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a b s t r a c t

With the widespread development of digital technology, individuals’ daily activities are inseparable
from interaction with electronic devices. Researchers have become interested in developing novel
methods, to enable users to experience social and emotional satisfaction that traditional face-to-face
interaction provides. In this study, we propose a novel deep learning-based pipeline to generate virtual
digital humans for customer service industry. Specifically, we propose a method to construct a database
with template service actions. Furthermore, we propose a two-stage method for generating 2D virtual
human videos with gestures and emotional lip-sync expressions. We have conducted qualitative and
quantitative experiments on the proposed 2D virtual human video generation method. The results
demonstrate that the method effectively generates high-quality virtual digital humans for the customer
service industry.

© 2023 Elsevier Ltd. All rights reserved.
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1. Introduction

Virtual digital humans can be applied in many applications
uch as feature films, game productions, and the immersive en-
ertainment industry. Specifically, researches have found that
irtual digital humans are important for improving empathy and
ngagement of users in human–machine interaction [1,2]. How-
ver, due to the high technical barrier of traditional virtual human
roduction techniques, creating a high-quality virtual human re-
uires a significant amount of time and effort. In recent years,
rtificial intelligence technologies have become increasingly com-
rehensive, leading to significant improvements in efficiency and
isual quality of virtual human synthesis.
For developing virtual digital humans based on artificial in-

elligence technologies, audio-driven talking face generation has
een extensively studied [3,4]. However, speech-driven human
ody generation with flexible gestures is much less explored.
estures performed by artificial agents are important in human–
achine interaction, because they are helpful for understanding
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utterances [5] and improving the intimacy between humans and
agents [6]. Moreover, some researches have found that gestures
are correlated with emotions and personality perceptions [7,8].
Thus, it is important to explore methods for generating talking
human videos with audio-synchronized and realistic gestures.
A recent work Speech2Video has proposed to synthesize talking
uman videos with upper body movements (i.e, head movements
nd gestures) from an input speech segment [9]. However, the
ethod needs a large amount of training data (3 h of videos

or a person), which considers only neutral facial expressions
nd random speech gestures. In addition, the synthesized results
ave visual artifacts in motion details, such as missing fingers.
hen creating virtual humans, the degree of resemblance and the
resence of flaws directly impact the user experience due to the
ncanny Valley theory [10]. Apart from the efficiency and quality
bstacles of virtual digital human synthesis, another unsolved
hallenge lies in the emotion expressiveness. Although natural
motional reactions are essential for vivid human–machine inter-
ction [11], only a few works have studied talking-face generation
ith controllable emotions [12,13].
In this paper, we present a novel deep learning-based pipeline

hat is able to generate virtual humans with gestures and emo-
ional lip-sync expressions for the customer service industry.
pecifically, virtual service humans exhibit behavioral logic that
onforms to certain rules, and they are utilized in specific sit-

ations to guide the behavior and enhance the experience of
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sers. To achieve this, we propose a method to construct a virtual
igital human database for the customer service industry. To
he best of our knowledge, the database is the first to capture
uman videos with both template service actions and emotional
alking faces that cover basic service scenarios. Based on the
atabase, we propose a two-stage pipeline for the virtual human
ideo generation: (1) generating an action video by synthesizing
ransition frames between template actions; (2) generating an
motional lip-sync face to improve the facial part in the action
ideo. The contributions we made in this work are as follows:

• By exploring actual application scenarios of service indus-
tries, we propose a method to collect videos of virtual hu-
mans with template service actions and emotional talking
faces. This data collecting method lays the foundation for
subsequent research on virtual human generation for the
customer service industry.

• We propose a simple yet effective two-stage pipeline for
generating virtual service human videos with semantically
correct gestures and emotional lip-sync face expressions.

. Related work

Virtual humans are computer-generated characters with digi-
al appearances that rely heavily on display devices. A complete
irtual human possesses three characteristics: first, it has a hu-
an appearance, with specific appearance and gender; second,

t exhibits human behavior, with the ability to express itself
hrough language, facial expressions, and body actions; third, it
as humanoid thinking, with the ability to recognize specific
cenarios and even interact with real humans.
In this paper, we focus on researches of generating virtual

umans with realistic human appearance and vivid expressive
ehavior, which lay foundation for achieving a complete virtual
uman with humanoid thinking. Generating a full-body virtual
uman requires a much higher level of details for the face than
or the body. As a result, the generation of the face and the body
s often considered as two distinct problems. For researches that
nclude generating both face and body, the generation process is
till divided into two modules and generated separately [14].

.1. Action video generation

Research on generating action videos of 2D virtual humans has
rogressed rapidly in recent decades and has garnered attention
ue to its ability to quickly produce videos. Some researchers
se explicit 3D representations combined with neural rendering
o synthesize the final image. Shysheya et al. [15] combine clas-
ical graphics processes with deep learning methods to learn a
ull-body model by estimating explicit texture maps and map-
ing input poses to UV coordinate images. However, due to the
se of static texture maps, the synthesized results lack some
igh-frequency details contained in the original information. Liu
t al. [16] propose a dynamic texture-based approach for pose
rediction, which preserves details of the human body. However,
he model requires professional equipments to provide accurate
D reconstruction results, limiting its usage scenarios.
Some action video generation approaches use image transla-

ion networks [17–20]. However, these networks often require
arge-scale data. Some researches [21,22] make use of several
ample data, but their synthesized results of human body pos-
ures are relatively blurry. Sun et al. [23] implement a robust
ction video generation model with a dynamic detail generation
etwork (D2G-Net) based on image translation and a video ren-
ering framework. This approach does not require high-precision
D reconstruction or large amounts of data. Wang et al. [19] and
360
Chan et al. [14] generate high-quality dance videos of the target
person based on image translation networks.

