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Keyframe Control of Music-driven
3D Dance Generation

Zhipeng Yang', Yu-Hui Wenf, Shu-Yu Chen, Xiao Liu, Yuan Gao, Yong-Jin Liu*, Lin Gao*, Hongbo Fu

Abstract—For 3D animators, choreography with artificial intelligence has attracted more attention recently. However, most existing deep
learning methods mainly rely on music for dance generation and lack sufficient control over generated dance motions. To address this
issue, we introduce the idea of keyframe interpolation for music-driven dance generation and present a novel transition generation
technique for choreography. Specifically, this technique synthesizes visually diverse and plausible dance motions by using normalizing
flows to learn the probability distribution of dance motions conditioned on a piece of music and a sparse set of key poses. Thus, the
generated dance motions respect both the input musical beats and the key poses. To achieve a robust transition of varying lengths
between the key poses, we introduce a time embedding at each timestep as an additional condition. Extensive experiments show that our
model generates more realistic, diverse, and beat-matching dance motions than the compared state-of-the-art methods, both qualitatively
and quantitatively. Our experimental results demonstrate the superiority of the keyframe-based control for improving the diversity of the

generated dance motions.

Index Terms—3D animation, generative flows, multi-modal, music-driven, choreography.

1 INTRODUCTION

ANCE motions are kinematically complex and diverse for

long-term spatio-temporal structures [1], [2], which make it
challenging to generate high-quality dance animations. Recently,
deep learning models have been successfully applied to achieve
automatic dance generation [3], [4], [5], [6], [7], [8]. These works
mainly rely on music to drive the synthesis of dance motions.
Recently, some methods have been proposed to achieve style
control over the generated dance [2], [9], [10]. However, as
choreography is a creative process, dance generation mainly driven
by music or controlled by style is not flexible enough to control
the dance poses at specific time steps, while such specific controls
are often required by choreographers [11], [12]. On the other hand,
keyframe-based control, which allows artists to depict their ideas
via a sparse set of keyframes, has been widely adopted for creating
2D and 3D animations [13], [14]. Inspired by these works, we are
interested in applying keyframe-based control to music-driven 3D
dance generation and employing deep learning models to perform
keyframe interpolation.

Based on the above observations, we extend the idea of
keyframe interpolation for music-driven dance generation, so that
3D animators can enjoy the automated feature of dance generation
while still having a sufficient control of generated animations.
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Traditional keyframe interpolation techniques (e.g., [15], [16],
[17]) mainly use smoothness cues to fill missing frames between
keyframes. We present a novel transition generation technique,
which leverages a piece of input music to infer intermediate poses
between a sparse set of key poses. Specifically, our transition
generation technique should have the following properties: (i)
producing motions with high diversity and realism, (ii) aligning
well with the input music, and (iii) achieving a flexible control by
the key poses, whose intervals might not be fixed.

To achieve them, we base our transition generation technique
on recent advances in modeling complex distributions [18], [19].
Specifically, we build a probabilistic model for dance generation
conditioned on the input music and key poses. We use normalizing
flows to generate the dance motion in the current frame given its
past-context dance motions and condition signals, including the
features extracted from the input music and its corresponding
target key pose (i.e., a key pose closest to a current frame).
The normalizing flows are a set of invertible functions to map
dance motions to inherent feature vectors, such that the probability
distribution of dance motions is transformed to a simple Gaussian
distribution. Thanks to the exact mapping between the two
distributions, our model achieves highly diverse and realistic dance
generation. However, as shown in our experiments (Section 4.5),
by only adding condition signals of key poses, the probabilistic
model cannot generate transition dance motions between keyframes
robustly. This is mainly because the distance between a target pose
and its corresponding generated pose is not clear and each generated
dance motion is not aware of the number of left frames to its target
keyframe due to the varying intervals between key poses. To solve
this problem, we add a key pose loss term that describes the distance
between the input key poses and their corresponding generated
poses to our objective function for modeling the distribution of
dance motions. Furthermore, we introduce a time embedding
at each timestep as an additional condition to achieve a robust
transition generation of varying lengths. Moreover, our dance
motions are represented by joint rotations and global translations,
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Fig. 1: 3D dance motions (in an opaque style) generated by our
method conditioned on a piece of music and a sparse set of key
poses (in a semi-transparently style). For clarity, the generated
frames are shown with an interval of 10. Our method is able to
generate transition dance motions of varying lengths between the
key poses.

and thus can be easily transferred to a novel 3D character for
animation, as shown in Figure 1. The generated 3D character
dance animations can be widely used in AR/VR, Film industry and
Entertainment industry.

Our main contributions are summarized as follows. First, we
propose a novel transition generation technique for synthesizing
music-driven dance motions based on normalizing flows. Thanks
to the probabilistic nature of normalizing flows, different yet
plausible dance transitions can be generated between arbitrary
pair of key frames. Second, we introduce a new key pose loss to the
objective function of learning the conditional distribution of dance
motions given the input music. Third, we introduce transition-
control signals, i.e., a combination of time embedding and key
poses, to achieve a robust transition of varying lengths between
given key frames. Experimental results show that our method
generates more realistic, diverse, and music-synchronized dance
motions compared to the state-of-the-art methods.

