotion of each clip. Then, 39
effective film clips were further selected by 315 undergrad-
uate and graduate students based on two objective criterion
(hit rate and intensity) and eventually 22 clips were selected
by another 147 undergraduate students (using the success
index) to build the standardised database. In our study,
different from labeling a single emotion, it is more likely
to get confused when labelling the emotion distribution. In
order to maintain the consistency of emotion distribution
estimated by different subjects, we employed an expert with
rich experience in emotion assessment to further evaluate
each clip, and a total of 14 emotional movie clips including 7
emotion categories (anger, disgust, sadness, fear, tenderness,
joy and amusement) were selected from the standardized
database of Chinese emotional film clips. Among these
14 emotional movie clips, 7 were positive emotions and
the other 7 were negative emotions. The used 7 emotion
categories (including 4 negative and 3 positive emotions)
were carefully selected as good representatives to form
the emotion label distributions by comprehensive literature
review and subjective reports in [37] (see more details in
Appendix A).

Anger was induced by two clips which depicted the
violent assault and massacre of Chinese girls, and lasted
for 81 and 155 seconds respectively. Disgust was induced by
one clip which described the plot of the boy being invaded
by an old eunuch and lasted for 159 seconds. Sadness
was elicited by two clips which showed scenes of a son
losing his father and a father losing his son, and lasted
for 140 and 116 seconds respectively. Fear was induced by
two clips which were about the protagonist being chased
and robbed of children by a strange woman and meeting
a ghost in the bathroom respectively, and these two clips
lasted for 102 and 68 seconds. As for positive movies, three
tender clips showed the pictures of the master and servant
playing together (99 seconds), the father and the son playing
together (141 seconds), and the first meeting of the leading
roles (91 seconds) respectively. Three joyful clips showed the
successful horse vaulting of the protagonist (120 seconds),
the lovely alien creatures (92 seconds) and the celebration of
the Spring Festival in rural China (85 seconds) respectively.
In addition, one amusing clip described a very absurd war
scene which lasted for 67 seconds.
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3.2 Acquisition Procedure

Thirty eight students (undergraduates, postgraduates or
doctoral students) participated in the experiment with an
average age of 23.95 years (SD = 1.56). Among them, 17
were male and 21 were female. All the subjects were right-
handed and healthy (without anxiety, depression or any
other mental illness), with a normal or corrected-to-normal
vision. The subjects were informed of the whole process
of the experiment before they filled in the informed con-
sent form. They were told that they could terminate the
experiment at any time, and all the experimental data were
anonymous and only used for scientific research. The day
before the experiment, the subjects were asked not to take in
alcohol, smoke, drink coffee or take medicine, and to ensure
adequate sleep. Before formal experiment, biosensors were
attached to subject with the help of experimenters (details
are described in section 3.3).

The experimental program was presented on the 15-inch
LCD screen (1024 × 768, 60Hz) with the script program
written in VB. In the experiment, the subtitles of all the
movie segments were removed and the resolution was set to
720 × 576. Since the within-subject design was adopted, each
participant watched 14 video clips in random order. Within
the trial of each video clip, an instruction was presented
first. Then a fixation point appeared (1 second), followed by
a 1-min go/no go task (when subjects see ‘1’ on the screen,
they press the key, and when ‘9’ appears, they do not press
the key), which served as a distraction operation to elim-
inate the effects of previous emotions. After that, subjects
were asked to rest for 80 seconds and the video clip was
presented. The above process would be repeated until all
the video clips were played. During the whole experiment,
peripheral physiological signals were recorded by an MP150
data recording system (BIOPAC Systems Inc.). The emotion
distribution labels for these peripheral physiological signals
were specified in Section 3.4.

3.3 Biosensors

For ECG and HR measurement, ECG100C amplifier was
used. Experimenters wiped the skin surface of the left and
right inner ankles and the right carotid artery of subject with
alcohol firstly. Then, three Ag-AgCl pre-gelled electrodes
were attached to these three places respectively. Finally, the
VIN + line of ECG was connected to the electrode patch of
the left lower limb, the VIN – line to the electrode patch of
the right carotid artery, and the GND line to the electrode
patch of the right lower limb.

For GSR acquisition, the distal parts of the right index
finger and middle finger were taken. Experimenters wiped
these two parts of subject with medical alcohol, and then
apply conductive paste around the positive and negative
poles. The sensor receives the recorder and transmits the
signal data to the GSR100C amplifier. SKT was measured by
SKT sensor placed on the thumb of subject connected with
SKT100C amplifier.

3.4 Emotion Distribution Labels

As introduced above, we selected 14 emotional movie clips
including 7 emotion classes. We used these 14 videos to

induce emotions on 38 subjects and recorded their periph-
eral physiological signals. After collecting these signals,
we conducted data preprocessing, feature extraction and
feature selection sequentially as described in Section 4.

For each emotion-eliciting video, all subjects were asked
to perform a self-assessment to indicate (1) their feeling on
the degree of each of seven discrete emotions and (2) the
degree of familiarity with this video. A nine-level Likert
scale (1-9) was used in self-assessment, where 1 represents
”not at all” and 9 represents ”extremely strong” (on feeling
seven discrete emotions or the familiarity degree with the
video).