Recently, there has been significant progress in synthesiz-
ing human actions using neural radiance fields (NeRF). Weng
et al. [24] and Liu et al. [25] use monocular videos combined with
NeRF to achieve arbitrary view synthesis of human characters,
with the latter also able to render details such as objects and
backgrounds in the scene. Işık et al. [26] propose HumanRF, a
4D dynamic neural scene representation that captures full-body
appearance in motion from multi-view video input, making a
significant step towards production-level quality novel view syn-
thesis. However, fully supervised learning methods based on large
amounts of data are prone to overfitting, resulting in poor per-
formance when generating actions that differ significantly from
the actions in the training set. Therefore, some methods [27–34]
use carefully designed processes to make the network suitable
for more general action video generation tasks. Liu et al. [35]
use a 3D human body mesh reconstruction module to decouple
posture and shape. However, the images generated by these gen-
eral methods have many problems, such as low resolution, limb
blurring, distorted or even torn moving limbs, and discontinuous
inter-frame textures.

To improve the quality of generation results on fine body
parts, such as fingers or clothing, some researches [36–38] use
optical flow to generate target posture frames. Zhou et al. [39]
go further and propose a model for generating speaking person
gesture videos based on action videos. The model splits and re-
assembles clips from a reference video through a video motion
graph encoding valid transitions between clips based on the
audio. Then, it uses a posture-aware video blending network to
generate transition frames. The problem of frequent ghosting in
the body and background parts is alleviated by using optical flow,
resulting in more natural and realistic speaking person gesture
videos. Inspired by this method [39], we propose a method to
generate transition frames between template actions for virtual
digital humans.

2.2. Audio-driven talking face generation

The task of audio-driven talking face video generation aims to
synthesize a realistic and synchronized speaking video based on
a single photo or video of a person and an input audio. To achieve
this goal, the current mainstream approaches generally train a
network to learn the mapping between audio features and visual
features. The network is then used to predict the corresponding
motion features from the input audio and apply the features to
the input visual data.

Some researches [3,40–42] have focused on how to generate
speaking faces based on videos. Prajwal et al. [4] propose a novel
model called Wav2lip, which generates speaking faces based on
a short input video. The model is trained on multi-person audio-
visual data and focuses on the constraints of the mouth. It adds a
powerful lip synchronization discriminator, which achieves better
lip synchronization than previous works. However, the resolution
of the generated lip part of the face is low, which cannot meet
the requirements in high-resolution scenes, and there are defects
when stitching the lip part to the original video. To improve
synchronization and visual quality, Wang et al. [43] have used a
lip-reading expert and a novel contrastive learning.

Considering that directly establishing the mapping between
audio and expressions is complex, some methods use intermedi-
ate representations such as 3D Morphable Models (3DMM) [44–
46] or facial keypoints [47]. Then, based on the intermediate
representations, these methods generate lip movements corre-
sponding to the input audio. Thies et al. [44] propose Neural
Voice Puppetry based on Voice Puppetry [48]. The system is
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Fig. 1. Pipeline of our neural network-based 2D virtual service human video generation.
ble to generate audio-driven videos of a specific person corre-
ponding to input audio, and it reduces the scale of the required
raining video data to about 5 min. The AudioDVP model pro-
osed by Wen et al. [49] uses 3D face reconstruction results to
ender images and can generate speaking person videos with
ontrollable facial expressions, head positions, body postures, and
ighting. Ye et al. [50] have proposed GeneFace, a generalized and
igh-fidelity NeRF-based talking face generation method that can
enerate results using out-of-domain audio, surpassing previous
ethods.

.3. Facial expression editing

Face image generation refers to obtaining realistic face images
hrough random latent code input, and common approaches use
enerative Adversarial Networks (GAN) [51] to generate images.
ace attribute editing refers to obtaining face images similar to
he input face by modifying the attributes of the face, such as
motions, age, and facial features. Karras et al. [18] propose a face
mage generation network called StyleGAN, which can adjust face
ttributes by extracting different levels of features from different
mages. Furthermore, StyleGAN2 [52] improves the image quality
nd removes blob-shaped artifacts in generated images by ad-
usting the network structure. Subsequent works have achieved
artial attribute editing of the face. DiscoFaceGAN [53] focuses on
ace attribute disentanglement, making expression, lighting, and
osture attributes editable. Wu et al. [54] introduce an Expres-
ion Focal GAN (EF-GAN) that focuses on expressions, to capture
etter personalized features around the eyes, nose, and mouth to
erform emotion editing. Ding et al. [12] propose a continuous
acial expression editing method called ExprGAN. Recently, Sun
t al. [13] propose a method that decouples the shape and texture
f the face, resulting in a better performance.
361
3. Methods

In recent years, with the rapid development of deep learning
technology, human video generation based on neural networks
has also achieved extensive progress. Currently, some researchers
have proposed virtual human generation methods that utilize
Generative Adversarial Networks (GANs). These methods can au-
tomatically generate highly realistic and diverse virtual charac-
ters. However, most of them rely on a significant amount of real
video data for training to generate realistic character images.

