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Abstract— Sketch-based image retrieval (SBIR) is a
long-standing research topic in computer vision. Existing
methods mainly focus on category-level or instance-level image
retrieval. This paper investigates the fine-grained scene-level
SBIR problem where a free-hand sketch depicting a scene is used
to retrieve desired images. This problem is useful yet challenging
mainly because of two entangled facts: 1) achieving an effective
representation of the input query data and scene-level images
is difficult as it requires to model the information across
multiple modalities such as object layout, relative size and visual
appearances, and 2) there is a great domain gap between the
query sketch input and target images. We present SceneSketcher-
v2, a Graph Convolutional Network (GCN) based architecture to
address these challenges. SceneSketcher-v2 employs a carefully
designed graph convolution network to fuse the multi-modality
information in the query sketch and target images and uses
a triplet training process and end-to-end training manner to
alleviate the domain gap. Extensive experiments demonstrate
SceneSketcher-v2 outperforms state-of-the-art scene-level SBIR
models with a significant margin.
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I. INTRODUCTION

SKETCHING is a natural and intuitive form of commu-
nication for a human being to express their concepts or

ideas. Using a sketch as query data for image retrieval is an
increasingly important research topic because of the popularity
of touch-screen devices in recent years. Although the research
towards Sketch Based Image Retrieval (SBIR) has spanned
over two decades, most of the existing SBIR methods are
mainly category-level or object-level as illustrated in Fig. 1.
Those category-level SBIR methods mainly aim at searching
for the images belonging to a specific category depicted by
the query input sketch, while those object-level SBIR methods
predominantly focus on retrieving the images having the target
objects with a sketch which usually includes a single free-hand
drawn object.

Scene-level images exist in a large portion of the image data
in real world and more importantly more and more images
would share similar content or capture similar scenes as the
amount of images increases. Despite many conventional SBIR
methods are object-level, i.e., conducting image retrieval using
a sketch containing only a single object instance and simple
background, very few studies have addressed scene-level SBIR
problem [3], [4]. Existing scene-level SBIR works classify
sketches into dozens of scene categories (e.g. bedroom, forest,
ballroom, etc.), and their goal is to retrieve an image of the
same scene category as the query scene sketch [4] (see the bot-
tom left part of Fig. 1). These methods, together with those text
or image based retrieval methods, are not able to effectively
meet the user’s specific requirements in some application sce-
narios, such as searching a target image having a few airplanes
with specific poses and relative size as shown in the bottom
right part of Fig. 1. Therefore, a SBIR method focusing on
fine-grained scene-level image retrieval is required. Recently,
Zou et al. [5] present a scene sketch dataset with semantic
and instance segmentation annotations, named SketchyScene,
and conduct a preliminary study of scene-level SBIR. Since
the goal of the SBIR task in SketchyScene is to retrieve the
specific image corresponding to the input sketch, it can be seen
as fine-grained SBIR to some extent. However, the retrieval
method used in SketchyScene is largely a pilot study, which
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Fig. 1. Illustration of the whole spectrum of SBIR problems. The proposed
method, focusing on retrieving the fine-grained scene-level images satisfying
the user’s specific requirements via a freehand sketch, is in stark contrast to
those of object-level SBIR methods [1], [2] and those focusing on retrieving
scene-level images of the same scene class [3].

is built upon an object-level SBIR model, and the images are
all cartoon images.

This paper investigates the problem of fine-grained SBIR
at the scene level (see the bottom right part of Fig. 1). Our
method aims to retrieve target images that are consistent with
the scene sketch query input in terms of fine-grained object
instances and scene information, such as object instances’
poses, the relative size and layout of the objects in a scene.
This problem is challenging because modeling the information
across multiple modalities such as object layout, relative size
and visual appearances within a unified network is difficult
and there is a great domain gap between the query sketch
input and target images. To address these challenges, We pro-
pose SceneSketcher-v2, a graph convolutional network that
is capable of fusing hierarchical information of scene-level
sketches and images, including scene-level spatial layout
information, category-level information of objects’ semantic
attributes and instance-level information of objects’ visual
appearance. Specifically, we first use a graph-based repre-
sentation to explicitly model each scene sketch and image,
and then leverage an adaptive graph convolutional module to
model the spatial and semantic correlations between object
categories. We finally train the adaptive graph convolutional
network and the visual feature extraction network of sketches
and images in an end-to-end manner through a triplet training
process. Our network can be well generalized to different
scene data because of its favoring flexible graph feature
learning. Because the fine-grained scene-level “sketch-photo”
pair database is scarce, to verify the superiority of our
SceneSketcher-v2, we use modified public scene sketch-photo
databases (SketchyCOCO [6] and SketchyScene [5]) to eval-
uate our SBIR method.

Our main contributions can be summarized as follows:
1) We propose a new GCN-based architecture for

fine-grained scene-level SBIR, in which we encode
effective hierarchical scene information for feature
embedding, including global layout, category-level
semantic attributes and instance-level visual features.
Moreover, we train the GCN model as well as the visual
feature extraction network in an end-to-end manner
through a triplet training process;

2) We adopt an adaptive graph convolutional module to
model the spatial and semantic correlations between
object categories, which increases the flexibility of our
model for graph feature learning;

3) Extensive experiments show that our SceneSketcher-v2
achieves retrieval performance that exceeds state-of-the-
art SBIR models by a significant margin.

