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Complete 3D Relationships Extraction Modality
Alignment Network for 3D Dense Captioning

Aihua Mao, Zhi Yang, Wanxin Chen, Ran Yi, Yong-jin Liu, Senior Member, IEEE

Abstract—3D dense captioning aims to semantically describe each object detected in a 3D scene, which plays a significant role in 3D
scene understanding. Previous works lack a complete definition of 3D spatial relationships and the directly integrate visual and
language modalities, thus ignoring the discrepancies between the two modalities. To address these issues, we propose a novel
complete 3D relationship extraction modality alignment network, which consists of three steps: 3D object detection, complete 3D
relationships extraction, and modality alignment caption. To comprehensively capture the 3D spatial relationship features, we define a
complete set of 3D spatial relationships, including the local spatial relationship between objects and the global spatial relationship
between each object and the entire scene. To this end, we propose a complete 3D relationships extraction module based on message
passing and self-attention to mine multi-scale spatial relationship features and inspect the transformation to obtain features in different
views. In addition, we propose the modality alignment caption module to fuse multi-scale relationship features and generate
descriptions to bridge the semantic gap from the visual space to the language space with the prior information in the word embedding,
and help generate improved descriptions for the 3D scene. Extensive experiments demonstrate that the proposed model outperforms
the state-of-the-art methods on the ScanRefer and Nr3D datasets.

Index Terms—3D dense captioning, multi-modal learning, 3D spatial relationship, modality alignment.

✦

1 INTRODUCTION

D EEP learning has achieved great progresses in com-
puter vision and graphics in the last decade, including

the field of object detection and scene understanding. Partic-
ularly, scene understanding performs higher level functions
than object recognition in analyzing objects in context with
respect to the spatial and semantic relationships between
objects of the scene. The rapid research progress has further
promoted the cross-modal learning tasks of vision and
language in the fields of visual question answering and
semantic captioning. However, most of the current works
are based on 2D image data, and the cross-modality tasks of
3D scenes and language are a new direction and have been
rarely explored.

Recently, 3D scene understanding becomes a crucial
research topic for robotics, augmented reality and au-
tonomous vehicles. Cross-modal tasks for 3D scenes seman-
tic captioning have gained great attention with the creation
of datasets that express 3D object localization via natural
language, such as ScanRefer [1] and Nr3D [2]. Chen et al.
[1] were the first to develop 3D visual grounding, which
takes two separate modalities (i.e., point cloud and language
expression) as input to locate and identify target objects in
3D scenes. Users can not only locate objects in 3D scenes,
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Fig. 1. (a) Comparison of 3D spatial relationships: Previous methods
[3], [4] only extract orientation relationships (a1), while we define a
complete set of 3D spatial relationships (a1-a4), which increases the
authenticity of the description. (b) Comparison of modality alignment:
Previous methods directly maps from the visual space to language
space, while we leverage the prior information in the word embedding
to bridge the inter-modality discrepancies.

but also generate concrete descriptions. The researchers then
introduced the 3D dense captioning task [3], which takes the
point cloud of a 3D scene as input, performs 3D object de-
tection and generates natural language description for each
detected object. 3D dense captioning offers a meticulous
semantic description of individual objects in a 3D scene and
has significant value for 3D scene understanding.

The captioning task requires the collection of high-level
semantic information from visual data (such as images and
point clouds) and the creation of one or more natural lan-
guage sentences to automatically describe the scene. Given
the sparse, irregular, and disordered nature of point clouds,
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3D dense captioning is more challenging than image cap-
tioning, which deals with regular image data, because it is
necessary to not only generate a description for each object,
but also deal with disordered point cloud data and solve
more complicated spatial relationships. Scan2Cap [3] and
X-Trans2Cap [4] are the pioneering works of deep learning
network for 3D dense captioning. However, the previous
methods suffer from the following weaknesses: (1) these
methods only extract orientation relationships (shown in
Fig.1(a1)) and lack the complete definition of 3D spatial rela-
tionships; (2) these methods directly integrate the visual and
language modalities (shown in the upper part of Fig.1(b)),
ignoring the discrepancies between the two modalities; (3)
Transformer can gather object features well but needs to
learn many parameters during the training phase.

To address these issues, we propose a novel 3D dense
captioning approach with a complete 3D relationships ex-
traction modality alignment network (REMAN) that en-
hances the accuracy of description sentence generation. RE-
MAN consists of a 3D object detection backbone, a complete
3D relationships extraction module (REM) and a modality
alignment caption module (MACM). First, we define a com-
plete set of 3D spatial relationships (illustrated in Fig.1(a)),
including orientation relationships, local fundamental, lo-
cal overlap, and global relationships. Second, we propose
REM to extract both local (between objects) and global
(between each object and the global scene) relationship
features, which increases the authenticity and diversity of
the description. Third, we propose MACM to fuse the rela-
tionship features and generate descriptions, which leverages
the prior information in the word embedding to bridge
the semantic gap from the visual to the language space
(the lower part of Fig.1(b)). Notably, the proposed modality
alignment approach does not increase the parameters of
network learning, allowing it to be easily applied to various
tasks.

To completely evaluate the performance gain of RE-
MAN, we conduct extensive experiments on the ScanRefer
[1] and Nr3D [2] datasets, training them in both end-to-end
and non end-to-end approaches. The results of the BLEU-
4 [5], CIDEr [6], ROUGE [7], and METEOR [8] metrics on
different datasets show the effectiveness of our proposed
approach, when compared with the state-of-the-art meth-
ods.

In summary, our main contributions are threefold:

• We propose a novel point cloud-based 3D dense
captioning network (REMAN) that can accurately
learn the local and global relationships of objects in a
3D scene.

• To better locate the target object in a 3D scene, we de-
fine a comprehensive set of 3D spatial relationships
that consider both local and global relationships and
propose REM to extract various relationship features.

• We propose MACM for natural language description
generation, which bridges the semantic gap between
the vision and language modalities by leveraging
the prior information in the word embedding and
improves the captioning without increasing the pa-
rameters.

2 RELATED WORKS

2.1 Image Captioning

Although the research on the 3D scene semantic caption
generation task has just begun, many solid works [9], [10],
[11], [12], [13], [14], [15] on image captioning have been
conducted. Anderson et al. [16] proposed a bottom-up and
top-down attention mechanism based on the faster region-
CNN [17] object detection framework, which directs the net-
work to encode visual features and output captions through
LSTM [18]. To further encode the relationship between
regions, Li et al. proposed ReGAT [19] learn the relationship
features by constructing the region relation graph. With
the popularity of the Transformer [20] architecture, several
image captioning models have begun to use the attention
mechanism. Huang et al. [21] augments the traditional self-
attention mechanism by addressing irrelevant attention con-
cerns. Cornia et al. [22] employs mesh connection to learn
low- and high-level features in the decoding step, using
learnt prior knowledge to model the multilevel represen-
tation of the relationship between regions. To selectively use
visual information and execute multimodal reasoning, Pan
et al. proposed X-LAN [23]and it uses a bi-linear pooling
module.

With the development of pre-training models like BERT
[24] in natural language processing, many vision-language
models with pre-training and fine-tuning strategies have
been proposed, such as VL-BERT [25], ViL-BERT [26], and
LXMERT [27], which can be applied to image captioning.