In this paper, we present a novel deep learning-based pipeline
to synthesize a photo-realistic virtual digital human for cus-
tomer service industry, given an input text content. Specifically,
the pipeline is designed to avoid capturing a large amount of
training data. To achieve this, we propose a general method to
construct a virtual digital human database for customer service
industry (Section 3.1). Then, we propose a two-stage pipeline for
service virtual avatar generation: action video generation (Sec-
tion 3.2) and emotional face generation (Section 3.3), as shown
in Fig. 1. In more details, we firstly preprocess the input text
and synthesize the audio using Text-to-Speech (TTS) technology.
Secondly, we add corresponding action labels to the timeline
based on the generated audio and obtain the target action clips
accordingly. Then, we generate transition action frames between
the template actions based on a conditional GAN model. All
frames are spliced together to obtain the 2D virtual human action
video. Next, we combine the action video with the audio and
send it to the emotional lip-sync talking face generation network
to obtain synchronized lip images. We use an emotion editing
network and some post-processing operations, such as defect
removal and super-resolution processing, to improve the quality
of the faces in the action video.
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Table 1
Template actions of virtual service human.
Action name Action description

Explaining gesture spread out hands
OK gesture Raise left/right hand like OK
V gesture Raise left/right hand like V-shaped
Waving gesture Raise left/right hand and wave from side to side
Self-introduction gesture Raise left/right hand and tap chest, then put down
Heart gesture Raise left/right hand and express a finger heart
Guidance gesture Raise left/right hand and spread it out
Introduction gesture Raise left/right hand and spread it out to the upper left/right
Dropping Hands Drop hands naturally from the state of cross-grip, then back to the state
Tilting head Tilt head 30 degrees to left/right and back to original position
Nodding nod head twice
Shaking shake head twice
3
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Fig. 2. Examples of some actions in the dataset.

.1. Dataset construction

In this section, we introduce a method for constructing a
irtual digital human dataset that can be applied in customer
ervice industry, including how to collect and preprocess the raw
ideo data.

.1.1. Video data collection
Through an investigation of various types of service personnel,

uch as bank receptionists, shopping mall guides, and online
nchors, we define a total of 12 categories of template actions.
hese template actions cover basic service scenarios, such as
roduct introduction, welcoming guests, and simple interactions.
detailed introduction of the template actions are shown in

able 1, and some action examples are shown in Fig. 2.
To prepare for this work, professional photographers were

sked to record speech and action video data of a professional an-
hor in a studio. The recorded video has a resolution of
840 × 2160 and a frame rate of 30 fps. The face resolution
n the video is not less than 256 × 256, and the background
is a standard green screen. The environment is naturally lit,
with no light spots on the anchor’s body, and there will be
no obvious changes in brightness during the limbs moving. The
anchor should have appropriate makeup and should not have
disheveled hair or bangs. The clothing should be as firm and
slim as possible, with no obvious deformation during the body
movement. And, no accessories that may reflect light, such as
glasses or jewelry should be worn. In total, we have collected
videos of the professional anchor wearing a formal suit and a
cheongsam (in Fig. 2), respectively. The recorded audio-visual
data has a cumulative duration of 30 min for each clothing
type, including different types of actions. Moreover, the dataset
includes all Chinese syllables and corpus with three emotions:
positive, neutral, and negative, as shown in Fig. 3.
362
Fig. 3. Different emotions in the original recorded video.

.1.2. Pose data estimation
As shown in Section 3.1, we have collected some template

ctions of virtual digital humans for customer service industry.
hen, our method generates a whole sequence of human action
ideo frames, by synthesizing transition frames between the tem-
late actions based on a conditional GAN method with human
oses as conditions. Thus, we have to collect pose data. Specif-
cally, we utilize the OpenPose [55] toolbox to extract 2D coor-
inates of 25 keypoints of each human pose from action video
rames. Due to self-occlusion and motion blur in the recorded
ideo frames, we consider only keypoints with a confidence of 0.2
r higher as reliable. This approach balances limb integrity and
ecognition accuracy, allowing us to draw skeletal diagrams based
n these reliable keypoints. In the diagrams, we use different
olors to represent different bones.

.1.3. 3D face data reconstruction
Our method generates emotional lip-sync face videos with

DMM face data as intermediate representations. We use a 3D
ace reconstruction method [56] to obtain the 3DMM face coeffi-
ients X = (α, β, δ, γ, p) ∈ R257. α, β, and δ represent the shape,
expression, and texture coefficients, respectively. γ ∈ R27 repre-
sents the lighting coefficients, and p ∈ R6 represents the pose
coefficients. The facial reconstruction loss comprises three com-
ponents: dense photometric alignment loss Lphoto, sparse land-
mark alignment loss Lland, and statistical regularization loss Lreg .
The final fitting loss of the model [56] is:

L(X ) = λphotoLphoto(X ) + λlandLland(X ) + λregLreg (X ) (1)

where λphoto = 1.9, λland = 0.0016, and λreg = 0.0003 [56].
The reconstructed pose-invariant face model S can be repre-

sented as:

S = S + Bshapeα + Bexpβ (2)

where the average face shape S and the shape basis Bshape are
efined the same as in BFM09 [57], and the expression basis Bexp

is consistent with FaceWareHouse [58].
For each vertex on the reconstructed model S, we reproject

it onto the image plane and rasterize the image position. Using
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Fig. 4. Pipeline of emotional face generation.
his method, we establish the mapping relationship f from the
re-defined UV coordinates to the video frame pixels to get the
exture.

.1.4. Audio data extraction
To learn the mapping between audio and visual data, we

ave to further collect audio data features. Initially, we convert
he audio data into Mel Frequency Cepstral Coefficients (MFCC)
eatures. Subsequently, we feed these features into AT-net [47]
o obtain the high-level features of the audio data. For each 40-
illisecond input audio A∫ at a video frame rate of 25 fps, the
etwork extracts a 256-dimensional feature vector F .