2 RELATED WORK
2.1 Human Motion Generation
2.1.1 Motion Prediction

For motion prediction, human motions are synthesized with
multiple frames of movements as a past context. Recurrent Neural
Networks (RNNs) have been used for motion generation given
the past context. For example, Fragkiadki et al. [20] proposed an
Encoder-Recurrent-Decoder (ERD) architecture by incorporating
separate encoder and decoder networks before and after recurrent
layers for modeling human motions. Jain et al. [21] represented
human motion sequences as spatio-temporal graphs, which are
modeled by structural RNNs. Some recent works have developed
new architectures based on RNNs to improve the performance of
motion forecasting [22], [23]. GANs have also been used to gen-
erate human motions [24] and achieved impressive improvements
in producing highly convincing random human motions, though
GANS are difficult to train [25].

2.1.2 Motion Control

Motion control is referred as application scenarios in which
dense control signals (e.g., motion path, motion velocity, motion
direction), usually user-defined, are used to drive animation
generation. Motion graphs [26] are able to produce motions by
traversing nodes and edges that map to character states or motions
clips from captured databases. To achieve flexible control over
motion graphs, some works propose extra conditions or local PCA

2

models on pose candidates [27], [28]. Deep learning approaches
have been proposed to improve the scalability and flexibility of
motion control. For example, Holden et al. [29], [30] proposed a
feed-forward convolutional neural network to build a constrained
animation synthesis framework, which is conditioned by root
trajectory and end-effectors. Mode-aware [31] neural networks
can automatically choose a mixture of network weights at run-
time to generate motions. Recently, Ling et al. [32] proposed a
motion VAEs model to generate target position guided animation,
which is able to avoid barriers. A recent work [19] proposed a
probabilistic model to generate realistic human motions under the
control of root trajectory, based on normalizing flows [33], which
have gained much attention for highly realistic image samples [18].
Normalizing flows make it possible to compute and maximise the
likelihood of the real motion data, and thus produce highly realistic
motions [34]. Please refer to [35] for much more motion synthesis
research works.

2.1.3 Transition Generation

Transition generation is defined as a type of control with a sparse
set of keyframes, between which large gaps of motions must be
filled [36]. This task is closely related to the keyframe interpolation
problem [17]. Recently, deep learning methods have been applied
to solve the keyframe interpolation problem for character animation.
For example, Zhang et al. [37] built a RNN conditioned on input
keyframes to generate intermediate-frame motions by sampling
from example motions. Harvey et al. [38] proposed a transition
generation method based on LSTM to accelerate the creation of
transition motions. Although they have achieved impressive results,
they generate only deterministic outputs.The LSTM has also been
employed for human mesh sequences generation [39] and speech-
driven facial animation [40]. On the contrary, Harvey et al. [36]
introduced a schedule target-noise vector into a motion predictor
for their transition generation, to enable variations in generated
transition motions. We propose a novel transition generation
technique by using normalizing flows, whose probabilistic nature is
benefit for generating different yet plausible dance motions given
the same piece of music.

2.2 Music to Dance Synthesis

Dance is a type of artistic body motions performed with music.
Music-driven dance generation is generally studied in application
scenarios where music control signals are used to drive dance
generation. This task has been studied widely in 3D scenarios by
using deep learning methods. Many previous works use RNNs [3],
[41], [42] to generate dances conditioned on music. RNN-based
solutions suffer from the error accumulation problem in long-time
motion generation. To address this issue, transformers have been
imported into music-to-dance tasks [43] to predict future dance
movements conditioned on music beats and a past seed dance
sequence. However, most of these RNNs and transformer-based
methods yield only a single sequence of dance for a given input.
To generate different dance motions for the same input and
thus increase the diversity of generated results, some recent works
adopt GANSs for this task. For example, Lee et al. [7] proposed a
GAN-based model to decompose and compose dance motions from
music beats. Ferreira et al. [6] used GCNs as a motion generator
in the framework of GAN for music-to-dance generation. Ren
et al. [8] applied a multi-layer perceptron as a motion generator
and introduced a new pose perceptual loss to produce natural

Authorized licensed use limited to: Tsinghua University. Downloaded on October 17,2023 at 06:39:34 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3235538

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

dance motions. Sun et al. [4] proposed a GAN-based cross-modal
association model to capture correlation between music and dance.
A probabilistic model based on normalizing flows [44] has been
used to generate diverse dance motions conditioned on a piece of
music and previous poses, which are encoded by a multi-modal
transformer.

The above mentioned works show that deep neural networks can
greatly benefit the task of music-driven dance synthesis. However,
their controllability can be improved, since their generation process
is driven only by the input music, which provides a relatively weak
control signal.