Let Dx = {dx1 , dx2 , · · · , dxk} be the emotion distribution
label of x-th emotion-eliciting video, where k is the number
of emotion classes and x is the index of the video. r̂xij
denotes the chosen scale of the j-th emotion of the i-th
subject and fx

i denotes the familiarity degree of i-th subject
with this video. We can compute corresponding emotion
distribution label Dx using the following steps. We first
normalized r̂xij for each subject as rxij =

r̂xij∑
k r̂xik

to reduce
personal bias [39]. We followed the assumption in [40],
that the more familiar the subject knows the video, the
more accurate the emotional assessment is made. Then the
description intensity of the j-th emotion in x-th video can
be computed as:

dxj =

∑
i f

x
i · rxij∑

k

∑
i f

x
i · rxik

(1)

Taking different partitioning methods of subjects in
training and testing phases into account, the formulation
of emotion description intensity becomes:

dxj train =

∑
i∈train set f

x
i · rxij∑

k

∑
i∈train set f

x
i · rxik

(2)

dxj test =

∑
i∈test set f

x
i · rxij∑

k

∑
i∈test set f

x
i · rxik

(3)

4 THE PROPOSED EDL MODEL

In this section, we propose a solution to the emotion dis-
tribution learning (EDL) task formulated in Section 4.4. The
flowchart of the whole system is shown in Figure 1. The
system consists of two sub-processes: training and testing.
The EDL model is trained (using the training set in the
training phase) to predict emotion distribution of unseen
data (using the testing set in the testing phase). The first
three stages of training and testing processes are the same,
i.e., preprocessing (Section 4.1), feature extraction (Section
4.2) and feature selection (Section 4.3).

The preprocessing stage removes noise and drift from
the raw physiological data. Then we calculate totally 89
features from four-channel peripheral physiological signals
in the feature extraction stage, and select the most signifi-
cant features using the recursive feature elimination (RFE)
algorithm. After formulating the EDL problem (Section 4.4),
these selected features are used to train the proposed EDL
model which is designed as a deep convolution network
(Section 4.5).
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Fig. 1. The flowchart of emotion distribution prediction system based
on peripheral physiological signals. The system consists of two sub-
processes: training (solid lines) and testing (dashed lines). The two sub-
processes share the steps of data preprocessing, feature extraction and
feature selection.

Fig. 2. Waveforms of a 15s segment of original ECG signal (top row)
and corresponding filtered (bottom row) ECG signal. After filtering, the
baseline is stablized at zero.

4.1 Data Preprocessing

Since the acquisition process may easily involve noise, pre-
processing is essential to regain clean peripheral physio-
logical signals. For example, respiration, body movements,
body temperature change and perspiration can lead to base-
line drift [41], [42]. In order to remove or reduce the influ-
ence of noise as much as possible, according to [43], we use
a second order Butterworth filter for galvanic skin response
(GSR), skin temperature (SKT) and electrocardiogram (ECG)
to help eliminate direct current (DC) offset and baseline

drift. Figure 2 shows one example about the waveforms of
an ECG signal segment before and after filtering. It is clearly
observed that after drift and DC offset removal, the baseline
is stable at zero.

4.2 Feature Extraction
Following the work in [44], [45], we extract features from
peripheral physiological signals in both temporal and fre-
quency domains. Note that in literature (e.g., Table 5 in
[44]), frequency features for peripheral physiological signals
are computed with small wave bands, usually in [0, 5]Hz.
Considering both real-time requirement and feature variety,
we set the length of extraction unit to be 10 seconds for all
frequency features, leading to the frequency resolution of
0.1Hz. The overlap of two consecutive units is 9 seconds. We
extract totally 89 features for each unit from four channels;
i.e., 39 features from galvanic skin reaction (GSR), 4 features
from skin temperature (SKT), 39 features from electrocardio-
gram (ECG) and 7 features from heart rate (HR). Full details
of all 89 features are presented in Appendix B.

4.3 Feature Selection
We collect a large amount of features that are used in litera-
tures from four channels (GSR, SKT, ECG and HR) to offer a
superset of potential good features. We observe that not all
of these 89 features are useful for our EDL task defined in
Section 4.4; that is, some features may weakly correlate with
the emotion distribution, and some features may be highly
correlated with each other and thus redundant. Therefore, it
is necessary to perform a feature selection operation.

The feature selection algorithms can be broadly cate-
gorized into filter and wrapper methods [46]. Compared
to filter methods, wrapper methods usually perform better
[47]. Some representative wrapper methods include genetic
algorithm (GA), sequential forward selection (SFS) and se-
quential backward selection (SBS). Following [46], we use
the SBS method due to its superior performance. In particu-
lar, we pay attention to a specific SBS method called recursive
feature elimination (RFE), which ranks features by recursively
removing the feature that has the smallest ranking criterion
computed by a trained classifier [48].

In order to determine the optimal number of selected
features, we proposed a feature selection strategy by com-
bining linear regression RFE (RFE LR) and support vector
machine RFE (RFE SVM). RFE LR analyzes the correlation
between features and labels based on a regression model
which is appropriate in our EDL task, because the labels
of emotion distribution learning are density distributions
rather than discrete values. On the other hand, in order to
highlight the effect of the dominant emotion for describing
the emotional state, we employ a classifier based RFE (i.e.,
RFE SVM) as an auxiliary discriminator to feature selection.
By taking advantages of these two different representations,
we propose the following feature selection strategy.

Denote the set of all features as F . Let FL
t and FS

t be
subsets of F which contain the top-t, t ∈ {1, 2, · · · , 89},
features ranked by RFE LR and RFE SVM respectively,
and St = FL

t

⋂
FS
t . We use FL

t∗ as the set of selected
features, where t∗ is the minimal value of t that satisfies
|St|/|FL

t | ≥ γ, where | · | is the cardinality of the set and γ
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is a threshold. Note that since RFE LR is more appropriate
than RFE SVM in our EDL task, we use |FL

t | = t as a divisor
and the constraint can be rewritten as |St|/t ≥ γ. A large
γ may select insignificant features, while a small γ may
not be able to select enough significant features. Once the
γ is determined, we finally select t∗ features in our feature
selection procedure. More details of the selected features are
studied in Section 5.2 and Section 5.3.

4.4 Emotion Distribution Learning

In this section, we formulate the emotion distribution learn-
ing (EDL) task and introduce baseline algorithms. In Section
4.5, based on the convolution neural network, we propose a
novel EDL model for this task.