.2. Action video generation

Given an input text, we develop a method to generate se-
antically correct human action videos by synthesizing transi-

ion frames based on template actions defined in Section 3.1.
pecifically, we utilize a conditional GAN [20] to generate virtual
uman action video frames. The conditional GAN simulates the
onditional distribution of real images given the input skele-
al diagram and optimizes the model performance through the
inimax game between the generator and discriminator. The

raining dataset is defined as a set of image pairs (si, xi), where si
epresents the skeletal diagram, and xi is the corresponding real
uman action image, as described in Section 3.1.2. The trained
onditional GAN is then used to infer the corresponding high-
esolution virtual human video frames based on the input skeletal
iagrams.
Our proposed method is able to generate action videos se-

antically conditioned on an input text with a few manually
nnotated action labels. Firstly, we preprocess the input text
nd synthesize the audio using Text-to-Speech (TTS) technology.
econdly, we add corresponding action labels to the timeline
ased on the input text and obtain the target action clips accord-
ngly. Then, we use the image generation network to generate
ransitional action frames between the template actions. Finally,
ll frames are spliced together to obtain the 2D virtual human

ction video.

363
3.3. Emotional face generation

We propose an emotional lip-sync face generation method
to make the virtual human suitable for expressing emotions in
customer service industry. It is important for virtual service hu-
mans to express emotions properly in some application scenarios.
For example, when a user makes correct manipulations during
human–machine interaction, the virtual service human has to
encourage the user in a positive emotion.

Inspired by existing talking face generation [49] and emotion
editing methods [13], we propose to generate an emotional talk-
ing face video by first generating a neutral talking face video and
then editing the emotion of the video. The input of our method
includes the action video of a virtual digital human generated
by the method from the last section, an audio segment and an
emotion vector, which represents a neutral, positive or negative
emotion. The emotion vector is represented as a one-hot vector
e where only one element of a specific emotion is nonzero.

3.3.1. Talking face video generation
We utilize a parameterized 3DMM face model combined with

neural rendering technology to generate virtual human lip-sync
video frames [49]. The specific generation process is shown in
Fig. 4. Using the 3DMM face model as an intermediate repre-
sentation can effectively prevent the overfitting of correlations
between audio and visual signals. We employ the 3DMM face
coefficients X estimated from the input image I in Section 3.1.3.

In Section 3.1.4, we have extracted an audio feature vector
F corresponding to each input audio segment. Inspired by Au-
dio2Expression [49], the audio feature vector and the expressions
reconstructed from the video frames are jointly used to train a
network to learn the mapping from the input audio to the facial
expressions. At each time step t , the audio features in the sliding
window are stacked in chronological order to generate the final
input feature Ft = {Fi}

t+Nw
i=t−Nw

, where the radius of sliding window
Nw is 3, and non-existent previous or subsequent features are set
to 0. The network is trained using Mean Square Error (MSE) to
measure the network loss Lexp:

Lexp = MSE(H(Ft ) − δt ) (3)

where H represents the Audio2Expression network, and δt is
the facial expression parameters obtained at time t from the

reconstructed video.
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Next, we perform facial rendering and stitching [49]. We use
he parameters predicted by the Audio2Expression network to re-
lace the facial expression parameters extracted from the original
ideo frames. To render the synthesized image Î corresponding to
he 3D facial model parameters X , we need to model the lighting
onditions and camera position. After modeling, we calculate the
oordinates ui(X ) of each vertex vi ∈ v(α, δ) in the 3D model
hat are projected from the camera space to the 2D image space
hrough projection Π , as well as the corresponding color ci(X ).
Finally, we feed {ui(X )}Nv

i=1 and {ci(X )}Nv
i=1 into a differentiable

rasterize to render the synthesized image Î(X , Π ). To minimize
the generated face area as much as possible, we use a pre-
trained lower face mask to extract the lower part of the face,
which covers the area of the chin, lip, and part of the nose.
Therefore, we can reduce the uncertainty caused by the dynamic
background, and make the generated results more natural. After
extracting the lower half of the face, we train the facial neural
rendering network using the facial model parameters and corre-
sponding images. The network consists of a generator G based
on U-Net [59] and a discriminator D based on Patch-GAN [17].
Finally, we merge the generated lower face with the original face
to get a sequence of head video frames that match the input
audio.

3.3.2. Emotion editing
Our emotion editing method is designed to make facial expres-

sions more diverse and realistic, following a previous work [13].
Specifically, we edit virtual digital human emotions by processing
the shape and texture of the face, simultaneously. In more details,
we adopt a face transformation network to edit the facial shape
according to emotions while maintaining lip shapes. Since the
geometric details in the texture are difficult to represent in the
transformed shape, a texture transformation network is needed
to process the texture map after the shape transformation. We
utilize the StyleGAN [18], which is trained to leverage the hid-
den encoding obtained by projecting the input texture into a
latent space and generate a new texture map based on the input
encoding.

It is challenging to edit face emotions while retaining lip syn-
chronization, due to the lack of paired training data of 3DMM face
coefficients that are aligned to the same phoneme under different
emotions. In this way, we train a shape transformation network
with unpaired training data in a cycle-consistent manner [60].
To better optimize the generated results, in addition to using
the adversarial loss Ladv commonly used in GAN networks to
constrain the generator and discriminator, we also introduce a
regression loss Lreg to ensure that the generated coefficients are
consistent with the given emotion. In addition, we introduce
a cycle-consistency loss Lrec [13] in the generator to measure
the difference between the reconstructed result and the original
result in 3D space. We also introduce a mouth shape preservation
loss Lmouth [13] to constrain the generated lip shape to be similar
to the original lip shape, as well as a regularization loss Lr to con-
strain the facial deformation. For the discriminator, in addition to
the adversarial loss Ladv and the regression loss Lreg , we also add
a gradient penalty loss [61] Lgp. Therefore, the objective functions
for the generator and discriminator are:

LG = Ladv + λregLG
reg + λrecLrec + λmouthLmouth + λrLr (4)

LD = −Ladv + λregLD
reg + λgpLgp (5)

where we set λreg = 20, λrec = 5e3, λmouth = 1, λr = 1e3, and
λgp = 10 in all experiments following a previous work [13].