2.3 Dance Control

Some recent methods have achieved motion or style control
over generated dance motions. For example, Zhuang et al. [1]
proposed to generate dance motions with a dance melody line
describing desired motion speeds. Zhuang et al. [9] proposed a
novel autoregressive generative model to generate dance motions
by sampling from a conditional distribution that takes a musical
type and musical features as condition signals. Their method uses
control signals directly extracted from the music [9] to generate
style-consistent dance from music. However, it still lacks sufficient
controllability over dance motions. Chen et al. [2] proposed a
choreography-oriented graph-based dance synthesis method called
ChoreoMaster, which learns a unified embedding space for music
and dance segments. To learn choreomusical rthythm embeddings
for music and dance, a rhythm signature classification network
is trained with the ground truth rhythm signatures, which are
manually labeled by professional artists. The method proposed
by Aristidou et al. [10] takes a global structure of a dance genre
into consideration to control the contextual and cultural styles of
dance motions. In more details, the global structure is controlled
by the distribution of motion motifs, which are used to represent
motion word clusters. Each motion word is a temporal set of poses
depending on the musical beat.

All the above-mentioned works use dense control signals for
dance generation. In contrast, we propose to synthesize dance
motions conditioned on the input music and constrained by a
sparse set of key poses, thus allowing for a more flexible control
over generated dance motions.

3 METHODS

In this work, we propose a novel transition generation technique for
choreography, which generates dance motions between keyframes
with an input piece of music, based on normalizing flows. Next,
we will introduce the details of our method.

3.1

First, we briefly review normalizing flow, which has been less
explored for dance generation. Given an observed variable = and a
latent variable z, the parametric model of their joint distribution
is denoted as p(z, z) (called a generative model [45]). To learn
the parametric model of a given dataset X = {z1,...,xn}, itis
typical to perform maximum marginal likelihood by maximizing
logp(X) = Zfil log p(z;). Generally, the marginal likelihood
is intractable to compute or differentiate directly for flexible
generative models that are parameterized by neural networks. By
introducing an approximate posterior distribution for the latent

Normalizing Flow

3

variables ¢(z|z) (called an inference model [45]), we are able to
obtain a lower bound on the log-likelihood of each observation [46]:

log p(x) > log p(x) — Dicr (a(212) |p(2]z)) = L(z;6),

ey
where D1, (q(z|z)||p(z|x)) is the Kullback-Leibler (KL) diver-
gence, which is non-negative. By minimizing the KL divergence,
L(x;0) is able to match the true objective log p(x). Considering
both requirements for optimizing the objective and fast inference,
the key is to choose a flexible and computationally-feasible ap-
proximate posterior distribution ¢(z|z) to match the true posterior
distribution p(z|z) [45].

Normalizing Flow, a sequence of K invertible parameterized
transformations fy, is introduced in the context of stochastic gradi-
ent variational inference to build a flexible posterior distribution
zi from a relatively simple distribution zg [33]:

20 = q(20l), 250 = [x (--.(f1(20,))). 2

Thus, the probability density function for zx can be computed
efficiently with the Jacobian determinant det | 62571\ of each
transformation fj:

azk
Ozp—1

K
log q(2x|x) = log q(z0|z) — > log det | E©)
k=1

3.2 Transition Generation for Choreography

Now we introduce the details of our transition generation method
for music-driven dance motions, which are constrained by a sparse
set of key poses.

3.2.1 Data Representation

We represent a human motion by a skeleton structure with j =
24 joints. Specifically, we use an exponential map [47] vector
r¢ € R7*3 along with a root joint position p; € R? to represent a
pose at frame ¢. We also extract the forward, sideways, and angular
velocity v; € R? of root to describe the movement path of dance
sequences on the ground. In addition, we extract the foot contact
signals for each position. Especially, we gather four-dimensional
0-1 vectors ¢; € R* to denote the contact relations between floor
and feet (left ankle, left toes, right ankle, right toes). Then, we get
pose features x; by merging p;, r¢, v and c;.

For audio data, we adopt Mel Frequency Cepstrum Coeffi-
cients (MFCCs), which are widely used for speech analysis and
music recognition, and extract a 40-channel MFCC feature m; from
the corresponding music signal at frame ¢ by the audio processing
toolbox Librosa [48].

3.2.2 Transition Generation

We train a probabilistic model to generate a dance motion z; at
frame ¢ conditioned on 7 past-context dance motions ;_,.4—1 and
condition signals s; = (My—r.t, €rys E}), where m;_..; represents
music signals from frames ¢ — 7 to ¢, e, denotes the target key
pose at the frame -y, and E; represents the time embedding at
frame t. Our framework is shown in Figure 2. By introducing
the idea of normalizing flow, we define a sequence of invertible
transformations f, for the approximate posterior distribution as:

20 = q(ZO|-’L't7'r:ta St)7 2K = fK(w(fl(ZOa Tt—r:t, St)))~ (€]
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Fig. 2: Framework of our transition generation for choreography based on normalizing flows. The transformation from x; (V¢ = 7...y)
to the latent space Z is conditioned on past-context dance motions Z¢_..¢+—1 and condition signals s; = (M¢—r.t, €,y Ey). mi—r
represents music signals from frames ¢ — 7 to ¢, and e, denotes the target key pose at the y-th frame, while E; is the embedding of time
signal ¢ for a correct transition generation. To generate x}, we sample z; in the latent space and transform it using reversed flows under
the control of the condition signals s; and past-context dance motions xéfmfl. Liey pose describes the distance between the generated

pose xfy at the target frame <y and its corresponding key pose. After generating a full motion sequence x

!