4.4.1 Formulation of EDL

We generate 89 features and from them select t∗ important
features to represent input peripheral physiological signals.
Denote the feature space (each point in this space repre-
senting a t∗-dimension feature vector) as s and the discrete
emotion set as y, i.e., yj ∈ y is the j-th emotion class,
j ∈ {1, 2, . . . , C}, where C = 7 denotes the total seven
emotion classes in the dataset constructed in Section 3. For
any feature vector si ∈ s in the space s, we use dysi to
describe the intensity degree in the emotion set y for this si,
in particular, let the description degree of the j-th emotion
class for si be d

yj
si . Then the emotion distribution (in terms

of description degrees) corresponding to si is defined as
Dsi =

{
dy1
si , d

y2
si , . . . , d

yC
si

}
. The distribution Dsi satisfies

two constraints: (1) 0 ≤ d
yj
si ≤ 1; (2)

∑C
j=1 d

yj
si = 1. We

note that d
yj
si is the deterministic description degree (but

not the statistical probability) of the jth emotion class for
the feature vector si, while in the mathematical form, these
two constraints allow the value of d

yj
si to be operated as

probabilities.
Given the above notations and definitions, we can for-

mulate the EDL problem as follows. Given a training set
S = {(si, Dsi)|i ∈ {1, 2, . . . , N}}, where N represents the
number of training samples, our goal is to learn a mapping
function that maps a specific feature vector si to an emotion
distribution Dsi . In the form of mathematical description,
we can regard d

yj
si as a conditional probability p(yj |si). Then

the target of EDL is equivalent to learn the conditional
probability mass function p(y|si) from the training set S.

We suppose p(y|si) is a parameter model, denoted
as p(y|si; θ). Then the EDL problem is transformed into
finding the optimal parameter θ∗ such that given si, the
parameter model can output a distribution which is as
close as possible to Dsi . We denote the output distri-
bution {p(y1|si; θ), p(y2|si; θ), . . . , p(yC |si; θ)} as D̃si , and
denote the distance measure between two distributions as
Dist(D̃si , Dsi). Then we can compute the optimal parame-
ter θ∗ by solving the following problem:

θ∗ = argmin
θ

∑
i

Dist(D̃si , Dsi) (4)

4.4.2 Baseline Algorithms
Several solutions to the classic label distribution learning
(LDL) problem [33] can be extended to solve our EDL prob-
lem, and we treat them as the baseline algorithms which are
compared in Section 5.

Three strategies were proposed in [33] to solve the LDL
problem. The first strategy is called problem transformation
(PT), which transforms an LDL problem into a single label
learning (SLL) problem. Two typical methods in this strat-
egy is PT-Bayes and PT-SVM, which solve the correspond-
ing SLL problem by Bayes and SVM classifiers respectively.
To extend these two methods to solve our EDL problem,
each training sample (si, Dsi) is first changed into C single-
label samples (si, yj) with weight d

yj
si , j = 1, 2, . . . , C

and i = 1, 2, . . . , N . Then the training set is resampled
according to the weight of each sample (by following the
same resampling rules in [33]), and the size of the training
set remains the same. The resampled training set can be
used to train a classifier (e.g., Bayes or SVM classifier). To
predict the emotion distribution of a feature vector s′i, the
learnt classifier needs to output the description degree for
each emotion class yj , j = 1, 2, . . . , C . To adapt the PT-
Bayes method, the posterior probability of each emotion
class computed by Bayes rule can be regarded as the cor-
responding description degree. To adapt the SVM method,
we use an improved implementation of Platt’s posterior
probabilities [49] to compute the probability of each binary
SVM, and estimate the probability of each emotion class
(served as description degree) by a pairwise coupling multi-
class method [50].

The second strategy is to use algorithm adaptation and
two adapted algorithms, namely AA-kNN and AA-BP, were
used in [33]. To extend AA-kNN to solve the EDL problem,
the description degree of yj for a feature vector s′i can be
defined as the mean of the distribution of all the k nearest
neighbours as follow:

p(yj |s′i) =
1

k

∑
i∈Nk(s′i)

dyj
si , (j = 1, 2, . . . , C) (5)

where Nk(s
′
i) is the index set of the k nearest neighbours of

s′i in the training set. To make use of AA-BP in our EDL
problem, the softmax activation function can be applied
to each unit of the output layer of the AA-BP network.
Denoting the jth output unit as ξj , the description degree
can be computed as follows.

p(yj |s′i) =
exp(ξj)∑C

k=1 exp(ξk)
(6)

The third strategy is to design specialized algorithms
(SA) that directly solve the LDL or EDL problem. In this
paper, we utilize two specialized algorithms for EDL which
are SA-IIS [33] and SA-CPNN [32]. SA-IIS is based on the
well-known optimization strategy called improved iterative
scaling (IIS), which uses the maximum entropy model as
the parametric model. The description degree in SA-IIS is
defined as:

p(yj |si; θ) =
1

Z
exp(

∑
k

θyj ,kgk(si)) (7)

where Z =
∑

yj
exp(

∑
k θyj ,kgk(si)) is the normalization

factor, θyj ,k is the parameter corresponding to the emotion
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Fig. 3. The proposed EDL model. This model consists of three convolution layers, two dense layers and one softmax layer. l represents the
number of discrete time points in a continuous period of time, m is the number of selected features in a feature vector. The value of parameters
li,mi, i = 1, 2, 3, can be determined given the specific configuration of the convolution kernel and stride size, etc.

class yj and kth feature of the feature vector si, and gk(si)
is the kth feature of si. Finally, we obtain the optimal
parameter θ∗ by maximizing the parameter model defined
as follows.