A preliminary version of our work, SceneSketcher, was
published in [7]. Compared to the earlier version, the improve-
ments of this work named as SceneSketcher-v2 are three fold:

1) Instead of choosing each object instance as a graph node
in SceneSketcher, SceneSketcher-v2 sets each object
category as a graph node, which leads to a fixed graph
structure and also allows semantic context of different
object categories to be used for more effective feature
embedding;

2) SceneSketcher-v2 is more general for different scene
representation than SceneSketcher. It employs two adja-
cency matrices to model the scene layout and the
correlations between different categories and adopts an
adaptive graph for each data sample that denotes its
specific pattern rather than a fixed network topology in
SceneSketcher. Moreover, the graph building is more
powerful in SceneSketcher-v2 where the graph edge
weight takes into account the semantic context between
different object categories, not just the spatial distance
between object instances in SceneSketcher;

3) SceneSketcher-v2 can be trained in an end-to-end man-
ner which can boost the performance of our SBIR
framework. As a comparison, the multi-stage modules
of SceneSketcher can only be trained in a stage-by-stage
manner due to the graph similarity computing process
is non-differentiable.

II. RELATED WORK

A. Sketch-Based Image Retrieval (SBIR)

Aiming at using a free-hand sketch to find a specific image
from a gallery of natural photos, sketch-based image retrieval
has been extensively studied since 1990s [8], and has attracted
more attention recently due to the proliferation of touch
devices. Most existing SBIR works focus on category-level
image retrieval, where the goal is to search the images from
the same category. They usually extract representative and
shared hand-crafted image descriptors (e.g. SIFT, HOG, etc.)
to conduct shape matching between sketches and edge maps
of natural images [9]–[12]. Eitz et al. [13] utilize descriptors
based on the bag-of-features approach for SBIR and present a
benchmark for evaluating the performance of large-scale SBIR
systems. Their later works include inheriting the GF-HOG
and BoVW paradigm for SBIR and extending it by propos-
ing a bag-of-regions (BoR) representation which decomposes
images into region representations at multiple scales [10].
Several deep learning based SBIR methods have been intro-
duced recently [14]–[19] and set new records in the major
SBIR benchmarks. The first large-scale dataset of sketch-photo
pairs is proposed by Sangkloy et al. [2], which is used to
train cross-domain neural networks and set up an object-level
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SBIR benchmark. Hu et al. [20] use a semi-supervised metric
learning method for anchor graph hashing to conduct SBIR.
Zhang et al. [21] propose to discover the object representative
landmarks and learn the discriminative structural representa-
tions for sketch recognition and SBIR.

There is a growing number of studies addressing the zero-
shot sketch-based image retrieval (ZS-SBIR) task, which can
conduct the retrieval task on unseen object classes [22]. ZS-
SBIR is treated as a domain adaptation problem [23] in
most circumstances. Yelamarthi et al. [24] consider SBIR as
the task of generating additional information that is absent
in the sketch in order to retrieve similar images, and they
propose a generative ZS-SBIR model by taking sketches as
inputs and filling in the missing information stochastically for
image search. Deng et al. [25] employ cross-reconstruction
loss and propose a progressive cross-modal semantic network
for ZS-SBIR. Dutta and Akata [26] aim to address any-shot
(i.e., zero-shot and few-shot) SBIR. Although extensive efforts
have been made to make SBIR more efficient and practical,
these coarse-grained SBIR works only focus on whether the
retrieved image has the same category as the input sketch
but the instances’ visual details and characteristics gain little
attention.

B. Fine-Grained Sketch-Based Image Retrieval (FG-SBIR)

Compared with traditional query form of text or tags,
a key advantage of sketch query is that sketch can depict
outlines and main characteristics in a simple way. However,
these advantages cannot be achieved in category-level SBIR
since it only cares if the category of the retrieved image
is correct and overlooks the detailed characteristics. Com-
pared to object-level SBIR, FG-SBIR requires the retrieved
images contain fine-grained details described in the input
scene sketch. Yu et al. [1] investigate the problem of instance-
level FG-SBIR via a deep triplet-ranking model and introduce
a database of sketch-photo pairs with fine-grained anno-
tations. They later expanded this database to 4 datasets,
including 3,000+ photos and 8,000+ sketches, accompa-
nied by 32,000+ human triplet annotations to train a better
triplet retrieval network [27]. Rather than focusing on feature
extraction for cross-domain matching, Song et al. [28] instead
propose to learn semantic attributes and deep features in a
complementary way. They further construct a spatially aware
model which combines coarse and fine semantic information
in [29]. Li et al. [30] aim at bridging the image-sketch gap
via combine low level information with high level object parts
and attributes, and they collect a dataset with 304 photos and
912 sketches, where each sketch and image is annotated with
its semantic parts and associated part-level attributes. In order
to retrieve the target image with the least number of strokes
possible, Bhunia et al. [31] propose an on-the-fly FG-SBIR
framework based on a reinforcement learning scheme. Though
a growing number of FG-SBIR research works have been
proposed in recent years, those works focus on retrieving a
single object, which cannot be applied to many real-world
applications. In this paper, we explore the problem of scene-
level fine-grained SBIR instead, which utilizes local features

such as object instances and their visual details, as well as
global context, e.g. scene layout.

In addition to the fine-grained scene-level SBIR addressed
in this paper, other related fine-grained computer vision tasks
include fine-grained classification and retrieval using other
modalities, such as image-text fine-grained retrieval [32],
image-video fine-grained cross-modal retrieval [33], image-
3D fine-grained tasks [34], etc. Targeting fine-grained visual
classification, Du et al. [35] combine a progressive training
framework to learn category-consistent features at specific
granularities. Huang et al. [36] tackle fine-grained image cat-
egorization under the few-shot setting. Wei et al. [37] conduct
a systematic survey of fine-grained image analysis studies with
deep learning methods, and consolidate fine-grained image
recognition and retrieval as two fundamental research areas
in the FG image analysis field.