Ty Lot describes the distance

between feet contacts of the generated motion sequence x;w and the ground truth sequence ..

Then, we define an invertible autoregressive transformation with a
simple Jacobian determinant as follows [45]:

Zk =k + 0 © zk—1, Vk=1..K ®))

where p = (1 — §) © ai and §;, = sigmoid(by) are trans-
formation parameters from an autoregressive model [ag, by] <

LSTM(2k—1, Zt—r:t, S¢;0). Then, the determinant of a‘;‘ffl is

T 65 a- With 29 = po + 8o © €(e ~ N(0, 1)), log g(2x |x) is
computed efficiently by:

Eflows = IOg Q(ZK|xt7'r:ta St)

D K
B 1, 1 ©)
= d§:1(§€d +3 log(27) + ,;:0 log 0%.4)-

The flexibility of the distribution of ¢(zx|Ti—r.t, S¢) after the
iteration of zx, which increases with the expressivity of the
autoregressive model and the flow length K, determines the ability
to fit to the true posterior p(z|Ti—r.t, St).

Inspired by Glow, which is proposed for parameterizing
complex distributions [18], [19], we develop the architecture of our
probabilistic model based on a sequence of flow steps, as illustrated
in Figure 3. Each flow step contains three invertible layers: an
activation and normalizing (Actnorm) layer, a linear transformation
layer, and an affine coupling layer. Mathematically, we denote h;
as the hidden features of z; after the first two invertible layers, and

then split h; to two equal parts [h{°, h?]. In the affine coupling
layer, we perform an affine transformation to one half of the
hidden features h,f“ Specifically, the transformation parameters are
determined by the other half hidden features hff’, the past-context
information z;_,.;—1 and condition signals s;. Finally, the output
2 of the k-th flow step frame can be calculated as:

2 = [0, 207 = [0, i + 0 O BPY], VE=1..K (7)

where pr = (1 — 0g) © ax and 6, = sigmoid(by) are trans-
formation parameters from the autoregressive model [ag, bg] <
LSTM(2i—1, Tt—r:t, S¢; 0). We notice that the equation of 2y in
Eq. 7 is a particular version of Eq. 5, so the computation of Eq. 6
still works [45].

As described above, we add the condition signal of the target
key pose to generate dance motions for transition generation.
However, the transition generation is not robust. To solve the
problem, we firstly add a key pose loss term to Eq. 6 to constrain
the generated motions at the keyframes to match the corresponding
key poses. Then, we propose to use a time embedding to achieve
a flexible control over the generated dance motions of varying
lengths. The details are described in the following.

3.2.3 Losses

We propose a key pose loss to generate a sequence of dance
motions to match the target key pose at the frame . In more
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Fig. 3: Architecture of our normalizing flow model that consists of a sequence of flow steps. Each flow step f contains three invertible
layers: an activation and normalizing layer, a linear transformation layer, and an affine coupling layer. Then, we perform an affine
transformation to one half of the hidden features hzi with the parameters from the other half hff, the past-context information x;_r.¢—1
and condition signals s;. The output of the k-th flow step 2 is a concatenation of z,lf and z,t”

details, we use z; randomly sampled from the latent space, the
past-context motions Zy_,.;—1, and the condition signals (17— +.¢,
e, and Ey) as input to generate the dance motion x'Tw during
.. _ —1

training: ; = f1 1(~--fK (2 Tp—rit—1, Mp—ret, €, E})). Then,
we calculate the key pose loss for the generated sequence with
an L2 norm Lyey pose = [[FK(z)) — FK(e,)||2, where Forward
Kinematics (FK) is performed to calculate the global joint positions
of the human motion. We also use a contact-based loss £ feet =
'yir 7 |I¢/t = ct|1 [36], to constrain the distance between the
generated feet contacts ¢’; of 'y and ground-truth contacts ¢; of
Tt.

Finally, the total objective function of our method is defined as:

®)

where w1, wo, ws are the weights for the loss terms (w; = 1.0,
wg = 0.5, and w3 = 0.1 in our implementation.)

Etotal = wl‘cflows + W2£k’ey pose + W3£feet;

3.2.4 Time Embedding

We propose a time embedding for transition generation to enable a
flexible control over generated dance motions of varying lengths.
It is not sufficient to generate a dance motion by simply using
an additional condition signal of its target key pose, because the
transition generation must be aware of the frame position until
arrival at the target keyframe. In this way, we use positional
encodings, which shift smoothly and uniquely to represent the
location of each frame [36], [49]:

nt nt
basis?/D basisis) O
basis basis
where nt is the time step between the start frame and the target
frame. nt can evolve forward and backward in time. We have
conducted experiments to show that it is better to use nt evolving
backward, which represents the number of frames left to reach the
target frame. D denotes the dimension of the input motion, and
1 €[0,...,D/2]. The basis is set to 10,000 to represent the the
rate of change in frequencies along the input dimension as [36],

[49].