However, all the works above focus on image data and
are difficult to be applied for the 3D scene. Our work turns
the focus on the semantic captioning of 3D cloud point and
further explores the reasoning of 3D spatial relationships.

2.2 3D Scene Captioning

With the easy acquisition of 3D data thanks to the de-
velopment of sensor technology, an increasing number of
researchers are shifting their attention from 2D vision to 3D
vision and attempt to utilize the language information, solv-
ing tasks such as 3D question answering [28], [29], [30], 3D
Captioning [3], [31], [32], and 3D Visual Grounding [1], [2],
[33], [34], [35]. Chen et al. [3] first introduced the 3D dense
captioning task, which aims to create dense descriptions for
a 3D scene, namely, one semantic sentence for each detected
object. The overall task is similar to that of image captioning,
except that the visual information is derived from 3D data.
Subsequently, Scan2cap [3] is designed for the generation
of 3D scene dense captioning for point cloud. It consists of
three primary modules: object detection, spatial relationship
graph reasoning, and context-aware caption generation. The
network can output the detected object bounding boxes
and the related natural language caption. X-Trans2Cap [4]
is another recent work, which is based on Transformer
and the teacher–student design in [36]. During the training
step, the teacher network receives input of both 2D and
3D features and guides the student network using solely
3D features. These works begin the research for 3D dense
captioning, however, are lacking in the definition of 3D
spatial relationships of objects in a 3D scene. Thus, we define
a comprehensive set of spatial relationships and propose a
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Fig. 2. An overview of our REMAN. First, given the point cloud of a 3D scene, the 3D object detection backbone extracts object-level features and
candidate bounding box features. Then the two types of features are fed into the Complete 3D Relationships Extraction Module to extract a newly
defined complete set of 3D spatial relationships. The extracted relationship features are then sent into the Modality Alignment Caption Module,
which leverages the prior information in the word embedding space to bridge the semantic gap between visual and linguistic features and generates
a description for each detected object.

REM to extract various relationship features, which increase
the authenticity and diversity of the description.

2.3 Visual Relationship Learning
In vision-language multi-modal tasks, the spatial relation-
ship between objects is extremely crucial. ReGAT [19] is a
graph convolution model that has been applied to visual
question answering. This model creates an object relation-
ship graph using 11 different types of relative position rela-
tionships and adopts a spatial relationship encoder to model
them. Kant et al. [37] also developed an object relationship
graph, but learned the relationship using the multi-head
attention mechanism in the Transformer architecture, with
each attention head responsible for learning a distinct type
of relationship. Luo et al. [38] proposed an image captioning
method based on the Transformer architecture. This method
does not generate an object relationship graph individually,
but encodes the relative and absolute positions of objects
instead and then uses the attention mechanism to perform
fusion learning. Dual-GCN [39] captures both the object-to-
object spatial relation in a single image, and the feature in-
formation provided by related images. Dong et al. [40] also
considered rich spatial relationship information, including
the Intersection over Union (IoU) and relative orientation
angle among the objects, when constructing the object rela-
tionship graph. By improving the learning of these auxiliary

relationships, the extracted relationship features are highly
accurate in describing the spatial relationship. GPaS [41]
constructs a graph from semantic words and apply GCN
[42] and LSTM [18] for dense video caption. Different from
the above methods, our model focuses on complete spatial
relationship modeling of 3D scenes.

2.4 Feature Alignment
Feature alignment is an important work for cross-modality
tasks of vision and language, such as image-text retrieval
and image-text matching. It usually needs to transform the
extracted features to align the visual and linguistic features,
and eliminate the enormous gaps in feature distribution
caused by different modalities. TIRG [43] considers the
inter-modality gaps between visual and linguistic features,
projects them into the same feature space, and learns two
types of gated and residual features to improve the feature
fusion. Oscar [44] represents each input image-text as a
triplet (w, q, v) of words, category labels, and object feature.
Then, the category label q is employed as an anchor to
help the visual features in aligning the regions and the
text. CAMERA [45] first computes the cosine similarity
between the visual features of each view in the image and
the linguistic features of the caption, and then adopts triple
loss to reduce the gap between visual and linguistic features
with the same semantic meaning, thereby improving feature
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alignment. MFA [46] aligns regions and sentences in word
and phrase level. EMAF [47] designs the alignment module
based on the improved dynamic routing algorithm and has
achieved competitive results in fake news detection. Differ-
ent from the above methods, our method bridges the gap
between the visual features extracted from 3D scenes and
the linguistic features by leveraging the prior information
in the word embedding.

3 METHOD

In this section, we introduce our complete 3D REMAN for
3D dense captioning. Given the input data (point cloud),
our model follows the steps of 3D object detection and gen-
eration of semantic description for each detected object. As
shown in Fig.2, the pipeline consists of three steps. (1) First,
we feed the input point cloud data into a 3D object detection
backbone such as Votenet [48] to obtain object-level features
fobj ∈ R128×M and the corresponding bounding boxes
∈ R24×M where M is the numbers of proposals, which
will be leveraged to extract spatial relationship features and
generate descriptions. (2) Then, we define a complete set
of spatial relationships suitable for 3D scenes and propose
the complete 3D REM to model local and global spatial re-
lationships. Considering that the relationship changes with
the view, we propose a view transformation module (VTM)
to obtain features under different views. (3) Finally, consid-
ering the gaps between vision and language, we propose
two modality alignment classifiers in MACM to fuse multi-
scale features and bridge inter-modality gaps, allowing for
a more seamless transition from visual to linguistic features.

3.1 Definition of 3D spatial relationships

The orientation relationships in Scan2Cap [3] illustrated in
Fig.1(a1) only describe the angular deviations between two
objects. In this section, we propose the following three new
3D spatial relationships to form a complete set of 3D spatial
relationships.

Local Fundamental Relationships. The detected bound-
ing boxes enable the objects in the scene to establish six
fundamental relative relationships: up, down, left, right,
front, and back. Fig.1(a2) shows the 3D schematic of the
neighboring left, upper, and front bounding boxes (red) for
the green target bounding box.

Local Overlap Relationships. Additionally, to address
the coverage phenomena, we define two types of local over-
lap relationships, namely, inside and coverage. As shown
in Fig 1(a3), two objects in the scene are marked by green
and red bounding boxes in which the green one covers the
red one, and the red one is inside the green one. Two solid
3D objects will not intersect, so no intersection relationship
exists.

We utilize a 0-1 discrete vector yi,jlocal ∈ R8 to represent
the local fundamental and overlap relationships between the
i-th and the j-th objects. The first six dimensions indicate
the fundamental orientation relationships, while the last two
dimensions indicate the overlap relationships. If yi,j,klocal = 1,
then the two objects have the k-th spatial relationship.

Global Spatial Relationship. Simply employing local
spatial relationships is insufficient, since a scene has a

wealth of global information that can be helpful for descrip-
tion generation, such as “a table in the corner of the room”
or “a cabinet on the left side of the room’s entrance.” To im-
prove the spatial relationship representation in the 3D scene,
we further define the relationship between the object and
the entire scene. As seen in Fig.1(a4), for the entire scene,
considering the x−y plane’s global relationship is sufficient
to augment the description. The relationship between them
can be classified into four categories on the basis of the
center position relationship, namely, front, back, left, and
right. We represent the relationship between the i-th object
and global scene as a 0-1 discrete vector yiglobal ∈ R4.