C. Scene-Level Sketch-Based Applications

Scene sketch have been studied and applied in scene image
composition [38], scene image synthesis [6], scene image
retrieval (not fine-grained) [3], and scene sketch semantic
segmentation [5]. Compared to Sketch2Photo [38], which
composites a photo-realistic scene image with a hand-drawn
sketch and text as input and retrieves initial candidates of
object instances for later scene image blending, our work
aims to retrieve a specific image from an image gallery
instead of compositing a synthesized image. Dey et al. [39]
propose a cross-modal deep network to conduct multi-object
image retrieval, which can use both sketches and text as
inputs. Castrejon et al. [3] collect a cross-modal scene dataset
and propose a cross-modal scene data representation learn-
ing framework for cross-modal retrieval tasks (including real
images, clip art, sketches, spatial text and descriptions).
Xie et al. [4] conduct a ZS-SBIR task on this cross-modal
scene dataset by utilizing the overall visual features of
scenes. Zou et al. [5] present a scene sketch dataset named
SketchyScene with semantic and instance segmentation anno-
tations, and conduct a pilot study of scene-level SBIR using an
object-level SBIR method [1]. Although the goal of SBIR in
SketchyScene is similar to the fine-grained scene-level SBIR
in this paper, SketchyScene mainly proposes a baseline using
an object-level SBIR method [1], and does not exploit the rich
scene context for SBIR.

D. Image Retrieval With Graph Convolutional Networks

Graph convolutional networks (GCNs) [40] are effective
neural network architectures to model and process graph
data, and they have been used in many applications such
as social recommendation [41], traffic prediction [42], action
recognition [43], layout generation [44] and text matching [45]
in the last few years. Jia et al. [46] develop CA-GCN for
personalized image retrieval, which leverages user behavior
data in a GCN model to learn user and image embeddings
simultaneously. Chen et al. [47] propose a multi-label image
classification model based on GCN and a re-weighted scheme
to capture the label dependencies of co-occur objects in an
image. In the realm of SBIR, Zhang et al. [48] utilize GCN
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Fig. 2. Framework of the proposed SceneSketcher-v2. Our network mainly consists of a graph generator, an adaptive graph encoder module and a triplet
loss for training. We first construct graphs for the input scene sketch and the images to be retrieved, and then utilize our adaptive GCNs for feature encoding
of the graphs. Finally, we conduct retrieval using the extracted graph features via a triplet loss.

in zero-shot SBIR task, and propose SketchGCN model to
use both visual and semantic information, which enhances the
generalization ability of the retrieval model.

Compared to these approaches, our method leverages
multi-modal features of object categories (i.e. global layout,
visual features and semantic features) to construct graph nodes
and learn adaptive graphs for encoders.

III. METHODOLOGY

A. Overview

The architecture of our proposed network is illustrated in
Fig. 2. Our method mainly consists of a graph generation
module, an adaptive graph convolution module and a triplet
similarity module. The overall network extracts feature embed-
dings of scene sketches and images, and feeds them to a
triplet ranking loss to enforce the distance in the feature
space reflects how close scene sketches and images are in
terms of global layout, appearance and semantic information.
During the training process, each time the network takes a
query scene sketch, a positive image and a negative image
as input. In order to model the key scene context in fine-
grained scene-level SBIR, we adopt adaptive graph convolu-
tional networks (GCNs) as the graph encoders, which integrate
the hierarchical information in scene sketches and images,
including global scene visual features, global layout, semantic
correlations between object categories, and projected features
of visual and location features of each object category.

B. Graph Initialization

We employ a weighted, undirected scene graph to model
the global layout, the semantic correlation and the visual
appearance (size, pose and other fine-grained details) of the
object instances in a scene sketch or a scene image explicitly.

Our scene graph can be formulated as G = (N, E), where
N = {ni } is the node set and E = {ei, j } is the edge set, and
ei, j = (ni , n j ) is the edge connecting nodes ni and n j . The
category set of the nodes in the graph is denoted as C = {ci},
where ci is the category label of node ni .

1) Node Construction: In this paper, we model each object
category ci as a node ni in the graph G. Fig. 3 illustrates an
overview of the graph node initialization process. Given an
object category ci , we construct a corresponding node ni by
integrating the characteristics of all the instances {oi j } from the
same object category ci . There are two types of information
in each node ni , i.e., the visual features vi and the spatial
position pi . Specifically, we resize the bounding boxes of the
instances to a fixed size of 128 × 128 and adopt Inception-
V3 [49] to extract a 2048-d visual feature vi j for each instance.
Then we concatenate the visual feature vi j of instance oi j with
its spatial position pi j (i.e., the coordinates of the upper left
and bottom right corners of its bounding box). Finally, for
each graph node ni representing an object category, we get
a 2052-d fused feature xi by fusing the characteristics of
instances {oi j } with the same category ci via a perception layer
(See Fig. 3). In the experiment, when the number of instances
in a certain category is more than three, we choose the top
three instances with the max sizes to construct the node for this
category.