θ∗ = argmax
θ

∑
i,j

dyj
si (

∑
k

θyj ,kgk(si)

− ln
∑
t

exp(
∑
k

θyt,kgk(si)))
(8)

SA-CPNN is a three layer neural network, which takes
both feature vector si and discrete emotion set y as input.
The description degree, which is the output of the network,
is defined as:

p(yj |si; θ) = exp(b(θ) + f(si, yj ; θ)) (9)

where b(θ) represents the bias, which ensures
∫
p(s)ds = 1,

and is defined as

b(θ) = − ln(
∑
yj

exp(f(si, yj ; θ))) (10)

The Kullback-Leibler divergence is used as the distance
measure in SA-CPNN. By utilizing the Eq. (4), we obtain
the optimal parameter as:

θ∗ = argmin
θ

∑
i

∑
j

(dyj
si ) ln(

d
yj
si

p(yj |si; θ)
)

= argmax
θ

∑
i

∑
j

(dyj
si ) ln(p(yj |si; θ))

= argmax
θ

∑
i

∑
j

(dyj
si )(b(θ) + f(s, yj ; θ))

(11)

4.5 A New CNN-based EDL Model

In this section, we propose a new solution to the EDL
problem formulated in Section 4.4.1. Different from the base-
line algorithms summarized in Section 4.4.2, our solution

TABLE 1
Detailed configurations of convolution layers and Max-Pooling layers. l

and m are the same as in Fig.3, N represents the number of output
channels, K stands for the kernel size, S is the stride size.

Layer Input→Output Shape Layer
Information

Conv1 (l,m, 1) → (l,m− 2, 32)
(N32,K1×3,

S1×3), ReLU
Max-Pooling1 (l,m− 2, 32) → (l,m− 4, 32) K1×3,S1×3

Conv2 (l,m− 4, 32) → (l,m− 6, 64)
(N64,K1×3,

S1×3), ReLU
Max-Pooling2 (l,m− 6, 64) → (l,m− 8, 64) K1×3,S1×3

Conv3 (l,m− 8, 64) → (l,m− 10, 64)
(N64,K1×3,

S1×3), ReLU
Max-Pooling3 (l,m− 10, 64) → (l,m− 12, 64) K1×3,S1×3

considers both feature correlation and temporal cues by
using a two-dimensional feature vector stacking. By stack-
ing multiple consecutive feature vectors into a matrix form,
our method can make use of two dimensional convolution,
which has the advantage that each feature (e.g., the ith
element in a feature vector) is aligned in the matrix (e.g., the
ith column). Figure 3 shows our solution which is a model
based on the convolution neural network (CNN).

After the feature selection step in Figure 2, t∗ features are
selected and we use a t∗-dimension feature vector to store
their values. Denote a m-dimensional feature vector at time
t as Xt ∈ Rm, m = t∗. To take the temporal information into
account, our model predicts the emotion distribution at time
k, based on l feature vectors Xk−l+1, Xk−l+2, · · · , Xk in a
continuous period of time before k. We stack these l feature
vectors into a two-dimensional feature map Xt ∈ Rl×m,
such that each row is an m-dimensional feature vector. We
use this feature map as input to our CNN model and then
the convolutions of this feature map contain the information
of both feature correlation and temporal cues.

In order to capture both local and global cues of the input
feature map, we use 2D convolution (each convolution layer
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is followed by a Max-Pooling layer) and dense layers (each
layer is a fully connected layer) to construct the network.
As shown in Figure 3, the proposed network architecture
consists of three convolution layers, two dense layers and
one softmax layer. Detailed configurations of each convo-
lution layer and downsampling layer are listed in Table 1.
We also use activation functions to introduce non-linearity
into the model; in particular, we incorporate rectifier linear
units (ReLUs) as the activation function for each convolution
layer. The formulation of ReLU is as follow:

f(x) = max(0, x) (12)

After three convolution and downsampling operations,
we obtain a set of feature maps, which will be further
flattened into a vector before inputting them into dense
layers. There are totally two dense layers, and they have 256
and 128 neurons, respectively. The activation functions used
in these two dense layers are also ReLUs. In addition, we
apply the dropout strategy on each dense layer to randomly
disconnect some neurons (for avoiding overfitting), and
the dropout rate is set to be 0.5 in all our experiments.
The output of the second dense layer is then passed to
the softmax layer for emotion distribution prediction. The
softmax layer in our model is a linear layer with C = 7
neurons (corresponding to seven emotion classes), and the
output oi(i = 1, 2, · · · , C)) of these seven neurons are than
normalized using the softmax function defined as follows:

d̂
yj

Xt
=

exp(oj)∑C
k=1 exp(ok)

(13)

where C = 7 is the number of the emotion classes, and d̂
yj

Xt

indicates the description degree of the j-th emotion class
predicted from Xt.

For the parameter learning, we use the Kullback-
Leibler divergence (KLD) as the loss function to mea-
sure the similarity between the predicted distribution
and the ground truth. Given the training set de-
noted as (Xt, DXt

), t ∈ {1, 2, · · · , N}, where DXt
=

{dy1

Xt
, dy2

Xt
, ..., dyC

Xt
}, the EDL loss in the proposed model is

formulated as follows:

L =
1

N

N∑
t=1

C∑
j=1

d
yj

Xt
log

d
yj

Xt

d̂
yj

Xt

(14)

TABLE 2
Six distribution distance/similarity measures. The abbreviations of Dist
and Sim stand for distance and similarity, respectively. ↓ indicates “the

smaller the better”, and ↑ indicates “the larger the better”.

Measure Type Formula
Chebyshev ↓ Dist Dis1(D, D̂) = maxj |dj − d̂j |

Clark ↓ Dist Dis2(D, D̂) =

√∑C
j=1(

dj−d̂j

dj+d̂j
)2

Canberra ↓ Dist Dis3(D, D̂) =
∑C

j=1(
|dj−d̂j |
dj+d̂j

)

Kullback-Leibler ↓ Dist Dis4(D, D̂) =
∑C

j=1 dj ln
dj

d̂j

Cosine ↑ Sim Dis5(D, D̂) =
∑C

j=1 dj d̂j√∑C
j=1 d2j

√∑C
j=1 d̂2j

Intersection ↑ Sim Dis6(D, D̂) =
∑C

j=1 min(dj , d̂j)

Given the loss function (14), we can compute the optimal
parameters θ∗ by solving the optimization problem below:

θ∗ = argmin
θ

1

N

N∑
t=1

C∑
j=1

d
yj

Xt
log

d
yj

Xt

d̂
yj

Xt

= argmin
θ

1

N

N∑
t=1

C∑
j=1

d
yj

Xt
log d

yj

Xt

− 1

N

N∑
t=1

C∑
j=1

d
yj

Xt
log d̂

yj

Xt

= argmin
θ

− 1

N

N∑
t=1

C∑
j=1

d
yj

Xt
log d̂

yj

Xt

(15)

We use the Adam algorithm to solve the above optimization
problem and find the optimal parameters θ∗. More details
about the selection of parameter learning rate and l can be
found in Appendix C.