3.2 Complete 3D Relationships Extraction Module

Given that the object detection features extracted from
the 3D object detection backbone only include object-level
information and exclude spatial relationship features, we
propose the complete 3D REM to extract the 3D spatial
relationships. To enrich the properties of the local spatial
relationship between objects, we apply graph convolution
network to extract the eight local relative relationships de-
fined in Section 3.1 and apply the self-attention mechanism
to the model global spatial relationship features between
objects and scenes.

3.2.1 View Transformation Module
The visual relationship between two objects is difficult to
determine without a stable view because the visual rela-
tionship changes with the view. To address this issue, we
propose a view transformation module (VTM) to obtain
features in different views and use this module in both local
and global spatial relationship feature extraction. Our VTM
employs a 2D mesh interpolation approach. Given that the
transformation of the view points occurs only in the x − y
plane, we mainly address four distinct views: left, right,
front, and back.

As shown in Fig.3, for each object, the 1×D input visual
feature vector is first duplicated, with the number of copies
equals to the number of view types. In our case (the number
of view types is 4), the dimension of the output features is
4 × D. (2) Second, this approach employs a standard 2D
mesh to represent four distinct visual views, and utilizes
the 2D mesh to guide the visual features to generate spatial
relationship features from several views. The 2D mesh is a
2 × 2 grid and each with a 2-bit code, which can simply
express ”00 01 10 11” from left top to right bottom, as
shown in Fig. 3. Finally, visual features are concatenated
with the 2D mesh following the way in FoldingNet [49],
which uses a fixed 2D mesh to distinguish points in a point
cloud. And then we feed them into a FC layer for fusion and
dimensional alignment.

We consider the construction of visual features during
view transformation to be a form of feature expansion
and introduce a 2D mesh to accomplish this task. In our
approach, the feature representations under different views
can be sufficiently distinctive, and the entire network can ul-
timately learn visual features independent of views because
the visual features utilized for stitching are consistent, e.g,
object A is on the left of object B in the front view, while
object A is on the right to B in the back view.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3279204

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on August 15,2023 at 04:17:25 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

C
1 × 𝐷𝐷

2𝐷𝐷 𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝐹𝐹
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

4 × 𝐷𝐷4 × (𝐷𝐷 + 2)

𝐹𝐹′
00

01
10

11

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

0100

10 11

00
01

10
11

Fig. 3. View Transformation Module (VTM) for obtaining features in
different views.

3.2.2 Local Spatial Relationship Feature Extraction
First, given the output candidate bounding boxes ∈ R24×M

from 3D object detection backbone (where M is the number
of bounding boxes), we compute the adjacency matrix and
construct the spatial relation graph G(V,E). The nodes of
the graph are initialized as the candidate object features
{vi}Mi=1 ∈ Rd×M (where d indicates the dimension of the
candidate object features and is set to 128). The edge fea-
tures of the graph {ei,j}M,M

i=1,j=1 ∈ Rd×M×M are initialized
by using the K nearest neighbor node features of the current
node.

We adopt the local relational graph module (LRGM)
proposed in Scan2Cap [3] which is effective in extracting
node and edge features, to obtain the local spatial features
(Fig.4). LRGM uses the traditional message passing mech-
anism to enhance node features and extract local spatial
features. Note that local spatial relationship here refers
to the relative distance between two objects, but doesn’t
include orientation and overlap information. The module
consists of two graph convolution layers. And the graph
convolution operations from node to edge and edge to node
can be stated as follows:

V → E : eτ+1
i,j = fτ

([
vτi , v

τ
j − vτi

])
E → V : vτ+1

i =
K∑
j=1

eτ+1
i,j

(1)

where vτi ∈ R128 and vτj ∈ R128 represent the node features
of the i-th and j-th nodes in the τ -th iteration, respectively,
and eτ+1

i,j ∈ R128 represents the features transmitted from
the j-th node the to i-th node in the (τ + 1)-th iteration of
the graph. fτ (·) is a non-linear function that can be learned,
and it is implemented by MLP. The final node and the
edge features are produced after multiple iterations of graph
convolution.

The final node features vi are then input into two other
graph convolution layers (V → E), and the outputs of the
two layers are the orientation angle feature f i,j

orien and local
spatial relationship feature f i,j

local(0). f
i,j
local(0) is further sent

into the VTM (Section 3.2.1), and the output features are
concatenated with edge features ei,j and f i,j

orien to obtain
the final enhanced local spatial relationship features f i,j

local.

3.2.3 Global Spatial Relationship Feature Extraction
For global spatial relationships, we propose a self-attention
module which employs non-local operations [50] to extract
the relationship between the i-th object and the global scene.
The input of this module is the i-th object feature f i

obj ∈
R128 and its corresponding bounding box features pi ∈ R24

output from the object detection stage. We concatenate the
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Fig. 4. Local Relational Graph Module (LRGM) for enhancing local
spatial features in Local Spatial Relationship Feature Extraction.

object feature and the corresponding bounding box features
to obtain feature vector xi ∈ R(128+24). Then, the enhanced
object feature f i

obj
′ ∈ R128 is obtained by feeding feature

vector xi into the self-attention module:

f i
obj

′
=

∑
∀j

f (θ (xi) , φ (xj)) g (xj) (2)

where θ(·), φ(·) and g(·) are activation functions, and f(·, ·)
is the dot-product similarity of the two feature vectors.
Finally, the spatial relationship is predicted by spatial re-
lationship prediction (SRP, described in 3.2.4) according to
the generated features as an auxiliary task.

The non-local operation is a non-local weighted aver-
age computation, which calculates the similarity between
a given feature vector and all other feature vectors and
uses the similarity as a weight. Then, the sum of all feature
vectors is obtained using weighted summation. This com-
putation approach can capture long-distance dependencies
and is highly suitable for extracting the global scale feature
representation. We then feed the enhanced object feature
f i
obj

′ output from the attention module into a FC layer
and obtain the global spatial relationship feature f i

global(0),
which is then sent to the VTM (Section 3.2.1) to obtain the
final global relationship features f i

global.

3.2.4 Spatial Relationship Prediction
At the end of this module, we extend the auxiliary ori-
entation prediction module proposed in Scan2cap [3] and
propose the SRP module. The SRP module predicts spatial
relationships from the extracted spatial relationship features
to assist the learning of feature extraction. In this subtask,
according to extracted relationship features forien, flocal and
fglobal, we set up three prediction heads on the basis of
MLPs to predict the relative orientation angle, local spatial
relationship, and global spatial relationship, respectively.
Note that we predict local spatial relationship and calculate
ground truth for each view (front, back, left, right). The pre-
dicted local and global spatial relationships under different
views are respectively divided into eight and four categories
according to the spatial relationship defined in Section 3.1.
As for the relative orientation angle between two objects,
given that the relative orientation angle between objects
ranges from 0◦ to 180◦, we divide it into six intervals, each of
which is 30◦, and regard it as a six-classification task. SRP is
trained by comparing the differences between the predicted
and the ground-truth relationship/relative orientation angle
using the spatial relationship loss (introduced in Section
3.4).