2) Edge Construction: The object nodes are connected with
undirected weighted edges, and the edge weight between a
pair of object nodes shows their spatial correlation. For each
category node ni , we define its position pi by computing
the coordinates of the center point of the bounding boxes
of all instances in the category ci . Each node position pi is
denoted as a 2-d vector and the coordinates are normalized to
(0, 1). Given two nodes ni and n j with positions pi and p j ,
we define the edge weight Ai, j ∈ (0, 1) between them based
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Fig. 3. Illustration of our graph node construction. We model each object category as a node in the graph. For each object instance from the same category,
we concatenate the extracted visual feature and its spatial position. We then get a graph node with a 2052-d fused feature for each object category by integrating
the features of all the object instances from the same category through a fully-connected layer.

on normalized Euclidean distance as follows:
Ai, j = 1 − Di, j (1)

where Di, j = ||p j − pi ||2 is the Euclidean distance of the
spatial position of node ni and node n j .

C. Graph Convolutional Networks

After generating scene graphs for sketches and images,
we adopt GCNs to learn node-level representations for our
scene graph where we update the node features by propagating
information between nodes. The l-th layer of a GCN takes a
feature matrix Hl−1 and the corresponding adjacency matrix
A = {Aij } as inputs and learns a function f (·, ·) to extract
features on a graph G = (N, E). The l-th layer of the GCN
can be formulated as

H(0) = {xi }n
i=1 (2)

H(l) = f (H(l−1), A), l > 1 (3)

Then we adopt the propagation rule introduced in [40], and
the feature extraction function f (·, ·) can be written as

f (H(l), A) = σ(D̂
− 1

2 ÂD̂
− 1

2 H(l)W(l)) (4)

where σ(·) is the leaky ReLU activation function, Â = A + I,
and D̂ is the diagonal node degree matrix of Â, and W(l) is a
weight matrix to be learned.

We denote the outputs of the last layer of graph convolution
networks for sketches and images to be two scene graph
embeddings GS and GI , respectively.

D. Adaptive Graph Convolutional Module

Our previous SceneSketcher [7] use a fixed single graph in
the graph convolutional network for both training and testing
stages, which is not ideal to model the semantic relationships
and the dependency of object categories. Inspired by the spatial
attention module in 2SA-GCN [50] and the temporal attention

module in STA-GCN [51] that were designed for action
recognition, we adopt an adaptive graph convolution module
with a powerful attention mechanism for our fine-grained
scene-level SBIR task. In order to integrate different aspects of
graph structures, we use the sum of three adjacency matrices
as the adjacency matrix in Eq. (4), which represents three
different graph structures, i.e., a fixed adjacency matrix A1 that
denotes the category-level characteristics and spatial layout of
the scene sketch, a semantic adjacency matrix A2 modeling
the correlations and dependencies between different categories,
and a learnable adjacency matrix A3 denoting the unique
pattern of each sketch-photo dataset. The construction process
of the adjacency matrices is as follows:

1) As for A1, we use the original spatial graph adjacency
matrix in Eq. (1);

2) In order to effectively capture the correlations between
object categories, we use a semantic graph A2 to model
the semantic correlation of the category labels. Specifi-
cally, the category label ci of each node is encoded as a
300-d vector c̃i by Word2Vec [52], and then we use the
cosine distance between them to model the correlation
of the two nodes;

3) The third matrix A3 is a trainable matrix. Compared
to A1 and A2 which are both fixed after initialization,
the adjacency matrix A3 can be learned during the
training process. In this data-driven way, the model
can learn a specific graph that can help to achieve
better performance of fine-grained scene-level task on
a particular dataset.

We show the overall architecture of our adaptive graph
convolutional layer in Fig. 4. Given the input scene sketch,
we first get a graph feature map fin of N × ( fv +4)-d via our
node construction module (see Sec. III B), where fv denotes
the size of the extracted feature of the visual feature extraction
network. And we also extract a 1 × N global visual feature
of the whole scene sketch using Inception-V3. Then we use
graph convolutional layers to embed fin with the sum of the
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Fig. 4. Illustration of the adaptive graph convolution module. Given the input
scene sketch, we can embed it into a 1 × C feature fout with our adaptive
graph convolution module by integrating the global visual feature, the fused
feature fin of each category and the graph adjacency matrices {Ai }3

i=1 of
categories. N is the number of nodes in the graph, C is the output dimension
of the GCN layers, and fv is the size of instances’ visual feature extracted
by the convolutional layers.

proposed three adjacent matrices into an N ×C graph feature.
Finally, the N × C graph feature and the 1 × N global visual
feature are multiplied into a scene-level feature vector of the
size 1 × C .

Compared with the graph network in SceneSketcher [7] in
which the different scene graphs output graph embeddings
with variable sizes, our proposed adaptive graph convolu-
tional module produces fixed-size feature vectors which can
be directly fed into the later triplet ranking network. Our
adaptive graph convolutional module enables an end-to-end
training process for both the GCN layers and the visual feature
extraction networks. As a comparison, the graph embeddings
in SceneSketcher [7] need to be further compared with a
non-differentiable graph matching strategy and the parameters
of its visual feature network are fixed after initialization,
thus the extracted features may not be optimal for feature
embedding.

E. Loss Function

We use triplet loss to update our fine-grained scene-level
SBIR framework. The input of our SceneSketcher-v2 is a
triplet (S, I+, I−), where S is a scene sketch, I+ is the
corresponding image of S, and I− is an image of a different
scene. We describe the construction of our loss function as
follows.