5 EXPERIMENTS

To evaluate the performance of our proposed EDL model
(Section 4.5), we compare it with six baseline algorithms
which are introduced in Section 4.4.2, i.e., AA-BP [33], AA-
kNN [33], PT-Bayes [33], PT-SVM [33], SA-IIS [33] and
SA-CPNN [32]. To ensure the validity and fairness of the
comparisons, we apply two evaluation protocols, whose
details are as follows.

5.1 Evaluation Setup
Evaluation protocols. We adopt two classic evaluation pro-
tocols in our comparisons.

Subject-dependent evaluation: For each subject, we split the
video that he/she watched (along with the related periph-
eral physiological signals) into the training set V1 and the
testing set V2 separately according to the following rules:
(1) If the number of videos which induce the same target
dominant emotion is larger than 1, we randomly choose
one video into V2, and the remaining videos are in V1; (2) If
there is only one video corresponding to the inducing target
dominant emotion, we separate this video in two, and put
the first half into V1 and second half into V2. In this way,
the videos (watched by the same subject) that induced the
same target emotion are evenly divided into the training
and testing sets. Furthermore, our final results are averaged
on the testing set V2.

Subject-independent evaluation: We apply the leave-one-
subject-out cross-validation for subject-independent evalu-
ation. In each validation, we just use data of one subject
as the testing set and data of the other 37 subjects as the
training set. The final results are averaged on 38-fold cross-
validation in which the data of each subject is used once for
test.

Evaluation details. After dividing the training and test-
ing sets, we follow the steps introduced in Section 4 to
obtain the selected features and corresponding distribution
labels. In particular, we only use the training set to accom-
plish emotion distribution label generation, feature selec-
tion and EDL model training, both for subject-dependent
and subject-independent evaluations. Considering that our
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TABLE 3
Subject-dependent experimental results of our method and six baseline algorithms on different measures with 50 selected features, l = 10, where
l is the number of consecutive discrete time points in a time sequence defined in Section 4.5. The difference in distribution prediction between our

method and the best compared method are highlighted with stars in each measurement (∗∗∗p < .001, ∗∗p < .01,∗p < .05).

Algorithm Chebyshev ↓ Clark ↓ Canberra ↓ Kullback-Leibler ↓ Cosine ↑ Intersection ↑ Average Rank
AA-BP [33] 0.2245 (6) 1.0657 (6) 2.4484 (6) 0.4255 (6) 0.7359 (5) 0.6537 (5) 5.7 (6)

AA-kNN [33] 0.1919 (2) 0.8819 (3) 2.0920 (2) 0.2931 (4) 0.7739 (4) 0.6870 (4) 3.3 (3)
PT-Bayes [33] 0.7568 (7) 2.4055 (7) 6.2638 (7) 12.0230 (7) 0.3862 (7) 0.2182 (7) 7.0 (7)
PT-SVM [33] 0.2193 (5) 1.0603 (5) 2.4477 (5) 0.4034 (5) 0.7276 (6) 0.6463 (6) 5.3 (5)
SA-IIS [33] 0.1970 (4) 0.8849 (4) 2.1441 (3) 0.2626 (3) 0.7979 (3) 0.6898 (3) 3.3 (3)

SA-CPNN [32] 0.1940 (3) 0.8808 (2) 2.1452 (4) 0.2413 (1) 0.8056 (2) 0.6912 (2) 2.3 (2)
Ours 0.1857∗∗∗ (1) 0.8495∗∗∗ (1) 2.0154∗∗∗ (1) 0.2426∗∗∗ (2) 0.8065∗∗∗ (1) 0.7049∗∗∗ (1) 1.2 (1)

Fig. 4. Predicted emotion distributions using baseline algorithms and our proposed method in subject-dependent validation. The images in each
column except the first one are result of algorithm specified by the text at top. ”GT” indicates ground truth. The numbers 1 to 7 correspond to
emotions anger, disgust, sadness, fear, tenderness, joy and amusement. The first four rows are corresponding to distribution predict results of
four negative emotions (anger, disgust, sadness, fear), and the last three rows are corresponding to distribution predict results for three positive
emotions (tenderness, joy, amusement)

method uses both feature correlation and temporal cues,
for fair comparison, we also offer temporal cues in the
baseline algorithms. In details, data is formed as a temporal
sequence in baseline algorithms, i.e., samples in l adjacent
time units are concatenated into a new sequence along
the feature dimension. We set the parameters of baseline
methods the same as in previous work [32], [33] which
has been demonstrated to be effective. We use the same
parameter setting in each cross-validation iteration.

Evaluation metrics. Since the output of the EDL task
is a discrete distribution, the traditional evaluation indexes
such as accuracy and precision-recall curve are no longer
suitable. We followed [33] to use six distribution-based

measures for quantitative evaluation in our experiments.
Given two discrete distributions D = {d1, d2, . . . , dC} and
D̂ =

{
d̂1, d̂2, . . . , d̂C

}
, where C indicates the number of

discrete types or classes, the six measures are summarized
in Table 2, in which ↓ indicates “the smaller the better”,
and ↑ indicates “the larger the better”. Four measures (i.e.,
Chebyshev, Clark, Canberra and Kullback-Leibler) are dis-
tance metrics and the other two measures (i.e., Consine and
Intersection) are similarity metrics.