3.3 Modality Alignment Caption Module
In Section 3.2, we obtain the global and local spatial relation-
ship features. However, we should further integrate them to
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generate the final description. For the above purpose and
considering the differences among different modalities, we
propose the MACM, which mainly includes three parts:
local relationship fusion (LRF), global relationship fusion
(GRF), and modality alignment classifier (MAC). Fig.5 de-
scribes the structure of the MACM in detail.

3.3.1 Local Relationship Fusion (LRF)
In the LRF, we model the local context features of objects
as follows to supplement the description generation of the
relationship between objects.

ui
t = concat

(
vi, h

(2)
t−1, wi

)
(3)

h
(1)
t = GRU

(
FC

(
ui
t

)
, h

(1)
t−1

)
(4)

where vi is the node feature output by LRGM, h(1)
t−1 and

h
(2)
t−1 are the previous hidden states, and wi is Glove [51]

word embedding.
Then, we use the attention mechanism to fuse node and

edge features to obtain local description features fτ
local :

vir = vi +
K∑
j=1

f i,j
local (5)

scoresτ = softmax
(
FC

(
tanh

(
h
(1)
t + vir

)))
(6)

fτ
local =

M∑
i=1

scoresτi ·vir (7)

where f i,j
local is the enhanced local spatial relationship fea-

tures (Section 3.2.2).

3.3.2 Global Relationship Fusion (GRF)
In the GRF, the global relationship features f i

global extracted
in the previous stage (Section 3.2.3) are further integrated
with local description features fτ

local and hidden state h
(1)
t

(extracted in LRF) as follows:

h
(2)
t = GRU

(
FC

(
concat

(
fτ

local , f
i
global , h

(1)
t

)))
(8)

We then feed the fused features into the MAC to generate
word embedding.

3.3.3 Modality Alignment Classifier (MAC)
Visual tasks can be guided by a wealth of semantic prior
knowledge, whereas cross-modality tasks should consider
the interplay and complementarity of knowledge across
modalities. However, prior works seldom addressed the
discrepancies between modalities, impairing the final re-
sults. To address the issue of inter-modality discrepancies,
we propose two modality alignment classifier 1 (A1) and
classifier 2 (A2), in which A1 is a naive version of our idea
verifying the feasibility of transforming visual features into
linguistic subspace. We further improve A1 to A2, which
leverages the word embedding feature as a prior to conduct
an intermediate mapping.

Modality Alignment Classifier 1 based on Projection
Matrix. The overview of this approach is illustrated in
Fig.6(a). First, we project the hidden state h

(2)
t ∈ R1×D (out-

put from the visual space in GRF) into the word embedding

FCC

G
R

U

G
R

U

A
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A
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C
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Fig. 5. Modality Alignment Caption Module for generating caption, which
mainly includes three parts: local relationship fusion (LRF), global rela-
tionship fusion (GRF), and modality alignment classifier (MAC).

space using learnable projection matrix P ∈ RD×D, and the
resulting linguistic feature is denoted as si:

si = h
(2)
t P (9)

Then, we calculate the matrix multiplication of linguistic
feature si ∈ R1×D and word embedding space matrix
Ws ∈ RNW×D (where NW is the number of word vectors)
to obtain the final classification result:

scores = siW
T
s + b (10)

For each word embedding vector wj ∈ R1×D , this calcula-
tion equals to the inner-product similarity between si and
wj . Given that si has prior knowledge of the language space,
it can indirectly solve the token classification.

Modality Alignment Classifier 2 based on Attention.
A1 which is based on projection matrix largely relies on
classification loss, and transforms the modality alignment
process into the learning of projection matrix P . However, it
is not efficient to learn the projection matrix P directly, and
there is no direct supervision for training. To address this
issue, we improve A1 to A2 based on attention by leveraging
semantic guidance. We use the word embedding feature as
a prior to conduct an intermediate mapping. MAC module
first transforms the visual features into word embedding
space to obtain a linguistic feature, and then uses a score
unit to predict the caption word based on the similarity
between the linguistic feature and each word embedding
vector. Compared with the way that directly classifies visual
features into word categories in the vocabulary through lin-
ear layers, our model with MAC has obvious improvement
in modal alignment thanks to the intermediate mapping to
word embedding space. This modality alignment strategy
can improve the token classifier’s performance without an
increase on the complexity the original network.

As illustrated in Fig.6(b), the MAC based on attention
aims to execute pre-processing on the word embedding
space, and further specifies the problem to strengthen the
guiding role in the learning process. For the first part, we
need use the corpus as prior information, while the corpus
is quite large due to it has about 140,000 words. Thus we use
PCA to reduce the dimensionality of the word embedding
space. Concretely, we use principal components analysis
(PCA) to compute the Nbase principal components from
word embedding space Ws = [w1; . . . ;wNW

] ∈ RNW×D
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(a) Modality Alignment Classifier based on Projection Matrix (b) Modality Alignment Classifier based on Attention

Fig. 6. Modality Alignment Classifier based on Projection Matrix and Attention for aligning visual and linguistic features.

(where NW is the number of word vectors, Nbase is the
number of eigenvectors), and obtain F = [f1; . . . ; fNbase

] ∈
RNbase×D , which is a simplified representation of word
embedding space. Then we generate the new linguistic
feature space S, by jointly integrating the processed word
embedding F and visual feature h

(2)
t as follows:

ci = Expand
(
FC

(
h
(2)
t

))
, (11)

si = pool(F ⊙ ci) (12)

where Expand is expansion operation, which duplicates the
feature vector of dimension 1 × Nbase with the number of
copies equals to D; and pool is pooling operation.

To obtain the final classification result, we must perform
a mapping from linguistic feature si to classification vector
yt. We develop a score unit to compute the category scores
to reduce the distance between ground-truth word vector
wgti and predicted linguistic feature si. The score com-
putation method estimates the classification score between
each linguistic feature si and each word embedding vector
wj , which can be perceived as the attention mechanism, as
follows:

scores1,i,j = −
[
(ai,j − ∥wj∥)

∥wj∥

]2
scores2,i,j = −

∥∥si − ai,jw
′
j

∥∥ (13)

where ai,j = ∥si∥ · cos θi,j , and θi,j is the angle between
si and wj , the scalar ai,j represents the length of projection
of si on direction wj . w′

j =
wj

∥wj∥ is the unit vector in wj

direction.The purpose of score unit is to make the vector si
and its corresponding vector wgt as similar as possible in
the semantic space, which is controlled by the relative angle
and distance between them. In Eq.13, score1 and score2
measures the relative angle and distance between vectors.
Smaller angles and shorter distance will lead to higher score
of score1 and score2. Then we will choose the word with
the highest score as the prediction answer.

The final classification score between si and each word
embedding vector wj is calculated as:

scoresi,j = λ1 scores1,i,j +λ2 scores2,i,j (14)

Then the final classification result for the i-th object is yt =
[scoresi,1, . . . , scoresi,NW

].

3.4 Loss Function

We first define two basic loss functions for the subsequent
spatial relationship loss calculation. Since the local and
global relationships change along with the views, we need
to supervise the local and global spatial relationships under
different views. We denote the predicted spatial relationship
between the i-th and j-th objects under the v-th view as
ŷi,j,vr , which is a 0-1 discrete vector, and the ground truth
spatial relationship1 as yi,j,vr , where r ∈ {local, global}
represents the type of spatial relationship. For the global
spatial relationship between the i-th object and the global
scene under the v-th view, we represent the predicted and
true relationship as ŷi,g,vr and yi,g,vr , respectively.