Compared with coarse face geometric shape, face textures

have better appearance details to reflect emotions. In this way,
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we train the StyleGAN [18] to generate high-quality texture maps.
Then, we train an encoder that makes it possible to control
the texture map generation based on an emotional vector [62].
Finally, we calculate the editing direction for each emotion based
on the encoding in the StyleGAN latent space. To further improve
the lip synchronization and frame consistency of the generated
results, we use window smoothing, facial blending operations,
and a teeth completion operation to refine the texture of the
mouth area and make the results more realistic.

Our proposed method is able to edit face emotions with a
talking face video and an emotional vector as input. First, we
use the texture map and the 3DMM coefficients X of the face in
our constructed database. Then, we use the shape transformation
network to process the coefficients of the 3DMM based on the
input emotion vector while maintaining the lip movements. We
also edit the texture map by modifying the encoding in the
StyleGAN [18] latent space to capture more details based on
the emotion vector. Next, we combine the modifications on the
coefficients and the texture map to obtain a new face. The result
is further smoothed between frames using a window smoothing
module and optimized using a teeth completion module to en-
hance the realism of the video frames. The specific generation
process is shown in Fig. 4.

4. Experiments

4.1. Implementation details

We implement our proposed method in PyTorch on a server
with the Intel Xeon Gold 6126 CPU and NVIDIA Titan RTX GPUs.
It takes about 8 h and 10 h to train the action video generation
module and the talking face generation submodule on one GPU,
respectively. For the emotional editing submodule, it takes 14 h
to train the StyleGAN on four GPUs. Moreover, it takes 10 h to
train the corresponding encoder of the StyleGAN and a shape
transformation network on one GPU.

In the inference stage, it takes 0.4s for the method to generate
a transition action frame of the virtual human video. When edit-
ing the emotion to negative or positive, 256 × 256 talking face
videos are generated at a rate of about 10 fps. The frame rate can
be further improved by generating and editing a batch of frames
instead of one frame at a time, to satisfy realtime requirements of
some applications, such as realtime human–machine interaction.

4.1.1. Action video generation module
In order to generate realistic video frames, we use the

pix2pixHD model [20], which achieves high realism and res-
olution based on the pix2pix model [17]. The pix2pix model
comprises a generator G and a discriminator D. The role of G is to
translate conditional labels into realistic images, while D aims to
distinguish between real and generated images. The performance
of the pix2pix model is optimized through the minimax game
between the generator and discriminator, which can be expressed
as:

minmaxLGAN (G,D) (6)

where the objective function LGAN (G,D) is:

E(s,x)∼pdata(s,x)[logD(s, x)] + Es∼pdata(s)[log(1 − D(s,G(s)))] (7)

The pix2pix model incorporates control information to guide
the learning direction and generate images with controllable
attributes. However, the generated images may not meet the
requirements for generating high-resolution realistic images. The
pix2pixHD model improves upon this by introducing a coarse-
to-fine generator, a multi-scale discriminator architecture, and

a robust adversarial learning objective function. The objective
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Fig. 5. Comparison of real and generated head.

function of the proposed action image generation model can be
expressed as:

min
G

((
max

D

∑
k

LGAN (G,Dk)

))
+

FM

∑
k

LFM (G,Dk) + λP (LP (G (si) , xi))
(8)

where we set λFM = 10 and λP = 10 following a previous
work [20] . k is the number of multi-scale discriminators, and it is
set to 3. LFM (G,Dk) is the feature matching loss, and LP (G (si) , xi)
is the perceptual reconstruction loss.

4.1.2. Emotional face generation module
Talking face video generation submodule. As depicted in Fig. 5,
there are some problems in the generated results when compared
to the original real video. Firstly, although we consider the possi-
ble flaws in the chin during the stitching process by selecting the
appropriate facial mask shape, the flaws in the middle face cannot
be resolved by adjusting the facial mask. As shown in Fig. 5(b),
there is a small gray line in the middle of the nose. Although
this flaw may not be noticeable at the first glance, it can cause a
sense of unreality when it appears intermittently in dynamic and
continuous video frames. Additionally, upon comparing the face
image of the original video frame in Fig. 5(a) with the generated
face image in Fig. 5(b), we observe a significant difference in
clarity between the generated lower face and the original one.
The generated result has blurred facial details and a decrease
in the character’s makeup. To address these problems, we apply
some post-processing techniques to the generated head video
frames.

To address the flaws in the center of the face, we can assume
that the position of the flaw is in the center of the image because
when cropping the head from the original video frame, the size
and position of the bounding box need to ensure that the face is in
the center of the cropped image. We can process the image pixels
in each column that meets this condition: if there is a significant
color jump in a segment of pixels (less than or equal to 3 pixels)
compared to the color of the adjacent pixels above and below,
we consider that there is a stitching flaw here and fill it with
the interpolation of the color in the adjacent pixels above and
below. To improve the resolution of the generated face and make
it clearer, after repairing the flaws, we use the Generative Facial
Prior GAN (GFP-GAN) [63] to further process the images. The GFP-
GAN network comprises two parts: a U-Net for removing image
degradation, flaws, and other problems, and a pre-trained GAN

network for generating detailed faces.

365
Emotion editing submodule. Our emotion editing submodule con-
tains a shape transformation network, a texture transformation
network, a window smoothing operation, a facial blending oper-
ation and a teeth completion operation. In the following, we will
provide a detailed introduction of these subnets and operations.