Ey o = sin( ), Bt arr1 = cos(

4 EXPERIMENTS AND EVALUATION

In this section, we conduct qualitative and quantitative experiments
to evaluate our transition generation for choreography. Since

our method is based on a probabilistic distribution modeled by
normalizing flows, different yet plausible dance motions can be
sampled repeatedly from the distribution. We compare our method
with several related works that are able to generate different dance
motions given the same input music.

4.1 Dataset

We use a public music-to-dance dataset AIST++ [43], which
contains 1,408 motion sequences of 10 dance genres. For training,
we get 14,645 clips of dance motions and each clip contains
40 frames. We build the test set as suggested by the authors of
AIST++ [43], as follows. Firstly, we select one music piece from
each of the 10 genres. Then, we randomly select two dancers, each
of which performs two different dance motions for the music piece.
Finally, we get in total 40 unique choreographies paired with music
beats in the test set.

4.2 Implementation Details

Our method of transition generation for choreography is imple-
mented in PyTorch [50] and could also be implemented on other
deep learning platforms such as Jittor [51]. In our framework,
the number of flow steps K is set to 16. In each flow step, the
autoregressive model consists of two LSTM layers, and the hidden
channel is set as 512. The batch size is set to 100 during training.
The learning rate is set to 0.0001 with exponential decay rates (31,
B2) = (0.9,0.999). The dropout rate of past-context motions is set
to 0.7 [19]. To generate a dance motion at frame ¢, our model takes
as input 7 = 10 previous frames of dance motions and condition
signals, including music features between the frames (t — 7 to ?),
the target key pose at frame -y, and a time embedding at frame ¢. ~y
is set as 30 in the training stage and it can be set to arbitrary values
by users in the test stage. All the models are trained on an Nvidia
RTX 2080Ti GPU.

4.3 Comparisons

In the following, we compare our model to several baselines and the
state-of-the-art (SOTA) methods that are able to generate diverse
dance motions given the same input music.

Authorized licensed use limited to: Tsinghua University. Downloaded on October 17,2023 at 06:39:34 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3235538

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

Fig. 4: Qualitative comparisons of our method and the SOTA works.

The odd rows show two dance sequences driven by the same input
music with the corresponding beat-matching figures below them. In
each beat-matching figure, kinematic velocity lines (yellow curve)
are plotted with kinematic beats (yellow dashes) and musical
beats (blue dashes). The red elliptics show the matched beats. Our
baseline method (Ours w/o key poses) generates dance motions
with high realism, variability and beat-matching performance. For

clarity, the generated frames are shown with an interval of 30.

Please refer to the supplemental video for the full animation results
with the corresponding input music.

4.3.1 Adversarial Learning Scheme

For music-driven dance generation, we compare our model with
the SOTA methods [4], [7], [43] based on an adversarial learning

scheme to generate different dance motions with the same input.

These methods firstly construct a motion generator to generate
dance motions from an input piece of music, and then apply
discriminators to distinguish the generated motions from the
training dance samples. The method of Lee et al. [7] was originally
developed for generating 2D dance motions while the methods
of Sun et al. [4] and Li et al. [43] were trained for 3D dance
motions generation. For a fair comparison, we train and evaluate
their models using the same 3D dance dataset, which is used in the

Lee et al.

Sun et al.

=N

Liet

Ours w/o key poses

Fig. 5: Qualitative comparisons of our method and the SOTA works.
It shows two dance sequences driven by different input music
segments. Our baseline method (Ours w/o key poses) generates
dance motions with high realism performance. For clarity, the
generated frames are shown with an interval of 30. Please refer
to the supplemental video for the full animation results with the
corresponding input musics.

approach by Li et al. [43].

4.3.2 Ours w/o Key Poses

The related works [4], [7], [43] generate dance motions guided by
music only. As a baseline, we train our model in terms of the input
music only, to evaluate the superiority of using the key poses and
compare the baseline with the related works.

4.3.3 Ours w/o Time Embedding

As illustrated in Section Method, we add a time embedding to make
the generated movements to arrive at the target poses properly, thus
achieving a robust transition of varying lengths between key poses.
We train our model without the time embedding to evaluate its
importance.

4.4 Qualitative Evaluation

We firstly evaluate the realism and beat concordance of the
compared methods. Figure 4 shows the dance motions generated
by our approach and the SOTA methods. For a fair comparison,
we use our baseline method (Ours w/o key poses) that generates
dance motions conditioned only on music to compare with the
SOTA methods. It can be seen that our results are more realistic
than the existing methods. Specifically, the results generated by
Lee et al. [7] and Sun et al. [4] involve little movement, which is
unreal in dance composing situations. The motions generated by
Li et al. [43] also dance to freezing gestures after a few seconds.
Furthermore, the even rows in Figure 4 show that the number of the
matched beats (red ellipces) of our method is higher than that of the
other methods. The results illustrate that our method outperforms
the other methods in beat alignment. What’s more, the odd rows
in Figure 4 show that our method generates more variable dance
motions given the same input music than the SOTA methods. In
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(a)

(b)

Fig. 6: Variability evaluation. (a) and (b) show different dance
motions (in blue) generated by our full model conditioned on the
same input music segment and key poses (in pink). The full video
can be found in the supplemental video.