• Embedding similarity loss: This loss uses cosine sim-
ilarity to measure the distance between the predicted
and true spatial relationship:

Lr
sim(i, j, v) = 1− cos

(
ŷi,j,vr , yi,j,vr

)
(15)

• Mutually exclusive relational loss: Given that the
fundamental spatial relationships we establish are
mutually exclusive, e.g., if object obji is on the left
side of another object objj , then it cannot be on the
right side. For the network to learn the reciprocal
exclusion of this relationship, we add the mutually
exclusive relational loss as follows:

Lr
mut(i, j, v) =

∑
k

(1−
√(

ŷi,j,v,kr − yi,j,v,kr

)2
)

k = 0, 2, 4, 6; v = 1, 2, 3, 4

(16)

where k represents the k-th spatial relationship, and
v represents under the v-th view. yi,j,v,kr = 1 indi-
cates that the k-th spatial relationship truly exists,
while ŷi,j,v,kr = 1 indicates that the k-th spatial
relationship is predicted.

Spatial relationship loss. We propose the spatial rela-
tionship loss to supervise the training of the SRP (Section
3.2.4), which predicts the local, global spatial relationship

1. The ground truth of local spatial relationship between objects A
and B is determined by the 3D directionality from A to B, which can
be calculated by connecting their center points or bounding boxes
under different view direction (front, back, left, right). The view is
distinguished by 2D mesh “00 01 10 11”.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3279204

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on August 15,2023 at 04:17:25 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE 1
Comparison with other STATE-OF-THE-ARTS methods on the ScanRefer and Nr3D Dataset with End-to-End Training (the bounding boxes are

generated by 3D Detection backbone) under different threshold of IoU.† denotes reproduction in our local environment.‡ denotes teacher-student
design in [4]. S means using the REM only without MAC, and A1 means using the MAC based on the projection matrix. A2 means using the MAC

based on attention.

Dataset Method DIM Detection B-4@0.25 C@0.25 R@0.25 M@0.25 B-4@0.5 C@0.5 R@0.5 M@0.5

ScanRefer

2D-3D Proj [3] 2D M R-CNN 10.27 18.29 33.63 16.67 2.31 8.31 25.93 12.54
3D-2D Proj [3] 2D VoteNet 17.86 19.73 40.68 19.83 8.56 11.47 31.65 15.73

VoteNetRetr [3] 3D VoteNet 18.09 15.12 38.99 19.93 13.38 10.18 33.22 17.14
Scan2Cap [3] 3D VoteNet 34.18 56.82 55.27 26.29 23.32 39.08 44.78 21.97

Scan2Cap [3]† 3D VoteNet 33.06 54.82 54.19 25.88 23.13 39.21 44.93 21.99
TransCap [4] 3D VoteNet 35.04 60.04 54.46 26.27 24.25 43.12 44.72 22.15

X-Trans2Cap [4] ‡ 3D VoteNet 35.65 61.83 54.70 26.61 25.05 43.87 45.28 22.46
Ours (S) 3D VoteNet 34.27 57.46 55.58 26.67 23.67 39.12 45.47 22.12

Ours (S+A1) 3D VoteNet 34.23 59.26 55.4 26.36 24.34 41.85 45.82 22.34
Ours (S+A2) 3D VoteNet 36.37 62.01 56.25 26.76 26.31 45.00 46.96 22.67

Nr3D

3D-2D Proj [3] 2D VoteNet 7.49 8.57 44.95 18.83 4.21 3.93 41.24 16.68
Scan2Cap [3] 3D VoteNet 24.43 42.24 55.88 25.07 15.01 24.10 47.95 21.01
TransCap [4] 3D VoteNet 25.79 45.06 55.55 25.22 19.09 33.45 50.00 22.24

X-Trans2Cap [4] ‡ 3D VoteNet 27.62 51.43 56.46 25.75 19.29 33.62 50.00 22.27
Ours (S) 3D VoteNet 25.93 48.67 56.58 25.97 17.74 29.42 49.57 22.19

Ours (S+A1) 3D VoteNet 27.78 49.68 57.01 26.06 19.38 32.71 50.63 22.69
Ours (S+A2) 3D VoteNet 28.61 52.39 57.67 26.45 20.37 34.81 50.99 23.01

under different views and the relative orientation angle
from the extracted relationship features. Our spatial rela-
tionship loss consists of three parts. The local spatial loss
is computed using the embedding similarity loss and the
mutually exclusive relational loss defined above:

Llocal = Avg
(
Llocal
sim (i, j, v)

)
+Avg

(
Llocal
mut(i, j, v)

)
,

i = 1, . . . ,M ; j = N(i); v = 1, 2, 3, 4
(17)

Similarly, we define the global spatial relationship loss
as follows:

Lglobal = Avg
(
L

global
sim (i, g, v)

)
+Avg

(
L

global
mut (i, g, v)

)
,

i = 1, . . . ,M ; v = 1, 2, 3, 4
(18)

We then introduce the relative angle loss to supervise the
prediction of the relative orientation angle:

Langle = Lcross-entropy

(
yi,jangle, ŷ

i,j
angle

)
(19)

where yi,jangle is the true class label of relative orientation
angle between the i-th and the j-th objects (0◦ to 180◦

divided into six intervals), and ŷi,jangle is the predicted class
label.

The final spatial relationship loss is defined as follows:

Lspatial = αLlocal + βLglobal + γLangle (20)

Caption loss. To train the MACM, we define the caption
loss as the cross-entropy loss function:

Lcap = Lcross-entropy (yt, ygt) (21)

where yt is the probability of generating each word, ygt is
the one-hot encoding for the ground-truth token.

3D Object Detection Loss. For end-to-end training, we
apply the 3D object detection loss Ldect to optimize the
object detection backbone. As this loss is common, please
refer to [48] for the specific definition.

Total loss. On the basis of the losses defined above, our
final loss function is summarized as follows:

Ltotal = Lcap + Lspatial + δLdect (22)

4 EXPERIMENT

In this section, we evaluate and analyze the results of the
proposed REMAN. This section first introduces the datasets,
the hardware and software configurations, and the metrics
that are used for the experiments. We then qualitatively and
quantitatively compare the proposed REMAN with existing
state-of-the-art methods. Ablation experiments are then car-
ried out to verify the effectiveness of the key modules in
our method. The experiment results demonstrate that the
proposed network is accurate and diverse in representing
the spatial relationships between objects in a scene.

4.1 Datasets and Metrics
ScanRefer dataset: Chen et al. proposed the ScanRefer [1]
dataset, which enhances the ScanNet [52] dataset with ex-
tensive descriptive information. The dataset includes 800 3D
indoor scenes and 51,583 descriptive annotations for 11,046
objects. These descriptions primarily consist of information
about the object’s appearance and spatial relationship, such
as the object’s color and material, and the object’s position
relative to its neighbors.