Additionally, pair-sample t-tests are used to evaluate
whether statistically significant differences existed in each
distribution-based metric between our method and the
best method in baseline algorithms. We use the p-value
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TABLE 4
Results of the change values and relative improvement ratios (in parentheses) of six measures, by adding the feature selection step.

Measure AA-BP AA-kNN PT-Bayes PT-SVM SA-IIS SA-CPNN Ours
Chebyshev ↓ −0.0029 (−1.50%) −0.0011 (−0.56%) −0.1340 (−32.63%) −0.0004 (−0.19%) −0.0010 (−0.43%) −0.0001 (−0.05%) −0.0007 (−0.38%)

Clark ↓ −0.0144 (−1.59%) −0.0042 (−0.47%) −0.2592 (−17.16%) −0.0046 (−0.51%) −0.0478 (−4.85%) −0.0075 (−0.85%) −0.0034 (−0.40%)
Canberra ↓ −0.0259 (−1.22%) −0.0119 (−0.56%) −0.6381 (−17.64%) −0.0062 (−0.29%) −0.1281 (−5.62%) −0.0205 (−0.95%) −0.0241 (−1.18%)

Kullback-Leibler ↓ −0.0132 (−4.77%) −0.0013 (−0.42%) −0.5475 (−33.46%) −0.0057 (−1.97%) −0.0515 (−13.06%) −0.0054 (−2.20%) −0.0169 (−6.51%)
Cosine ↑ +0.0065 (+0.82%) +0.0015 (+0.20%) +0.0797 (+13.99%) +0.0043 (+0.56%) +0.0047 (+0.64%) +0.0046 (+0.57%) +0.0098 (+1.23%)

Intersection ↑ +0.0030 (+0.43%) +0.0018 (+0.26%) +0.0860 (+17.55%) +0.0022 (+0.32%) +0.0114 (+1.73%) +0.0043 (+0.63%) +0.0045 (+0.64%)

Fig. 5. Relations between values of |St|/t and t over all the training data
in subject-dependent evaluation.

(∗∗∗p < .001, ∗∗p < .01,∗p < .05) to measure the difference.

5.2 Subject-dependent Evaluation

5.2.1 Quantitative and Qualitative Evaluation
As introduced in Section 4.3, we use RFE LR and RFE SVM
in our EDL feature selection. In our subject-dependent eval-
uation, we partition the dataset into training and testing
sets, and set γ = 50%. The relation between values of |St|/t
and t over all the training data is shown in Figure 5, which
indicates the optimal value of t is t∗ = 50. So in the testing
process, we select the top 50 features from all 89 features.

Table 3 summarized the best results that our method
achieved with l = 10. In addition to the six measures in
Table 2, we also used the mean value of rankings of all six
measures (denoted as Average Rank) to indicate an overall
performance. In Table 3, the best performance in each mea-
sure was highlighted in boldface, and the corresponding
ranking is given in parentheses. These results showed that
our method outperforms all baseline algorithms.

To further explore the effectiveness of our proposed
method, we visualized the emotion distributions predicted
by all the methods and some examples were illustrated in
Figure 4. These qualitative results showed that our results
(the last column) were the closest to the ground truth
distribution.

5.2.2 Feature Selection Analysis and Ablation Study
In our proposed emotion distribution prediction system
(Figure 1), feature selection is an important step. Since in
subject-dependent protocol, the training and testing sets are
fixed, the effectiveness of feature selection can be clearly
examined by using this protocol.

TABLE 5
The 50 selected features from four channels. For each feature, its rank

is summarized in parentheses.

Channel Features

GSR (22)

standard deviation (15), variance (14),
median (11), average (10),

average of derivative for negative values only (44),
proportion of negative samples in the derivative

vs. negative samples in all samples (1),
number of local minima in GSR signal (19),

average rising time (33), 3rd order moment (2),
first degree difference (43),

second degree difference (20),
spectral power in 0-2.4Hz (34),

max psd on 0-2.4Hz (21),
min psd on 0-2.4Hz (18),

variance of psd on 0-2.4Hz (22),
mean of rise time (41), mean of latency (35),

mean of amplitude (23), mean of EDAatApex (13),
first derivative of rise time (17),
first derivative of latency (16),

first derivative of SCRWidth (12)
SKT (0) -

ECG (25)

median (40), standard deviation (6), minimum (36),
maximum (47), spectral power in 0.1-0.2Hz (32),

power (5), spectral power in 0.2-0.3Hz (31),
number of NNI (46), mean of NNI (27),

minimum of NNI (26), maximum of NNI (30),
mean of first degree difference of NNI (29),

maximum of first degree difference of NNI (37),
SDNN (38), RMSSD (3), SDSD (28), NN50 (24),

pNN50 (25), NN20 (42), pNN20 (45),
relative power of VLF (9), relative power of LF (7),
relative power of HF (8), sd1 of Poincare’ plot (4),

sd2 of Poincare’ plot (39)

HR (3)

standard deviation (48),
spectral power in 0.15-1Hz (49),

ratio of spectral power in 0.05-0.15Hz
to spectral power in 0.15-1Hz (50)

By applying the feature selection strategy (Section 4.3),
50 features were selected from 89 features extracted from
four channels, and the selected features were listed in Table
5. Among the 50 selected features, there were 22 GSR
features, 25 ECG features and 3 HR features. The feature
selection ratios of the four channels from high to low were
ECG (64.1%), GSR (56.4%), HR (42.9%) and SKT (0%). In
addition, Table 5 also showed the rank of each feature in the
parentheses, and the average ranks of selected GSR, ECG
and HR features were 21.1, 26.6, 49.0 respectively. we did not
give the average rank of SKT features since no SKT features
were selected.