Shape transformation network: we use a traditional GAN net-
work consisting of a generator and a discriminator. The input of
the generator G includes an emotion vector e, face shape and
expression parameters α and β, with a total of nc + ne dimen-
sions, where nc is the dimension of the concatenated coefficients

= (α, β), and ne is the number of all emotions except neutral
motion. The input of the discriminator D is the output of the gen-
rator or the concatenated c reconstructed from the real image.
he output of the discriminator includes two parts: Drf judges
hether the input signal is real, and Dreg judges whether the
motion matches the target emotion. By inputting the coefficients

= (α, β) ∈ Rnc and the target emotion vector e ∈ Rne

into the trained generator G, we can obtain the predicted result
G(c, e) ∈ Rnc . The edited shape can be reconstructed using the
DMM coefficients c ′

= (α′, β′) = G(c, e) and the original pose
arameters p.
For the generator and the discriminator, the regression loss

an be written as:

G
reg = Ec,e∥e − Dreg (G(c, e))∥2 (9)

LD
reg = Ec,ẽ∥̃e − Dreg (c)∥2 (10)

where ẽ represents the real emotion vector corresponding to the
shape coefficients c .

In addition, we introduce a cycle-consistency loss Lrec [13], a
mouth shape preservation loss Lmouth [13], and a regularization
loss Lr as described in Section 3.3. The losses are defined as
follows:

Lrec =Ec,0,e∥VS(c) − VS(G(G(c,e),0))∥
2
2+

Ec∗,e∗,0∥VS(c∗) − VS(G(G(c∗,0),e∗))∥
2
2

(11)

where S(c) represents the face shape with the parameters c , and
VS(c) is its vertex vector form. For each vi ∈ VS(c), vi = (x, y, z) rep-
resents the coordinates of the ith vertex of the mesh S(c). In this
equation, c represents the coefficients for the neutral expression,
c∗ represents the coefficients corresponding to the non-neutral
expression e∗, and 0 represents the zero vector corresponding to
the neutral emotion.

Lmouth =Ec,e∥(VSu(c) − VSd(c)) − (VSu(G(c,e)) − VSd(G(c,e)))∥
2
2+

Ec∗∥(VSu(c∗) − VSd(c∗)) − (VSu(G(c∗,0)) − VSd(G(c∗,0)))∥2
2

(12)

where Su(c) and Sd(c) represent the vector forms of the key-
points in the upper and lower lip regions of the face model S(c),
respectively.

Lr = Ec,e∥VS((α,0)) − VS((α′,0))∥
2
2 (13)

where α and α′ represent the shape coefficients corresponding to
c and G(c, e), respectively. In this loss, the expression parameters
are set to 0.

Texture transformation network: we utilize a StyleGAN [18],
which is trained to leverage the hidden encoding obtained by
projecting the input texture into a latent space and generate a
new texture map based on the input encoding. In traditional
StyleGAN, the given latent code z in the latent space Z can be
mapped to an intermediate code w through a mapping function
f : Z → W , which is then transformed into n styles through a set
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f affine transformations {Ai|i = 1, 2, . . . , n}. The entire process
an be expressed as:

w = f (z) (14)

ˆ = stylegan(A1(w), A2(w), . . . , An(w)) (15)

where t̂ represents the generated image. To enhance the accuracy
of image reconstruction, we stack n distinct w in the texture
ransformation network to transform the image into the extended
atent space W+, and introduce an encoder to regress the image
to the latent space. The complete process of transformation and
reconstruction can be expressed as:

W := {w1,w2, . . . ,wn} = enc(t) (16)

ˆ = stylegan(A1(w1), A2(w2), . . . , An(wn)) (17)

Window smoothing operation: we utilize a Hanning window
weight to smooth the 3DMM coefficients and the latent codes of
I t−1, I t , and I t+1 within the window for frame I t .

Facial blending operation: we use a soft mask to seamlessly
lend the rendered face with the original background. In this
ask, the values near the edge of the face gradually increase from
to 1 to achieve a smooth transition.
Teeth completion operation: since the 3DMM model does not

nclude the internal structure of the mouth, it leaves a blank area
n the mouth region. Therefore, we introduce a teeth completion
etwork [13]. By reconstructing and rendering the face area, we
an obtain paired training data with and without teeth, which
s used to train the encoder to map the latent codes of images
ithout teeth to those with teeth. Finally, we use a projection
ransformation to align the mouth area and fill the texture of the
eeth area to the blank area.

.2. Result and discussion

We evaluate the performance of each module in our neural
etwork-based 2D virtual digital human generation pipeline and
nalyze the experimental results. We show the quality of our
esults through qualitative visual performance and quantitative
etric measurements.

.2.1. Action video generation module
To generate videos that closely resemble real recordings, the

ocus of action video frame generation is on producing smooth
ransitions between different types of template actions. Initially,
e perform linear interpolation between two consecutive tem-
late actions decided by the input text, to obtain a set of smooth
ransition skeletal diagrams. Subsequently, we use the trained
ction video generation model to synthesize the corresponding
rames of the skeletal diagrams. Fig. 6 illustrates an example of a
mooth gesture transition. It is evident that the character’s right
rm gradually moves away from the body, and the left thumb
oves from an obscured state to a visible state. Other parts of

he body, such as facial expressions and the clothing, exhibit
ood consistency within the motion clip. By employing a similar
ransition strategy, our proposed method can achieve seamless
ransitions between different template actions, and generate vir-
ual human videos with semantically correct gestures that are
elpful for customer service.
In Fig. 6, the clothing is a stiff uniform, and the overall texture

s relatively simple. However, for the cheongsam, the fabric is soft
nd the texture patterns are complex, so it is difficult to learn the
onditional distribution of human action frames conditioned on
keletal diagrams. Consequently, there may be sudden changes
n the generation process. Fig. 7 displays two consecutive frames
366
Fig. 6. Example of smooth action transition.