Nr3D dataset: Natural Reference in 3D Scenes (Nr3D) [2]
is similar to ScanRefer in that it builds a dataset by annotat-
ing ScanNet [52] objects with natural language descriptions.
The dataset contains 41,503 description annotations that
were annotated interactively using manual question-and-
answer games. It should be underlined that the description
annotation does not use the template generation method,
which results in a diversified and less redundant sentence
pattern, which makes this dataset more challenging than
ScanRefer. Additionally, we do not undertake experiments
on the Sr3D dataset because it is entirely generated by
machine templates and hence has a lower degree of com-
parability.

Metrics: The quantitative metrics utilized in our experi-
ments are BLEU-4 [5], CIDEr [6], ROUGE [7], and METEOR
[8], which are denoted by acronyms B-4, C, R, and M
in the table. The higher the values of the aforementioned
indicators are, the better the network performance is.
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4.2 Implementation Details
We conduct experiments under two different training strate-
gies: (1) End-to-end training employs point cloud data as
input and uses the 3D object detection backbone to generate
candidate bounding boxes. (2) Non end-to-end training uses
the ground-truth object bounding boxes as position infor-
mation and further extracts object features for dense cap-
tioning. Non end-to-end training performed on the REMAN
without passing through the 3D object detection backbone,
which can be regarded as the upper limit of our model.

For end-to-end training, we employ VoteNet [48] as the
3D object detection backbone, and train the network for 50
epochs using the Adam optimizer with the batch size set
to 8. For non end-to-end training, we employ PointNet++
[53] to extract object-level features, and train the network
for 20 epochs with the batch size set to 32. We set the
hyperparameters in Eq.(14) as λ1 = 1, λ2 = 2, and for loss
terms in Eq. (20) and Eq. (22) as α = 0.1, β = 0.1, γ = 0.1
and δ = 10. The initial learning rate is 1e-3, and the
weight decay factor is 1e-5. We implement our architecture
in PyTorch and train on a single RTX2080Ti GPU.

4.3 Quantitative Comparison with State-of-the-art
This section compares the proposed REMAN to existing
state-of-the-art models, including 2D-3D Proj [3], 3D-2D
Proj [3], VoteNetRetr [54], Scan2Cap [3], OracleRetr3D [3],
OracleCap3D [3], TransCap2 and X-Trans2Cap [4].

Quantitative comparisons are conducted under both
end-to-end and non end-to-end training. For fair compar-
ison, we also re-trained Scan2Cap† [3], Oracle2Cap3D†,
TransCap† and X-Trans2Cap† [4] in the local experimental
context. In Table 1-3, ours(S), ours(S+A1) and ours(S+A2) re-
spectively represent using only REM without MAC (namely,
using linear layer as a classifier), using REM and MAC(A1),
and using REM and MAC(A2). The comparison of ours(S) is
just used to validate the function of MAC, and ours(S+A2)
could be regarded as our complete model.

Comparison under End-to-end training. To explore the
impact of IoU, we carried out a quantitative comparison
under the IoU thresholds of 0.25 and 0.5 and the results are
shown in Table 1.

When the IoU threshold is 0.25, our model outperforms
Scan2Cap [3] on the metrics of BLEU-4, CIDEr, ROUGE,
and METEOR by 2.19, 5.19, 0.98, 0.47 on Scanrefer, and by
4.18, 10.15, 1.79, 1.38 on Nr3D, respectively. Furthermore,
the improvement of our model beyond Scan2Cap [3] on
all metrics is greater than that of X-Trans2Cap [4] which
represents the best performance of SOTA works. Even if we
compare the X-Trans2Cap [4] based on the teacher-student
design in [36], we still outperform it without the design.

To further validate the network’s performance, we ad-
ditionally set the IoU threshold to 0.5. Table 1 shows that
our proposed network also significantly outperforms other
methods. Compared with Scan2Cap [3], metrics BLEU-4,
CIDEr, ROUGE and METEOR are improved by 2.99, 5.92,
2.18 and 0.7 on Scanrefer and 5.36, 10.71, 3.04, 2.00 on Nr3D
respectively. Our model also outperforms TransCap and X-
Trans2Cap [4], with all metrics increased.

2. Note that TransCap is X-Trans2Cap [4] without teacher-student
design in [36].

TABLE 2
Comparison with other STATE-OF-THE-ARTS methods on the

ScanRefer Dataset with Non End-to-End training (the bounding boxes
are generated by human marking).† denotes reproduction in our local

environment.‡ denotes teacher-student design in [36]

Method B-4 C R M
OracleRetr3D [3] 33.03 23.36 52.99 25.80
Oracle2Cap3D [3] 41.49 67.95 63.66 29.23
Oracle2Cap3D [3]† 40.38 64.98 63.36 29.03

TransCap [4]† 41.70 86.03 62.31 30.22
X-Trans2Cap [4]†‡ 45.19 82.49 65.67 29.89

Ours (S) 42.66 67.10 64.23 29.36
Ours (S+A1) 42.59 70.89 64.12 29.01
Ours (S+A2) 45.30 78.34 66.28 30.28

TABLE 3
Comparison of parameters between end-to-end and non end-to-end

training of various models. M denotes one million parameters.

Method Parameters
End-to-End Non End-to-End

Scan2Cap [3] 6.1M 5.2M
TransCap [4] 21.9M 21.0M

X-Trans2Cap [4] 40.9M 40.0M
Ours (S) 6.7M 5.7M

Ours (S+A1) 6.7M 5.7M
Ours (S+A2) 5.1M 4.2M

To summarize, in both IoU thresholds of 0.25 or 0.5, our
model takes the lead over the state-of-the-art methods on
both Scanrefer and Nr3D, demonstrating the superiority of
the proposed method.

Comparison under non end-to-end training. Under non
end-to-end training, no IoU threshold for comparison is
required because the position information is provided by
the ground-truth bounding boxes. As the author has not
made the model and training code for TransCap [4] open
source, we reproduced them according to the paper. Table 2
summarizes the experimental results.

From the comparison of results in Table 2, it can see that
the effect of human-marked bounding boxes is obviously
better than that of the predicted bounding boxes from the
3D object detection backbone. Except for CIDEr, our model
(S+A2) achieves state-of-the-art in all other three metrics
(BLUE-4, ROUGH and METEOR) and greatly exceeds the
baseline model Scan2Cap [3].

Comparison of Parameters. We also compared the pa-
rameters of the different models under end-to-end and non
end-to-end trainings as shown in Table 3. Under the end-to-
end training strategy, compared with the Scan2Cap model,
we only increased the parameters by 10% after applying
the S and A1 modules. After replacing A1 with A2, the
parameter quantity decreased by 28% and is only 80% of
Scan2Cap. Although the CIDEr of X-Trans2Cap [4] achieves
the state-of-the-art under the non end-to-end training strat-
egy, its parameter quantity is nine times higher than our
REMAN. The parameter quantity of TransCap (without the
student-teacher design in [36], and we only measure the
student module) is still four times higher than our REMAN.
In general, our REMAN has made amazing achievements in
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TABLE 4
Ablation Study for REM on ScanRefer under 0.25IoU where Lf , Lo,L
and G denotes local fundamental, local overlap, complete local and

global spatial relationship, respectively. Our baseline model is
Scan2Cap†.