First, to verify the optimization of the feature number
determined by the feature selection strategy, we conducted
experiments using different feature numbers. The perfor-
mance of our proposed EDL method when using 40, 50
and 60 features (in order to roughly cover the recommended
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TABLE 6
Subject-independent experimental results of our method and six baseline algorithms on different measures with t = 40, l = 10. The difference in

distribution prediction between our method and the best compared method are highlighted with stars in each measurement (∗∗∗p < .001,
∗∗p < .01,∗p < .05).

Algorithm Chebyshev ↓ Clark ↓ Canberra ↓ Kullback-Leibler ↓ Cosine ↑ Intersection ↑ Average Rank
AA-BP [33] 0.2156 (5) 1.0134 (5) 2.3642 (5) 0.3842 (6) 0.7531 (5) 0.6622 (5) 5.2 (5)

AA-kNN [33] 0.1969 (2) 0.8649 (2) 2.0515 (2) 0.2868 (4) 0.7766 (4) 0.6895 (2) 2.7 (2)
PT-Bayes [33] 0.7170 (7) 2.3580 (7) 6.0691 (7) 8.9546 (7) 0.3906 (7) 0.2389 (7) 7.0 (7)
PT-SVM [33] 0.2267 (6) 1.0265 (6) 2.3925 (6) 0.3815 (5) 0.7272 (6) 0.6474 (6) 5.8 (6)
SA-IIS [33] 0.2036 (4) 0.8969 (4) 2.2107 (4) 0.2701 (3) 0.7912 (3) 0.6793 (4) 3.7 (4)

SA-CPNN [32] 0.2005 (3) 0.8866 (3) 2.2025 (3) 0.2483 (2) 0.8009 (2) 0.6826 (3) 2.7 (2)
Ours 0.1910∗∗∗ (1) 0.8392∗∗∗ (1) 2.0319∗∗∗ (1) 0.2322∗∗∗ (1) 0.8139∗∗∗ (1) 0.7035∗∗∗ (1) 1.0 (1)

TABLE 7
Results of our method using different numbers of selected features.

Numbers in parentheses indicate corresponding ranks.

Measure Feature Number
40 50 60

Chebyshev ↓ 0.1857 (1) 0.1857 (1) 0.1867 (3)
Clark ↓ 0.8491 (1) 0.8495 (2) 0.8495 (2)

Canberra ↓ 2.0239 (2) 2.0154 (1) 2.0290 (3)
Kullback-Leibler ↓ 0.2448 (2) 0.2426 (1) 0.2458 (3)

Cosine ↑ 0.8060 (2) 0.8065 (1) 0.8057 (3)
Intersection ↑ 0.7045 (2) 0.7049 (1) 0.7037 (3)
Average Rank 1.7 (2) 1.2 (1) 2.8 (3)

range of the threshold γ) was shown in Table 7. The results
showed that when using 50 features, our method achieved
the best average rank as 1.2 and also achieved the best
performance in five measure evaluations. More experiments
about feature selection is referred to Appendix C.

To further validate the effectiveness of the feature selec-
tion step, we compared the performance of our proposed
method and six baseline algorithms, with or without the
feature selection strategy. In Table 4, we summarized the
change values of six measures and the relative improvement
ratios by adding the feature selection step, where the change
value of each measure is defined as Sfs − Sall, Sfs and
Sall representing measure values with and without feature
selection respectively, and the relative improvement ratio of
each measure is defined as Sfs−Sall

Sall
. The results showed

that the changes corresponding to measures Chebyshev,
Clark, Canberra and Kullback-Leibler are all negative, while
changes corresponding to measures Cosine and Intersection
are all positive, indicating that all methods benefit from the
feature selection. In particular, for the PT-Bayes method,
all the measure values are improved by more than 10%
(the minimal improvement is 13.99% for Cosine, and the
maximum is 33.46% for Kullback-Leibler). For our proposed
method, feature selection increase the value of Kullback-
Leibler measure by 6.51%. All these results demonstrated
the effectiveness of feature selection.

TABLE 8
Accuracy of of each algorithm on emotion classification task. Subscript
de denotes subject-dependent evaluation and subscript in denotes

subject-independent evaluation.

Measure SVM RF kNN DBN Oursde Oursin
Acc(%) 16.89 19.04 17.47 17.68 19.35 19.01

TABLE 9
Common selected features shared in all folds of subject-independent

evaluation.

Channel Features

GSR (20)

standard deviation, variance,
skewness, median, average,

proportion of negative samples in the derivative
vs. negative samples in all samples,

number of local minima in GSR signal,
average rising time, 3rd order moment,

second degree difference,
max psd on 0-2.4Hz,
min psd on 0-2.4Hz,

sum of psd on 0-2.4Hz,
variance of psd on 0-2.4Hz,

mean of latency,
mean of amplitude, mean of EDAatApex,

first derivative of rise time,
first derivative of latency,

first derivative of SCRWidth
SKT (0) none

ECG (9)

median,
maximum of first degree difference of NNI,

RMSSD, NN50, pNN50,
relative power of VLF, relative power of LF,
relative power of HF, sd1 of Poincare’ plot

HR (0) none

5.3 Subject-independent Evaluation

Noting that the value of t∗ varies in each fold of cross-
validation, we directly select t-top features in each valida-
tion with t = 40, 50, 60.

Table 6 shows the best results using our proposed
method and six baseline methods, with l = 10, t = 40
(t = 50 and 60 are summarized in Table C3 in Appendix
C). Though a large disparity exists among different subjects,
our subject-independent results are close to the subject-
dependent results shown in Table 3, which indicates the
effectiveness of our method. We also study the effect of
different feature numbers and different consecutive discrete
time points in a time sequence in Appendix C. All the results
show that among different combinations of feature numbers
t and l, our method can stably obtain good performance.

To further analyze feature selection results, we collect
the common selected features shared in all folds of subject-
independent evaluation with t = 50. These common se-
lected features are summarized in Table 9. Only 20 GSR
features and 9 ECG features are shared in all folds. These
results are consistent with the observation that physiological
signals have high variance between different subjects [51].
Both time and frequency features in GSR and ECG play
important roles in subject-independent evaluation.
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TABLE 10
Results of the two random tests. Subscript de denotes subject-dependent evaluation and subscript in denotes subject-independent evaluation.