Fig. 7. Example of sudden changes in non-rigid material.

n the video generated using the character wearing a cheongsam,
nd there is an abrupt change in the texture of the clothing, which
ffects the overall visual result.
To quantitatively evaluate the effectiveness of the generated

ideo frames, we introduce three important metrics commonly
sed to evaluate generation results: Structural Similarity (SSIM)
64], Peak Signal to Noise Ratio (PSNR), Learned Perceptual Im-
ge Patch Similarity (LPIPS) [65], and Fréchet Inception Distance
FID) [66].

The SSIM metric is used to measure the similarity between
wo images from the perspectives of brightness, contrast, and
tructure. Since humans are less sensitive to changes in bright-
ess and color than to changes in edges and textures, this metric
ainly compares the similarity of the image structure. The PSNR
etric is a commonly used method for measuring image qual-

ty [67]. If the PSNR value is higher than 33 dB, it means that the
mage is very close to the original image. A value between 33-
0 dB indicates that the image has some degree of distortion but
s still acceptable. A value less than 30 dB indicates poor image
uality. This metric is based on the mean square error (MSE).
However, the aforementioned metrics evaluate the entire im-

ge equally and may not accurately simulate human perception.
o address this issue, Zhang et al. [65] proposed a deep visual
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Table 2
Quantitative measurement results of action video generation module.

Cheongsam Formal suit

SSIM↑ 0.9812 0.9886
PSNR↑ 36.945 42.050
LPIPS↓ 0.0055 0.0036
FID↓ 20.269 10.159

feature-based evaluation metric called LPIPS. This metric pro-
vides similar results to human judgments in some image pairs
where other metrics struggle to distinguish the similarity. This
demonstrates that learning-based perceptual similarity metrics
are closer to human perception in judging image similarity.

The FID metric shares a similar idea to LPIPS, as it also uses fea-
ures for evaluation. This metric uses the Inception-v3 model to
alculate the insight score. By comparing the distribution distance
f the real image set and the generated image set in the feature
pace, it can accurately evaluate the quality of GAN-generated
mages.

Table 2 summarizes the quantitative evaluation results of the
ction video generation module. For the SSIM and PSNR metrics,
igher values indicate better performance, while for the LPIPS
nd FID metrics, lower values indicate better performance. The
est metric values are shown in bold. The results indicate that
ur proposed method has a better performance on the character
earing the formal suit than the cheongsam in terms of all
valuation metrics . The wrinkles and complex textures do not
ove coherently with the cheongsam, thus leading to artifacts
uch as temporally instability of fine-scale details, as shown in
ig. 7. However, the generated results of the character wearing
he cheongsam have excellent quality in terms of the PSNR >

3dB [67]. This demonstrates the effectiveness of our method for
rocessing challenging data with non-rigid materials and com-
lex textures.

.2.2. Emotional face generation module
The emotional face generation module has two submodules

or generating talking face videos and editing emotions. Firstly,
e evaluate the performance of the talking face video generation
ubmodule. When interacting with virtual humans or watching
ideos of virtual humans, users naturally focus their attention on
he faces of the character because the virtual human ‘‘speaks’’ in
ccordance with the input audio. The fineness and naturalness
f the talking faces are important for the realism of the virtual
uman. Therefore, in the talking face video generation submod-
le, we introduce defect repair and super-resolution operations
o improve the quality of the generated results. Images before
he defect repair operation, as shown in Figs. 8(a) and 8(d),
ave shallow gray lines near the tip of the nose due to stitching
efects. As shown in Figs. 8(b) and 8(e), after defect repair, the
enerated results become more natural, and there is no sudden
hange in the continuous video frames. The images after super-
esolution processing are shown in Figs. 8(c) and 8(f), in which
he character’s facial features are clearer, and details such as
akeup and hair are more realistic.
To quantitatively evaluate the talking face video generation

ubmodule, we use the PSNR, SSIM, and FID metrics mentioned
bove, as well as the Identity Preservation (ID) metric, Cumulative
robability of Blur Detection (CPBD) [68], Lip-Sync Error-Distance
LSE-D), and Lip-Sync Error-Confidence (LSE-C) [69]. We use these
etrics to evaluate the generated results before and after the
efect repair and super-resolution processing operations.
The CPBD metric is a no-reference blur measurement metric

hat estimates the probability of detecting blur in each edge of the
mage using a probability model and calculates the cumulative
367
Fig. 8. Comparison of images after post-processing steps.

Table 3
Quantitative measurement results of talking face video generation submodule.

Origin Defect repair Super-Resolution Input

SSIM↑ 0.6654 0.6655 0.6541 N/A
PSNR↑ 18.237 18.237 17.940 N/A
FID↓ 43.047 39.826 42.752 N/A
ID↑ 0.7936 0.7935 0.7735 N/A
CPBD↑ 0.0723 0.0719 0.1252 0.1386
LSE-D↓ 8.6656 8.6331 8.7106 8.0712
LSE-C↑ 5.2342 5.2754 5.1929 6.9971

probability. The LSE-D and LSE-C metrics measure the degree
of matching between lip movements and audio pronunciation
in videos. They use error distance and confidence probability to
evaluate the synchronization between the video content and the
audio. The ID metric evaluates whether the identity features of
the character are well preserved during the generation process
by calculating the cosine similarity between the average features
of real images and generated images in ArcFace [70]. For the
CPBD, LSE-C, and ID metrics, higher values indicate better perfor-
mance, while for the LSE-D metric, lower values indicate better
performance.