As evidenced by pioneering SBIR networks [1], [27], the
triplet ranking loss is able to express fine-grained appearance
details and relationships of sketches better than Siamese

loss [2]. The goal of the triplet loss is to enforce the embedding
features of two examples with the same label to be close to
each other and the embedding features of two examples with
different labels far away. The triplet loss Ltri of a given triple
(S, I+, I−) can be computed by

Ltri = max(d(S, I+) − d(S, I−) + m, 0) (5)

where d(·, ·) is the distance function in the embedding space,
and m is a margin between the anchor-positive distance
and the anchor-negative distance, which is set to 0.4 in our
experiments.

With three scene graph embeddings GS , GI+ and GI− of
the triple (S, I+, I−), we define d(S, I+) and d(S, I−) of
Eq. (5) by computing the Euclidean distance between them.

IV. EXPERIMENTS

A. Datasets

Although several sketch datasets [1]–[3], [5], [53], [54]
have been constructed for SBIR or other sketch-oriented
applications (see Fig. 5), none of them fit our problem. They
either just contain a single object instance in one photo, or no
fine-grained annotations of objects are available. We show
several examples of the existing sketch databases in Fig. 5.

1) Object-Level Sketch Datasets: TU-Berlin [53] and
QuickDraw [54] only contain sketches without photos, thus
they cannot be used in SBIR task. The Sketchy Database [2]
was originally used for object-level SBIR, where there is a
single object instance in each sketch or image. TU-Berlin
Extended contains photos of the same classes of the TU-
Berlin dataset, which is a main benchmark dataset for coarse-
grained sketch-based image retrieval; QuickDraw-Extended
proposed in [55] contains photos of the same classes of the
QuickDraw sketches; Sketchy-Extended was implemented by
Shen et al. [22] and Yelamarthi et al. [24], and these three
extended datasets are commonly used in zero-shot SBIR.
QMUL Shoe&Chair dataset [1] is the first dataset intro-
duced for fine-grained SBIR task, containing a few hundred
sketch-photo pairs. Although QMUL Shoe&Chair dataset [1]
facilitates the fine-grained sketch-related applications, all the
sketches and images in this dataset have single instances and
clean backgrounds, thus it cannot be used in our scene-level
SBIR task. Moreover, there are only two object classes (shoes
and chairs) in QMUL Shoe&Chair dataset, which is insuffi-
cient for large-scale SBIR.

2) Scene-Level Sketch Datasets: SketchyScene [5],
CMPlaces [3] and SketchyCOCO [6] are the three available
scene-level sketch datasets. SketchyScene was originally used
for the scene sketch segmentation task and is not suitable to
be directly used to train and evaluate our fine-grained scene-
level SBIR network. Though SketchyScene contains large
amount of sketch-image pairs, the images of SketchyScene
are all cartoon clips, while the focus of our work is to retrieve
natural photos. Moreover, SketchyScene does not contain the
bounding box or object instance segmentation annotation in
images, thus it cannot offer the visual feature and spatial
information of object instances for our SceneSketcher-v2
framework. CMPlaces was originally used for category-level
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Fig. 5. Examples of the existing sketch databases.

cross-modal retrieval. It only contains scene-level category
labels, thus cannot be used for our fine-grained retrieval task
either. On the one hand, it does not contain paired image and
sketch data. On the other hand, it does not contain object
instance segmentation annotations as in the SketchyScene
database. SketchyCOCO is a fine-grained scene-level sketch
dataset containing sketch-image pairs, and it is designed
for sketch-based image synthesis. Most of the images in
SketchyCOCO only contain single foreground object, and the
correspondences between objects in sketches and images are
usually inaccurate, therefore, SketchyCOCO is not an ideal
dataset for fine-grained scene level SBIR.

In our experiment, we modified existing sketch databases
SketchyCOCO [6] and SketchyScene [5] for evaluations.

3) SketchyCOCO-SL: We collect a scene sketch-image
dataset (named SketchyCOCO-SL, where we use “SL” to
emphasize “scene-level”) by modifying SketchyCOCO [6],
and utilize the scene sketch dataset for our fine-grained scene-
level SBIR task. SketchyCOCO is constructed for sketch-based
image generation task, containing over 14,000 scene-level
sketch-photo pairwise examples, but most of them only contain
one foreground instance. We use sketch-photo pairs containing
more than one object instance from SketchyCOCO, that is
1,225 scene sketch-photo pairs in total, covering 14 object
categories (bicycle, car, motorcycle, airplane, traffic light, fire
hydrant, cat, dog, horse, sheep, cow, elephant, zebra, giraffe).
We split SketchyCOCO-SL into training and testing sets, each
containing 1,015 and 210 scene sketch-image pairs. The first
two columns of the last row of Fig. 5 shows two examples
of SketchyCOCO-SL dataset. We display two samples with
multiple object instances, and our fine-grained scene-level
SBIR models are needed to differentiate a specific scene.

4) SketchyCOCO-SL Extended: We extend
SketchyCOCO-SL with natural images from COCO-stuff [56]
to form a larger image gallery, named SketchyCOCO-SL
Extended, to further investigate the performance of our
method. We select 5,000 natural images, the objects of which
are within the 14 categories in SketchyCOCO-SL. These
natural images do not have corresponding sketches in the
SketchyCOCO-SL dataset and are not used in our training
process. Then we combine them with the images of the
testing dataset in the SketchyCOCO-SL dataset. In total, there
are 210 sketches and 5,210 images in the testing set.

5) SketchyScene: SketchyScene [5] is a scene-level sketch
dataset designed for segmentation tasks, and a pilot study of
scene-level SBIR also has been conducted on it. In this work,
we use the same 2,472 and 252 pairs of sketch-photo data as
SketchyScene [5] for evaluation.