The difference in distribution prediction between two random tests and our methods are highlighted with stars in each measurement (∗∗∗p < .001,
∗∗p < .01,∗p < .05).

Algorithm Chebyshev ↓ Clark ↓ Canberra ↓ Kullback-Leibler ↓ Cosine ↑ Intersection ↑
R1de 0.2234 0.9136 2.1777 0.4864 0.6704 0.6300
R2de 0.2590 0.9259 2.1936 0.2996 0.7438 0.6644

Oursde 0.1857∗∗∗ 0.8495∗∗∗ 2.0154∗∗∗ 0.2426∗∗∗ 0.8065∗∗∗ 0.7049∗∗∗
R1in 0.2288 0.9199 2.1902 0.3964 0.6509 0.6257
R2in 0.2648 0.9118 2.2054 0.3113 0.7400 0.6609

Oursin 0.1910∗∗∗ 0.8392∗∗∗ 2.0319∗∗∗ 0.2322∗∗∗ 0.8139∗∗∗ 0.7035∗∗∗

5.4 Comparison on emotion classification task

Although our method is designed for the EDL problem, in
this section, we show that our method also has good perfor-
mance on the traditional single emotion label classification
problem. We assign an emotion label to each feature instance
in the training and test set using the dominant emotion
in the ground truth emotion distribution, which leads to
a single label dataset for seven-category classification.

We first compare our method with four representative
classification algorithms which are SVM, Random Forest
(RF), kNN and Deep Belief Network (DBN), using the
subject-dependent setting. We use the scikit-learn library
to implement SVM, RF and kNN. DBN is implemented in
MATLAB based on DBNToolbox. For SVM, we set the max
iteration to 50,000 and search the best penalty parameter
C using logspace function in numpy from 10−10 to 1010.
For Random Forest, we search the best estimator number in
range [1, 50] and set the max depth parameter to 50. We test
the performance of kNN using different number k of nearest
neighbors, and find that k = 2 reaches the best accuracy in
our task. For DBN, we construct a two hidden-layer network
and search different number of neurons (ranging from 10 to
90). We also consider different learning rates (ranging from
0.1 to 0.9) for both unsupervised and supervised training to
better optimize the model.

The results are summarized in Table 8, showing that
our method (i.e. Oursde) has the best performance. Even
for subject-independent protocol, our method can obtain
the results (i.e., Oursin) closed to Oursde. Note that for a
seven-category classification problem, the chance level is
1/7 = 14.29% and the results in Table 8 are all slightly better
than it. This is possibly because our dataset is originally
designed for EDL problem and simply converting it into a
dataset of single labels (by choosing the dominant emotion
label whose intensity may be very close to other emotions
in the distribution) makes the seven-category classification
problem extremely challenging.

5.5 More comparisons

Comparisons with random tests. To further verify the
performance of our method, we conducted two random
tests in two ways. First, we randomly shuffle the ground-
truth distribution labels of the test set as the estimated
distribution labels; we denote this case as R1. Second, we
randomly shuffle the train data to scramble its origin tim-
ing order, meanwhile, the correspondence between training
data and training labels is also disturbed; we denote this
case as R2. The test of both cases is repeated 100 times in our

subject-dependent and subject-independent evaluation. The
averaged results are summarized in Table 10, showing that
our method is much better than random guessing, because
our method can learn useful relation between data and
labels which is important in the EDL problem.

5.6 Discussion

In this paper, we proposed an EDL model that predicts
emotion distribution from peripheral physiological signals.
In our system, we extracted features from four channels
(GSR, SKT, ECG and HR), and applied a feature selection
strategy based on RFE. The study in [17] showed that ECG
signals are significantly useful for correct classification of
valence/arousal differentiation, and features from time or
frequency domains of the HRV time series are decisive
for classification of emotions including joy, anger, sadness
and pleasure. Moreover, the experimental results in [52]
indicated the positive correlation between skin conductance
response (SCR) and arousal, and emotions are discriminated
by heart rate responses. Our results in section 5.2.2 showed
that the selection ratios of GSR (56.4%) and ECG (64.1%)
were higher than those of HR (42.9%) and SKT (0%), and
the average ranks of GSR and ECG features were smaller.
Our results that the feature selection step selected features
mostly from GSR and ECG is consistency with the experi-
mental results in [52] and [17].

On the other hand, no SKT features were selected accord-
ing to our experimental results (the ranks of SKT features
were all greater than 50). However, it was reported in [53]
that skin temperature difference can be used to distinguish
emotions, and the change associated with anger was sig-
nificantly different from that of all other emotions. Our
results did not show the same observation. The reason may
possibly be that the work [53] elicited target emotions from
two tasks (which were directed facial action and relived
emotions), while we used film clips.

Limitation. First, the cross-subject validation accuracy
shows in Table 7 are worse than the intra-subject validation,
indicating that cross-subject evaluation is a much more
difficult task. Further efforts are needed to improve our per-
formance on intra-subject validation. Second, our method is
designed especially for emotion distribution learning, and
when applying to emotion classification task, the accuracy
is not high (ref. Table 8). So another direction in the future
work is to improve the performance on the emotion classifi-
cation problem.
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6 CONCLUSION

In this paper, we studied the emotion distribution learning
(EDL) task based on peripheral physiology signals and
established a standardised dataset for this problem. To solve
this EDL task, we proposed a system which consisted of
four modules: data preprocessing, feature extraction, feature
selection and emotion distribution prediction using a CNN-
based deep learning model. Experiments were conducted
on our constructed dataset to verify the effectiveness of our
system, including the effectiveness of the feature selection
strategy and the EDL model. In details, the feature selection
strategy could select significant features and improve the
performance of algorithms, and both quantitative and qual-
itative results of our EDL model showed the superiority of
our method than six baseline methods.
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