(a)

(®)

Fig. 7: Diversity evaluation. (a) and (b) show different dance
motions (in blue) generated by our full model conditioned on the
same input music segment but different key poses (in pink).

fact, the method of Sun et al. [4] generates the same two dance
sequences when given the same music beats.

Furthermore, Figure 5 shows the diversity comparison results
between our baseline method (Ours w/o key poses) and SOTA
works [4], [7], [43]. Given different input music pieces, the methods
of Lee et al. [7] and Sun et al. [4] generate similar dance movements
in two sequences or low variable poses in one complete sequence,
while our method generates diverse results, which leads higher
realism performance. Specifically, the dance motions generated by
Lee et al. [7] tend to freeze after several frames. This is because
the method of Lee et al. [7] encodes dance motions with the
gated recurrent unit (GRU), which has the error accumulation
problem [43]. The method of Sun et al. [4] generates motion clips
and combines them as a full sequence, so it leads to the similarity

(a)

(b)

Fig. 8: Diversity evaluation. (a) and (b) show different dance
motions (in blue) generated by our full model conditioned on
different input music segments but the same key poses (in pink).

of motions when given a music piece which has similar recurrent
beats. As a conclusion, our model outperforms the SOTA works in
generating realistic, temporal consistent and diverse dance motions.

Figure 6 shows different results generated by our full model
given the same input music beats and key poses. It reveals the
variability of our full method. Such different yet plausible dance
motions can provide more inspirations for 3D animators.

As shown in Figure 7, our method is able to generate realistic
and diverse dance sequences given the same input music segments
but different key poses, thus facilitating 3D animators to edit dance
motions and produce diverse dance motions for different scenarios.
Furthermore, we show more experimental results to reveal the
diversity of dance motions generated by our full model. Different
outputs with different input music beats but the same key poses can
be found in Figure 8. Figure 9 gives different outputs with different
input music beats and key poses. Given the different inputs, our
model generates different yet plausible dance motions.

In Figure 10, we evaluate how the generated motions at the
keyframes (i.e., the generated key poses) respect the input key
poses (GT), and compare our method with two baselines, i.e., our
method without key pose loss (Ours w/o key pose loss) and our
method without time embedding (Ours w/o time embedding). It
can be seen that the generated key poses of our full method has the
highest similarity to the input key poses, while the other settings
cannot generate proper poses. The results illustrate the superiority
of our full model in the robust transition generation by introducing
the key pose loss and the time embedding.

Furthermore, we evaluate the variability of the results of Harvey
et al. [36] by generating different results giving the same inputs.
The qualitative results are shown in Figure 11. It can be concluded
that our transition results have a better performance on motion
richness, which benefits choreography applications.

We have also experimented our method on a different dataset,
which has been used in the work of Tang et al. [42]. The skeleton
architecture of this dataset is different from that of AIST++ [43],
so we retrain our model on the dataset. As shown in Figure 12 and
the supplementary video, our method is able to generate realistic
dance motions that correspond to the input music.
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TABLE 1: Quantitative Evaluation Results.

Method Beat Hit Rate (1) | Beats Coverage (1) | FID (|) | KPD (}) | Variability (1) Diversity(1)
Real Dance 48.2% 39.4% 3.71 - - -

Lee et al. [7] 42.4% 31.3% 28.75 - 12.53 £ 0.87 19.76 £+ 0.97
Sun et al. [4] 42.9% 33.5% 26.47 - - 16.82 +£1.12
Li et al. [43] 43.8% 37.5% 15.62 - 31.45 4+ 0.98 39.45+1.21
Ours w/o key poses 44.7% 39.6% 13.42 - 38.39+1.30 | 42.75+1.14
Ours w/o key pose loss 44.4% 39.5% 13.92 10.90 31.70 £ 0.91 45.08 +1.23
Ours w/o time embedding 44.4% 39.4% 12.08 8.96 29.74 +£1.18 41.24 +1.01
Ours 44.5% 39.4% 10.42 4.53 29.31 +1.75 48.65 +£1.92

(a)

(b)

Fig. 9: Illustration of the diversity in our generated dance motions.
Different yet plausible motions are generated by our method, given
different input music segments and key poses (in pink). Result
(a) shows short-time generation, while result (b) shows long-time
generation. The full video and more variable results can be found
in the supplemental video.

GT Ours w/o key pose loss

Ours w/o time embedding Ours

Fig. 10: Comparison of our full method to two baselines to
generate motions constrained by key poses. We show three ground-
truth poses and the corresponding results generated by the three
compared methods. It reveals that our method achieves a more
accurate target frame generation.