B. Implementation Details

We adopt the Yolo-V4 object detector [57] to obtain the
instances’ bounding boxes in sketches and images. In order to
extract object instances in scene sketches, we use the training
set of SketchyCOCO-SL to train a Yolo-V4 object detector,
and we use the trained Yolo-V4 model to obtain the instances’
bounding boxes in scene sketches during testing. Similarly,
for the SketchyScene dataset, we select 150 images from the
training set of SketchyScene, manually label the bounding
boxes of the object instances, and then train a Yolo-V4 network
to detect the object instances in the images for retrieval.

As mentioned in the Node Construction part in Sec. III-B,
if the number of instances in a certain category is more than
three, we choose the top three instances with the max sizes
to construct the node for this category. We have conducted
experiments to analyze the SBIR performance with respect
to the maximum number of instances to be retained for
each category in our model. We set the maximum number
of instances in a certain category as three, four, and five,
respectively, and we have observed that the network obtains
the best retrieval performance when setting the maximum
number of instances in a certain category as three. And the
performance is almost reaching a steady state over all the
three models. This may be because over 94% of the scene
sketches in the SketchyCOCO-SL database contain no more
than 3 instances of the same category. Furthermore, the max
number of instances in a certain category can be regarded as a
hyper-parameter used in the graph node construction process,
and it can be modified according to the sketches and images
of different databases.

C. Evaluation Metrics

We adopt a standard and the most commonly used evalua-
tion metric for retrieval as [1], recall at rank K (Recall@K),
which is computed as the percentage of test queries where the
target image is ranked within the top K retrieved images.

D. Comparison With Baselines

We show several fine-grained SBIR examples with our
method on the SketchyCOCO-SL Extended dataset in Fig. 6
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TABLE I

COMPARISON OF SCENE-LEVEL SBIR PERFORMANCE WITH EXISTING SBIR METHODS ON THE SKETCHYCOCO-SL DATABASE (210 TESTING
IMAGES), SKETCHYCOCO-SL EXTENDED DATABASE (5,210 TESTING IMAGES), AND SKETCHYSCENE DATABASE (252 TESTING IMAGES). THE

MISSING VALUES INDICATE THE RECALLS OF THE SBIR METHODS ARE CLOSELY TO ZERO

and on SketchyScene dataset in Fig. 7. For each query sketch,
there are typically a handful of visually very similar photos;
since in this paper our goal is to conduct fine-grained scene-
level SBIR, the lower-rank accuracy is a better indication on
how well the model is capable of distinguishing fine-grained
subtle differences between candidate photos. Some sketches
do not match the photos exactly in the SketchyCOCO and
SketchyScene dataset, thus there are cases that no images in
the database can fully match the input sketch.

In the following, we also compare our model with
several state-of-the-art (SOTA) using hand-crafted features
and deep learning based features. (1) Baselines using
hand-crafted features include HOG-BoW+RankSVM [11]
and Dense HOG+RankSVM [58]. We first compare our
method with HOG-BoW+RankSVM. HOG-BoW descriptor is
a widely-used visual feature for SBIR [11], [60]. We first
extract HOG features from each image, and feed them to the
BoW (Bag-of-Words) framework for feature encoding. Then
we feed the features to train a RankSVM model to rank the
results as [61]. During the comparison, we use the same triplets
for training as those in the experiment of our method. We also
compare our method with Dense HOG features-based method.
We follow [1] to extract Dense HOG features, in which dense
HOG features are extracted by concatenating HOG features
over a dense grid [58]. (2) Baselines using deep learning
based features include Sketch-a-Net+RankSVM [59], Sketch
me that shoe [1], DSSA [29], and SketchyScene [5]. In Sketch-

a-Net+RankSVM [59], we extract deep features using the
Sketch-a-Net model and feed them to RankSVM to train a
SBIR model. In order to compare Sketch me that shoe [1],
we adopt a deep triplet ranking model for instance-level fine-
grained SBIR, where free-hand sketches are used as queries
for instance-level retrieval of images. Due to the lack of
fine-grained scene-level SBIR models, we can only compare
with the existing object-level SBIR methods mentioned above.
To the best of our knowledge, SceneSketcher-v1 published
in ECCV 2020 [7] is the only fine-grained scene-level SBIR
model. Besides, Zou et al. [5] present a closely related work,
where they construct a scene sketch dataset and conduct a
preliminary study of scene-level SBIR based on a similar
triplet ranking network proposed in [1]. We also compare our
method with the SBIR method used in SketchyScene.

Table I shows the comparison of the retrieval recalls with
our model and the compared methods. The results indicate
that: (1) Our model achieves significantly higher recall than
the other baselines on all three datasets, which demonstrates
that our method is effective. (2) Baselines in Table I use
hand-crafted image descriptors ( [11], [58]) or deep features
( [1], [5], [29], [59]) to conduct shape matching between
sketches and edge maps of natural images. They are all
designed for single object retrieval, thus produced poor results
on multi-objects dataset. Deep learning based models are
in general stronger compared with traditional hand-crafted
features designed for SBIR. (3) Deep learning based models
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Fig. 6. Top-10 fine-grained scene-level SBIR results with our method. The true matches are highlighted with red borders.
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Fig. 7. Top-5 fine-grained scene-level SBIR results with our method on
SketchyScene dataset. The true matches are highlighted with red borders.