Table 3 summarizes the quantitative evaluation results of the
talking face video generation submodule. The best values are
shown in bold. The images after the defect repair operation are
significantly better than the images after the other two stages
in terms of the FID metric. This is because the defect repair
operation smooths the gray dotted lines in the face, making the
character features more prominent, and the overall changes to the
image are relatively small. The difference between the original
video image and the image after defect repair in the SSIM, PSNR,
ID, LSE-D, and LSE-C metrics is very small. This is because manip-
ulating a small number of pixels in a few frames in a continuous
video is not enough to affect the pixel-by-pixel calculation met-
rics (SSIM and PSNR), nor it is enough to affect the metrics that
judge identity preservation and lip-sync synchronization in the
overall image (ID, LSE-D, and LSE-C).

Although the images after super-resolution processing have
a slight decrease in the ID, LSE-D, and LSE-C metrics, there is
a significant improvement in the CPBD metric. This is because
the super-resolution network is trained on high-resolution image
datasets and can learn prior knowledge from the network during
the training phase to fill in or even add details in the original
blurry areas, making the processed images perform well in CPBD.
The changes to the image are relatively large, which lead to
a loss of information in character identity and slight changes
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Fig. 9. Different emotions after editing (based on real neutral emotions).

in lip structure. However, in practical applications, humans can
easily discriminate the features added by the super-resolution
network, such as makeup, highlights on the face, and hair. People
can still recognize the character’s identity even if the makeup
is heavier or there are more hairs on the forehead. Therefore,
the introduction of the super-resolution post-processing module
improves the effectiveness of our 2D virtual human generation
method from a practical application perspective.

Next, we evaluate the performance of the emotion editing
ubmodule, which aims to edit the shape and texture of the face
o express emotions, while maintaining the synchronization of
he lip movements. The positive and negative emotions edited
rom the neutral emotion are shown in Fig. 9. Figs. 9(a), 9(b), and
(c) all show an open mouth shape, and the positive emotion
fter editing has a larger mouth shape and a slightly upward
n the corners of the mouth, while the negative emotion has a
maller mouth shape and a more solemn expression. Figs. 9(d),
(e), and 9(f) all show a slight upward tilt posture with an open
outh. In addition to the difference in the size of the mouth
pening, the positive emotion after editing has slightly squinted
yes compared to the neutral emotion, simulating the state of
he eyes bending when a real human smiles. For the negative
motion, the most obvious change is in the eyebrows. When
he virtual human tilts her head, she has a slight expression
f raising her eyebrows, which appears abrupt in the negative
motion. After editing from neutral emotion to negative emotion,
he eyebrows are more symmetrical.

We compare the results edited by our method with those
dited by ExprGAN [12], a continuous expression editing method
roposed by Ding et al. The comparison results are presented in
ig. 10. Our method produces images with more intense emo-
ions, higher clarity, and greater realism than ExprGAN. Fur-
hermore, our results have a superior effect on the teeth area,
ith clearer textures, due to the inclusion of a teeth completion
peration designed to fill in teeth textures.
Table 4 summarizes the quantitative evaluation results of our

motion editing method and ExprGAN on the data of the charac-
er in a formal suit. The table highlights the best values in bold.
t can be seen that the generated results of our emotion editing
ethod are better than the generated results of ExprGAN in all
etrics. This is because our method decouples the shape and

exture of the face and performs editing operations separately,
aking the results more natural. The CPBD, LSE-D, and LSE-C
etrics are close to the input video, indicating that the method
as a small impact on the clarity of the image and the lip-sync
368
Table 4
Quantitative measurement results of emotion editing submodule.

ExprGAN Our method Input
Positive Negative Positive Negative

SSIM↑ 0.9135 0.9200 0.9708 0.9700 N/A
PSNR↑ 27.928 28.765 38.563 38.298 N/A
FID↓ 37.741 43.798 8.8982 11.946 N/A
ID↑ 0.9228 0.9078 0.9778 0.9754 N/A
CPBD↑ 0.0471 0.0495 0.1284 0.1274 0.1386
LSE-D↓ 9.7377 9.7010 8.2500 8.1539 8.0713
LSE-C↑ 4.8333 4.7124 6.6612 6.6268 6.9972

while editing the emotion. When comparing emotions internally,
it can be found that the editing effect of positive emotions is bet-
ter than that of negative emotions, which is because the features
of positive emotions are more obvious, such as the upward turn
in the corners of the mouth, the enlargement of the mouth shape,
the slight bending of the eyes, and the upward movement of the
cheekbones. However, the features of negative emotions are more
likely to reflect in the overall expressions of the facial features,
which are more difficult to learn and are prone to affecting other
parts during editing.

5. Conclusion

Our method uses Text-to-Speech technology and action labels
obtained from the audio to drive the neural network to generate
body movements and lip movements. The resulting head image
can be further processed through emotion editing and super-
resolution networks to generate a realistic virtual human video
that is lip-synced with the audio and matched with the move-
ments. Qualitative and quantitative analyses have demonstrated
the irreplaceable role of each module in our method. The action
generation module is the basis, constructing a character action
video that matches the audio content through action labels. This
video is also used as the background video for the lip shape video
generation module, which generates lip movement synchronized
with the audio through matching with the 3DMM coefficients,
giving the virtual human the ability to speak. The addition of
other modules optimizes the overall effect.

Our system can generate high-resolution videos that are close
in quality to real recorded videos, with a rich database of com-
mon service actions. The videos generated by our system have
almost no sudden changes. Our system is suitable for most video
generation tasks in service scenarios.
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