Config B-4@0.25 C@0.25 R@0.25 M@0.25
baseline w/o LRGM 32.49 53.29 52.93 25.37

baseline 33.06 54.82 54.19 25.88
baseline+Lf 33.72 55.61 55.16 26.24
baseline+Lo 33.37 55.06 54.41 25.97
baseline+L 33.97 55.93 55.39 26.44
baseline+G 33.74 56.03 54.73 26.54

baseline+L+G (S) 34.27 57.46 55.58 26.67

TABLE 5
Ablation Study with different modality alignment methods on ScanRefer
under 0.25IoU. A1 means the Modality Alignment Classifier based on

projection matrix. A2 means the Modality Alignment Classifier based on
attention. Our baseline model is Scan2Cap†.

Config B-4@0.25 C@0.25 R@0.25 M@0.25
baseline 33.06 54.82 54.19 25.88

baseline+A1 34.68 58.32 55.21 26.03
baseline+A2 35.56 60.72 55.96 26.49

most of the metrics with minimum parameters.

4.4 Ablation Study
4.4.1 Analysis of REM module
We first perform ablation studies on our REM module, and
summarize the results in Table 4. We compare ours with six
ablated versions, where the baseline is Scan2Cap† and our
complete model is the baseline + L + G(s) using REM. It is
seen that when LRGM is removed from the baseline model,
all the metrics declines in varying degrees. And when differ-
ent scales of spatial relationship features are used (Lf , Lo,L
and G), the description ability of the network is improved
to some extent. After using complete 3D spatial relationship
features (L + G(s)), the description ability of the network is
further superimposed. The purpose of introducing complete
3D spatial relationships is to help the network develop
rich semantic descriptions and guarantee that all reasonable
spatial relationship descriptions are complete.

Our proposed REM module exhibits a small perfor-
mance improvement when the threshold of IoU is 0.5 on
the ScanRefer dataset as shown in Table 1. The main reason
is that the description on ScanRefer dataset is rich, involving
many objects. When the IoU threshold is 0.5, many objects
are filtered out, resulting in the model being unable to learn
enough spatial relationship, which will be quite different
from ground-truth. When the IoU threshold is 0.25, more
objects are detected, which is beneficial to the REM model.
For the Nr3D dataset, the IoU setting is not extremely
sensitive because the description is relatively simple.

4.4.2 Analysis of MAC module
The network performance is greatly boosted with the addi-
tion of a MAC (A1 / A2), as shown in Table 1 and Table 2.
We also conduct an ablation study on the two modality
alignment methods in Table 5. The results show that com-
pared with adding REM, our novel MAC can significantly

improve the network performance because we make use of
prior knowledge (word embedding) from other spaces to
aid learning.

The impact of the modality alignment based on attention
by leveraging semantic guidance (A2) is clearly superior
to that of the projection matrix approach (A1). The fol-
lowing are the key reasons: (1) The modality alignment
based on attention (A2) simplifies the problem and reduces
the network’s learning difficulty. In this approach, PCA
is first used to filter unwanted features and results in a
simplified representation of the word embedding space, and
then the network reconstructs the target word embedding
using a set of features, with a precise learning objective;
(2) A score unit is designed to measure the reconstruction
effect, which transfers the reconstructed word embedding
to the classifier’s output. The difference between the re-
constructed and intended target word vectors is actually
encoded throughout this procedure, helping the network
supervise the reconstruction process well.

4.5 Visualization

To intuitively compare this method with Scan2Capp [3],
the experiment results are visualized for supplementary
explanation and analysis.

Visualization for end-to-end training. The visual com-
parison results of Scan2Cap [3], REMAN under end-to-
end training and GT are shown in Fig.7(a). As Fig.7(a1)
shows that REMAN generates the description of the up-
down relationship between the microwave oven and the
counter top, while Scan2Cap [3] incorrectly describes the re-
lationship as it is on the refrigerator. Actually, Scan2Cap [3]
does not supervise the specific relationship between objects,
and only relies on the constraint of the relative orientation
angle, which cannot completely cover all possible spatial
relationships, so Scan2Cap [3] is relatively weak in correctly
describing the spatial relationships. Similarly, REMAN gen-
erates the description of the left-right relationship between
the toilet and the sink in (a2), describes the table in front
of the couch in (a3); and successfully describes the global
relationship (center) between the table and the global scene
in (a4). REMAN has a good ability to correctly describe
various spatial relationships and appearance characteristics
such as color, while Scan2Cap [3] often makes mistakes or
obtains meaningless description statements due to the lack
of REM and MACM.

Visualization for Non End-to-End training. Fig.7(b)
shows the visualization of the outputs of REMAN, Ora-
cle2Cap3D [3] under non end-to-end training and the corre-
sponding GT. Both methods adopt the human-marked real
bounding boxes as input, and generate the descriptions. The
scene (b1) describes the up-down spatial relationship be-
tween the paper towel dispenser and the counter top. Scene
(b2) shows REMAN can correctly describe the left-right
relationship between the refrigerator and the door, and the
overall relationship between the refrigerator and the room.
Scene (b3) demonstrates that REMAN can correctly describe
the relationship between a monitor and the keyboard placed
in front of it. Scene (b4) shows that REMAN successfully de-
scribes the global relationship (corner), whereas Scan2Cap
cannot. REMAN can cover all the different spatial spatial

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3279204

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on August 15,2023 at 04:17:25 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Ours:this is a brown couch . it 
is facing a table .

GT:this is a sectional couch . 
it is facing an ottoman ..

Scan2Cap:the couch is right 
of the coffee table . the couch 
is red orange and rectangular .

Ours:this is a white toilet . it is 
to the right of the sink .

GT:this is a white toilet . it is to 
the right of the sink .

Scan2Cap:the toilet is located 
to the right of the toilet paper 
dispenser . 

(a) Visualization of end-to-end training

Ours: the paper towel dispenser 
is black . the paper towel 
dispenser is above the counter 
top .

GT: this is a black paper towel 
dispenser . it is on the wall 
above the counter top.

Oracle2Cap3D: it is a paper 
towel dispenser . it is right of 
the sink .

Ours: the stainless steel 
refrigerator is on the left side of 
the room . it is to the right of 
the door .

GT: there is a stainless steel 
refrigerator in corner of the 
room . there are entry doors to 
its left .

Oracle2Cap3D: this is a 
stainless steel refrigerator . it is 
to the right of the counter top .

Ours: this is a black keyboard . 
it is in front of a monitor .

GT: the keyboard is in front of 
the monitor . the keyboard is 
grey . it has a monitor on the 
right . 

Oracle2Cap3D: this is a black 
keyboard . it is on a desk .

(b) Visualization of non end-to-end training

(a1) up-down relationships

(a2) left-right relationships

(a3) front-back relationships

(b1) up-down relationships

(b2) left-right relationships

(b3) front-back relationships

Ours: the trash can is in the 
corner of the room . it is to the 
right of the table .

GT: this is a tall kitchen trash 
can . it is in the corner of the 
side of the room where the row 
of white chairs is past.

Oracle2Cap3D: this is a trash 
can. it is to the left of the door .

(b4) global relationships(a4) global relationships

Ours: this is a yellow table . it is 
in the center of the room .

GT: this object is a yellow table 
cloth . the object is located on 
the table that is at the center of 
the room .

Scan2Cap: this is a brown table . 
it is in the room .

Ours:this is a white microwave . 
it is above a counter top .