Fig. 8. Comparison of scene-level SBIR results with our method and
SceneSketcher [7]. We show four panels. In each panel, (a) shows the results
of SceneSketcher-v2, (b) shows the results of SceneSketcher. The ground truth
matches are highlighted with red borders.

designed for SBIR with a single object (e.g. Sketch me that
shoe [1], DSSA [29], and SketchyScene [5]) get poor perfor-
mance on SketchyCOCO-SL dataset and SketchyCOCO-SL
Extended dataset. However, compared to traditional methods,
the recalls of these deep learning based models improve
significantly on SketchyScene dataset, which may be because
these three methods conduct SBIR between input sketches
and the edge maps extracted from images, and the photos
in SketchyScene are all cartoon images which makes edge
map extraction more easier. Sketch me that shoe [1] is a
more related SOTA SBIR model, which is also the first work
on fine-grained SBIR task. (4) We also compare our method

with SceneSketcher [7]. The Recall@1 with our method is
about 37%, 16% and 13% higher than those with SceneS-
ketcher on SketchyCOCO-SL, SketchyCOCO-SL Extended
and SketchyScene datasets, respectively. We show the visual
comparison of scene-level SBIR results with our method and
SceneSketcher in Fig. 8.

E. Ablation Study of SceneSketcher-v2

Our fine-grained scene-level SBIR method adopts an adap-
tive GCN to fuse hierarchical information of scene sketches
and images, including category nodes fusing instance-level
characteristics with the same category label, graph embedding
representing category-level overall information and correla-
tion, and image attention representing global layout feature
of scene. In order to demonstrate the contribution of each
component, we compare our full model with the following
three models:

1) Graph only (average fusion). To investigate the effect
of the fused feature of the instances of the same object
category in the node construction (See Section III-B),
we use the average feature of the instances of the same
object category to construct the category node for com-
parison. We remove the fully-connected layer in Fig. 3
and get the category nodes by directly averaging the
features of the instances of the same category. Moreover,
the global scene visual feature is not included. The rest
parts of this model are the same as our full model.

2) Graph + global (average fusion). This model is similar
to Graph only (average fusion), but the global scene
visual feature is used as our full model.

3) Graph only (learned fusion). To investigate the effect of
the global scene feature in the adaptive graph convolu-
tion module (See Fig. 4), we remove the global scene
visual feature from our full model, and use the same
graph encoder as our full model. The node construction
procedure is the same as we described in Section III-B.
We fuse the features of instances with the same object
category in a learned way via a fully-connected layer to
construct the category node in our scene graph.

Table II shows the performances of our full model and
the three models above on the fine-grained scene-level SBIR.
We can observe that: (1) Our global scene visual feature
and the adaptive GCN module contribute greatly to
the final performance of our SceneSketcher-v2. The only
difference between Graph + global (average fusion) (Full
model) and Graph only (average fusion) (Graph only (learned
fusion)) is that the former also employs additional global
scene visual feature. Graph + global (average fusion) (Full
model) outperforms Graph only (average fusion) (Graph only
(learned fusion)) on all the three datasets. Besides, Graph
only (learned fusion) models can also obtain relatively good
performance, showing the effectiveness in applying GCN to
the fine-grained scene-level SBIR task. (2) The way to fuse
instance features and construct category nodes has a great
impact on the retrieval performance of the model (See
Graph only (average fusion) vs. Graph only (learned fusion),
and Graph + global (average fusion) vs. Full model). Instead
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Fig. 9. Comparison of Top-5 fine-grained scene-level SBIR results with SceneSketcher-v2 and SceneSketcher. We use two sets of similar image collections
of elephants (row 1 to row 5) and zebras (row 6 to row 10), respectively. The true matches are highlighted with red borders.

of fusing instance features using manually defined feature
fusion rules (e.g., averaging instance features with the same
category label to get the category node feature), we construct
our category nodes by fusing the visual features and positions
of the instances via a learned way (the fully-connected layer
in Fig. 3), thus get better features of each object category and
facilitate SBIR.

F. Comparisons Between Adjacency Matrices

We also compare the effect of different adjacency matrices
in the adaptive graph layer (See Table III). From the SBIR
results, we can see that: (1) The three components of the
adjacency matrices all contribute to the excellent retrieval
performance of our final model. (2) Although the adjacency
matrix A1 which is a fixed graph structure denotes the spatial
layout of the scene sketch performs poor when working solely,
it can enhance the SBIR performance when A1 works together
with A2 and A3. Conceptually, the spatial layout between
instances alone is not enough to determine the similarity
between scenes, but it can be used as an inherent constraint
for SBIR. (3) The model achieves good results when working

TABLE II

COMPARISONS OF DIFFERENT COMPONENTS

alone with A2 or A3. Compared to the performance with A3,
the retrieval model performs better with A2. Since A2 provides
category semantic information, we can conclude that semantic
information is a key clue in the scene-level SBIR task.
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TABLE III

COMPARISONS USING DIFFERENT ADJACENCY MATRIX IN THE ADAPTIVE
GRAPH LAYER. THESE THREE ADJACENCY MATRICES, A1, A2 , AND

A3, ARE DESIGNED TO MODEL SPATIAL, SEMANTIC, AND ADAP-
TIVE INFORMATION, RESPECTIVELY

G. Fine-Grained Retrieval

To analyze the performance of our fine-grained scene-level
SBIR, we pick some images that are extremely similar in
overall layout of sketches, category of objects, and their
position and shape. We pick up 10 extremely similar images
of elephants (or zebras) from our SketchyCOCO-SL Extended
dataset. Corresponding scene sketches are used to conduct
the SBIR task. We aim at exploring the sorting results of
the 10 images with different sketches as inputs. We also use
our previous SceneSketcher [7] to conduct image retrieval
on these elephant and zebra images. Results are shown in
Fig. 9. Although both SceneSketcher and SceneSketcher-v2
can retrieve the desired fine-grained images effectively, our
SceneSketcher-v2 is able to capture more details of object
positions and relationships.