Fig. 11: Variability comparison with an existing transition method.

Ours

Ours w/o key poses

Fig. 12: Our results on a different dataset of Tang et al. [42].

4.5 Quantitative Evaluation
4.5.1 Beat Hit Rate and Coverage

We evaluate the concordance between our generated dance motions
and the input music by calculating the beat hit rate. Firstly, we
calculate a kinematic velocity curve that measures the distance of
the corresponding joint positions between neighboring frames, and
extract the kinematic beats by finding the local maxima from the
kinematic velocity curve. The music beats are extracted by the
public Librosa toolbox [48]. Then, we gather the total number of
kinematic beats B}, the total number of musical beats B,,,, and the
number of well-aligned kinematic beats (the gap between kinematic
and music beats is not more than 2 frames) with the music beats
B,,. Finally, the beat hit rate is defined as B, / By, which describes
the ratio of the matched kinematic beats to the total kinematic beats.
The beats coverage By /B, measures the ratio of kinematic beats
to musical beats.

As shown in Table 1, the beat hit rate generated by our
method (44.5%) is closer to that of the real dance motions than
those generated by the SOTA works [4], [7]. It indicates that our
method has a better performance in generating dance motions that
match the beats of the input music. Our baseline model (Ours w/o
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TABLE 2: Transition Generation Results.

Method | L2P(30) | L2P(60) | L2P(90) | AVG L2P
Interpolation 1.98 4.07 7.84 4.63
Harvey et al. [36] 1.34 2.75 5.63 3.24
Ours 1.53 2.68 4.12 2.77

key poses) has a slightly higher beat hit rate (44.7%) than our full
model using key poses as constraints. This is mainly because the
input key poses are set without considering the music beats, thus
resulting in the degradation of the beat matching performance. For
professional and experienced choreographers, the key poses may
be set more properly. In addition, we would develop a new tool
for analyzing the music beats to set key poses automatically for
ordinary users.

For the beats coverage, our approaches have similar scores
with real dance, revealing that our results align the musical beats
better than those by the SOTA methods. Note that since the beats
coverage depends on the total number of kinematic beats, the
shaking motions may cause more kinematic beats, thus making the
beats coverage higher than smooth motions.

4.5.2 FID

Fréchet inception distance (FID) [52] evaluates the distance
between the distributions of real and generated motions to reveal
the visual quality. Following [7], we trained an encoder for dance
motions as a feature extractor.

The FID scores are shown in Table 1. Our full model outper-
forms the SOTA works [4], [7], [43] and our baseline models. Our
full model generates more accurate key poses, which leads a closer
distance to real dance motions when compared to our baseline
models. The FID score of “Ours w/o key poses” model has a better
performance over the methods of Lee et al. [7], Sun et al. [4], and
Li et al. [43], indicating that our normalizing flow based model is
able to generate dance motions with high visual quality.

4.5.3 Key Pose Distance (KPD)

To measure the accuracy of the generated poses at the keyframes,
we perform a quantitative evaluation on the distance between the
input and generated poses at the keyframes. Given all generated
dance frames, we gather the ground-truth poses P; in the test
sets and the corresponding frames P, in the generated motions.
Then, we compute the average squared distance of joint positions
between P; and P, to measure the key pose distance. Since the
SOTA methods do not take key poses as input, we compare our
model with two baseline methods, our method without introducing
the key pose loss (Ours w/o key pose loss) and our method without
using the time embedding (Ours w/o time embedding). As shown
in Table 1, our full model outperforms the baselines in terms of
the key pose distance, indicating that it is necessary to impose the
key pose loss and time embedding into our model for a robust
transition generation. Moreover, we conduct experiments with a
forward time embedding, from which the key pose distance (5.48)
is higher than that of our full model. The result shows that the
time embedding evolving backward performs better for a robust
transition generation.

4.5.4 \Variability and Diversity

We use variability and diversity as two metrics for further
evaluation, as suggested by [7]. In more details, the variability
measures the ability of a method to generate different dance

9

motions conditioned on the same input. The diversity describes
the performance in producing diverse motions given different
inputs. Mathematically, the variability is calculated by the average
squared distance of motion features extracted by the same extractor
used in the FID measures between all combinations of 15 dances
randomly generated from the same input. The diversity is calculated
by the average squared distance of motion features between all
combinations of generated dance motions from different input
sequences in the test set.

As shown in Table 1, the diversity scores of our normalizing
flow base models (i.e., Ours w/o key poses, Ours w/o key pose loss,
Ours w/o time embedding, and our full approach) are similar and
all higher than those of the SOTA works. The results reveal the
superiority of normalizing flows in modeling the exact distribution
of real dance motions. This is similarly reflected by the variability
scores. Note that our baseline method (Ours w/o key poses) has
the highest variability score but a lower diversity score when
compared to the other two keyframe-based baseline methods (Ours
w/o time embedding and our full approach). This is because the
key poses providing extra signals lead to more similar movements
when giving the same signals (for variability) and more different
movements in the case of different signals (for diversity).