GT:there is a microwave . 
placed next to the fridge on the 
upper side of the cabinets .

Scan2Cap:this is a black 
microwave . it is above the 
refrigerator .

Fig. 7. Qualitative comparisons on ScanRefer dataset. The left illustrates the results under end-to-end training, and the right part presents the
results under non end-to-end training. Best viewed in color.

relationships that are common in the scene, and generate
descriptions similar to GT.

Visualization for ablation of spatial relationships.
Fig. 8(a), (b) and (c) respectively depicts the visualization re-
sults of ablation study on local spatial relationship module,
global spatial relationship module, and both local and global
spatial relationship modules. As seen from Fig. 8(a), our
model (baseline +L) successfully describes the local spatial
relationship of the chair on the left of table; In Fig. 8(b), our
model (baseline +G) successfully describes the global spatial
relationship of cabinet which is in the center of the room;
and in Fig. 8(c), our model (baseline+L+G) successfully
describes both the local and global spatial relationship of the
chair, which is on the left side of the table and on the left side
of the room. However, the baseline model can not achieve
the right spatial relationship in Fig. 8(a)-(c) respectively.

Visualization for ablation of MAC. Fig.9 shows the vi-
sualization results of our model with MAC and the baseline

without MAC. As seen from Fig.9(a) and (b), ours (base-
line+A2) successfully recognize that the objects are monitor
and bookshelf respectively, while the baseline mistakenly
regarded them as lamp and door caused by the inter-
modality discrepancy between vision and language.

Visualization for low quality scene. We test our model
on both manually edited low quality point cloud and
original one with poor quality. As shown in Fig. 10, we
made holes (Fig. 10(b)) and added noise (Fig. 10(c)) in a
point cloud from ScannetV2 by using Meshlab software.
Comparing Fig. 10(a) and Fig. 10(b), we found that after
we removed the back of the chair, the predicted results
of our model do not change. Comparing Fig. 10(a) and
Fig. 10(c), when we translated the back of the chair along
X and Y axes, although some changes have taken place in
the description, the meaning is the same as the original one.
The results demonstrates the robustness of our method in
dealing with scenes with holes and noises. We also tested on

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3279204

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on August 15,2023 at 04:17:25 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Baseline+G: the cabinet is in 
the center of the room . the 
cabinet is a white rectangular 
prism .

GT: the cabinet is in the middle 
of the room . the cabinet is a 
white box with a blue 
rectangular top .

Baseline: this is a brown 
cabinet . it is below a white 
counter top .

Baseline+L: the chair is the 
leftmost one on the northern 
side of the table . the chair has a 
curved backside and four legs .

GT: it is a wooden desk chair . 
the chair is the last on  the left 
side of the table .

Baseline: this is a black chair . it 
is to the left of another chair .

Baseline+L+G: the chair is in 
the back left corner of the 
room . it is to the left of the 
table .

GT: the highlighted object is 
the chair on the left in this 
view of the room . it is a light 
brown . there is a table in the 
corner to the right of the chair. 

Baseline: this is a chair . it 
sets at a table .

(a)、(b)、(c)分别为我们的模型加上局部空间关系模块、全局空间关系模块、同时使用
局部与全局空间关系模块的消融可视化结果。从(a)中可以看出，我们的模型成功描述
该椅子位于桌面左下方的局部空间关系。(b)成功描述我们的模型在房子中间这个全局
空间关系。(c)中我们的模型同时成功描述了在桌子左边的局部空间关系和房子左侧的
全局空间关系。

(a) ablation for local relationship (b) ablation for global relationship (c) ablation for both local and global relationship

Fig. 8. Visualization of ablation study on spatial relationship.

Baseline+A2: the bookshelf is 
in the back left corner . it is to 
the left of the door . 

GT: the bookshelf is to the left 
of the door . the bookshelf is on 
the right of the two 
bookshelves .

Baseline: this is a brown door. 
it is to the left of a picture . 

Baseline+A2:  the monitor is on 
the table . it is to the left of the 
other monitor . 

GT: the the monitor is atop the 
counter . it is the monitor on the 
left .

Baseline:  the lamp is on the 
southern side of the table . the 
lamp is a white rectangle . 

(a) (b)

Fig. 9. Visualization of ablation study on MAC(A2).

ours: this is a black chair . it 
is at the end of the table .

GT: this is a brown chair . it 
is near the end of the table .

ours: this is a wooden chair . 
the chair is placed at the end 
of the table .

GT: this is a brown chair . it 
is near the end of the table .

ours: this is a black chair . it 
is at the end of the table .

GT: this is a brown chair . it 
is near the end of the table .

(a) result for original point cloud (b) result for removing part of the back of the chair. (c) result for moving part of the back of the chair. 

Fig. 10. Predicted results of manually edited low quality point cloud.

ours:  this is a black chair . it 
is to the left of the table .

GT: the there is a beige 
wooden chair . placed next 
to the wooden table .

Fig. 11. Predicted results of original low quality point cloud.

a point cloud data with poor quality in the original dataset,
in which the four legs of the chair and the legs of the table
were not scanned, as shown in Fig. 11. Our model can still
successfully recognize the chair and the table, and describe
their relationship. Note that these point clouds in Fig. 10
and Fig. 11 are not used in the training process.

Failure case. The inaccuracy of the object detection
backbone can lead to inaccurate descriptions. As shown in
Fig.12(a), we expect to describe the chair, but the detection
backbone VoteNet [48] detects the object as cabinet. Fur-
thermore, the description of the spatial relationship is also
inaccurate, because the detected bounding box position is

inaccurate.
Sometimes our generated descriptions lack texture and

appearance details. As shown in Fig.12(b), the generated
sentence is relatively simple compared with the ground
truth. Meanwhile, the generated statement only describes
the target object in detail and only describes the spatial
relationship for the related objects.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a complete 3D network (REMAN)
for 3D dense captioning. REMAN obtains accurate descrip-
tions of multi-scale relationships by introducing a thorough
definition of spatial relationships and considering the im-
pact of view transformation on the relationship extraction.
We efficiently bridge the semantic gap problem between
different modalities by leveraging the prior information
in the word embedding and propose two modality align-
ment strategies, outperforming the state-of-the-art methods
on multiple datasets. Our modality alignment method is
lightweight and may be used for a wide range of cross-
modality tasks.

Although REMAN can generate descriptive statements
about various spatial relationships, the descriptions of the
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Ours: this is a white cabinet . 
it is to the right of the chair .

GT: there is a gray chair . it is 
at the right corner of the tv .

GT: it is a light gray counter . 
it sit on top of wooden 
cabinets that go along one 
side of the kitchen . 

Ours: this is a white counter . 
it is above the cabinets . 

(a) Detection error

(b) Lack of texture details

Fig. 12. Visualization of some failure cases.

appearance and attributes are relatively lacking. Further-
more, the method has not explored the language structure
and logic in generating the descriptions. In this regard,
future works can be carried out from the following aspects:
(1) grammatical structure relationships can be introduced
to help generate complex and reasonable descriptions; (2)
we may enhance the ability to capture the appearance and
attributes of the features of objects in the scene and further
enhance the richness and diversity of description sentences;
(3) we may optimize the model structure to improve the
calculation efficiency since the bounding boxes generated
by the 3D object detection backbone greatly influence the
network’s performance.
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