H. Application

As an example, we demonstrate that our method can enable
the application of sketch-based interior scene retrieval. In the
following, we conduct a pilot study of this application.

To the best of our knowledge, there is no large-scale
indoor scene sketch-image paired data publicly available.
In order to train and test our model, we selected indoor scene
images of furnished rooms from a large-scale indoor scene
dataset, 3D-FRONT (3D Furnished Rooms with layOuts and
semaNTics) [62] and made their corresponding scene sketches.
Since the appearance of furniture in each indoor scene image
varies greatly and no pattern can be followed to automatically
generate a large number of sketches, we construct the dataset
manually. In this pilot study, we first selected 110 indoor
scene images of furnished rooms from 3D-FRONT. Then

Fig. 10. Fine-grained scene-level SBIR application: furnished room retrieval
with scene sketches. We show top-5 fine-grained scene-level SBIR results with
our SceneSketcher-v2. The true matches are highlighted with red borders.

we generate the sketches of the selected scene images via
composition of single instance sketches as [5]: (1) we firstly
select sketches of object categories contained in those scene
images from TU-Berlin [53]; The scene objects in 3D-FRONT
are clustered into 7 major categories (i.e. cabinet, bed, chair,
table, sofa, stool and lighting), and the object categories
of sketches selected from TU-Berlin include 5 classes (i.e.
bed, chair, table, couch and tablelamp). Since the categories
“sofa” and “lighting” do not exist in TU-Berlin, we select
the sketches of similar object categories from “couch” and
“tablelamp” instead. (2) we choose the appropriate object
sketch for each object instance, and construct scene sketches
by placing them in proper places using dragging, rotation, and
scaling operations under the guidance of the reference image.

We get 110 pairs of “sketch-image” indoor scene data.
We use 95 pairs of “sketch-image” data to train our retrieval
model, and the rest 15 pairs of sketches to find the scene
images from the 110 images. We obtain 13.33% on recall@1,
46.67% on recall@5, and 60.00% on recall@10 on the
110 testing images. In addition, we constructed another image
gallery for evaluation by selecting additional 500 furnished
room scene images from the 3D-FRONT dataset. We also
use the 15 sketches to retrieve scene images from the indoor
image gallery with 515 images (combining 15 relevant images
with the additional 500 images). The recall@1, recall@5, and
recall@10 retrieval results are 13.33%, 26.67% and 33.33%,
respectively. Fig. 10 shows several retrieval examples. Our
SceneSketcher-v2 is able to find out rooms which are dec-
orated with similar furniture in similar positions. Fine-grained
scene-level SBIR techniques provide potential solutions to
indoor scene retrieval and style selection.
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Fig. 11. Failure cases on SketchyCOCO-SL Extended. We show Top-5
fine-grained scene-level SBIR results with our method. The true matches are
highlighted with red borders.

I. Failure Cases and Limitations

Although our SceneSketcher-v2 has achieved promising
results, it still has several limitations. Fig. 11 shows several
failure retrieval examples on our SketchyCOCO-SL Extended
dataset. Some failure cases come from the inaccurate or wrong
data annotations (see the first row of Fig. 11). Because our
model does not enforce object instance orientation constraints,
our retrieval model may find false fine-grained images with
different object orientations (see top-1 results in the second
and third rows of Fig. 11, which have the correct categories
and similar appearances, but wrong orientations). In addition,
when the input scene sketch contains complex occlusions, the
retrieval performance may drop a little (see the last two rows
of Fig. 11).

V. CONCLUSION AND FUTURE WORKS

In this work, we propose a new network called
SceneSketcher-v2 for fine-grained scene-level sketch-based
image retrieval. SceneSketcher-v2 incorporates an adaptive
graph-based framework, together with a global image atten-
tion, to model the layout and fine-grained details of sketch
scenes at the same time in an explicit way. Its end-to-end
training manner enables the updating of visual feature learning
network together with the graph convolutional network via a
triplet loss, which greatly boosts the final SBIR performance.
We show our method is superior to SceneSketcher as well as
other existing sketch-based image retrieval methods on several
popular datasets.

Although promising results have been obtained in this work,
our SBIR framework can be further improved in three aspects:
(1) The instances in the input scene sketches are treated
equally, however, in real SBIR applications, users may want
to give different retrieval priorities to the instances, e.g., draw
sketch objects in a variable levels of sketch abstraction and
detail to express their different attention to the instances’
similarities between input sketch and retrieved image. Our
method could be incorporated with users’ extra interactive
information to achieve image re-ranking or incremental image

retrieval. (2) Our method only uses the position, size, and
geometrical visual information in the scene sketch for image
retrieval. In some scenarios, extra user input from other
modalities, such as the color information, may allow the user
to search the target image more efficiently. In the future,
we may also consider providing a flexible and hybrid query
interface which integrates sketch as well as other modality
input for fine-grained scene-level sketch-based image retrieval.
(3) Our SceneSketcher-v2 cannot be directly used for zero-
shot retrieval, and we plan to extend our model to obtain scene
graphs in a dynamic way, and conduct scene-level fine-grained
SBIR on unseen instances in the future work.
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