4.5.5 L2 Distances of Global Positions (L2P)

To measure the ability of transition generation, we use L2P
evaluation as suggested by [36]:

T—1
11 R
L2P = i >0 = pi s (10)
SeD t=0

where S denotes a sequence in the test set [, and ¢ is the frame
index of a transition sequence with a total length 7. [)f denotes
the global position of the generated pose at frame ¢ of sequence S,
and p denotes ground-truth poses.

For a fair comparison, we trained the model of Harvey et al. [36]
with the same database AIST++. During training, the transition
interval is set as 30 frames, and it takes past 7 = 10 frames as seed
poses to generate a new transition movement, and this parameter
is the same as our model. We use short-to-long interval settings
in the test stage to show the scalability of different models. As
shown in Table 2, the approach of Harvey et al. [36] has a better
performance when the interval is set as 30 frames, which was
used in the training stage. This is mainly because our probabilistic
model samples randomly in the latent space when generating new
movements, leading to a few different movements compared to the
ground truth. Ours outperforms the interpolation method, in which
we linearly interpolate the root position and spherically interpolate
the rotation between seed poses and target poses. Our method also
beats the model of Harvey et al. [36] under long interval settings.
Specifically, the results generated by the approach of Harvey et
al. [36] seem to arrive at a neighboring pose of a target pose within
a short period and change slowly afterwards. It reveals the better
scalability and flexibility of our method.

4.5.6 Perceptive Study

We further conducted a perceptive study to evaluate the realism,
beat-alignment, richness, and style consistency of dance genre
performance [10] of our method, in comparison with the approaches
of Lee et al. [7], Sun et al. [4], and Li et al. [43]. The richness
shows the variety of poses and the style consistency illustrates the
matching of dance and music styles. For a fair comparison, we
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TABLE 3: Perceptive Study Results.

Method | Realism | Beat-alignment | Richness | Style consistency
Lee et al. [7] 3.12 2.98 3.25 3.32
Sun et al. [4] 2.86 2.95 2.62 3.13
Li et al. [43] 2.25 2.15 2.15 1.80
Ours w/o key poses 1.77 1.91 1.98 1.75

TABLE 4: Beat Hit Rate Results.

Setting ‘ Beat Hit Rate selectedmusi
Equal interval (100) 44.5%
Beat interval 45.5%

used “ours w/o key poses” method in this study. There were in
total 30 participants, and most of them were science or engineering
students in a local university, and ten of them had experience
in dance and music. We asked the participants to sort the four
randomly presented dance motions in each group of the results
generated by the compared four methods (20 groups in total).
Specifically, they were asked to give the scores from 1 (the best)
to 4 (the worst) according to the realism and richness of dance
motions, beat-alignment, and dance genre consistency performance,
separately. As shown in Table 3, our method outperforms the other
methods in realism and richness of movements, beat-alignment,
and style consistency.

5 DISCUSSIONS
5.1 Beat Hit Rate

As shown in Table 1, our baseline method without using key
poses (Ours w/o key poses) has a better performance in beat
matching than our full method. The main reason is that the key
poses in the evaluation are set with an equal interval, and thus
might not be in accordance with the musical beats. Below we show
more experimental results to reveal the influence of the key poses
in beat matching.

Table 4 shows the beat hit rate of two different settings for key
poses. In the equal interval setting, the key poses are set per 100
frames without regarding of beat matching. In the beat interval
setting, we extract the music beats by using the public toolbox
Librosa [48], and then randomly select three key poses at the beat
frames to generate dance sequences. The beat interval setting has a
higher beat hit rate (45.5%) than the equal interval setting (44.5%)
and the baseline method (Ours w/o key poses), whose beat hit rate
is 44.7% (Table 1 in our paper). The experimental results illustrate
that a proper setting of key poses is beneficial for generating
music-matching dance motions.

5.2 Key-frame Matching and Temporal Coherency

During the transition generation stage, the coherency between
key-frame matching and temporal constraint could limit the inter-
polation performance. Specifically, when given a short interval (e.g.,
30 frames) and target poses with a large-scale variation (e.g., from
standing to lying), our model failed to generate satisfying results,
where the movement was like a squat gesture. When increasing the
timescale of two target poses, the transition will arrive at a correct
pose. However, if the variation between target poses is not obvious,
the generated sequences might seem freezing. The results illustrate
that a proper setting of interval and target poses is necessary for
better performance.

Fig. 13: Choreography pipeline for users.

5.3 Applications

We further evaluate our method for application to facilitate normal
users. In more details, we conduct experiments to generate dance
motions constrained by the key poses, which are easily selected
from wild photos. As shown in Figure 13, users firstly gather several
human dancing photos, and then reconstruct their SMPL [53] poses
using the publicly available project VIBE [54]. Then, our model
is used to generate a full dance sequence by using the key poses
from these reconstructed results and a piece of selected music. As
shown in Figure 13 and the supplementary video, the generated
dance motions are realistic and in accordance with the music beats.

6 CONCLUSIONS

We have presented a normalizing flow based model for music-
driven dance generation constrained by a sparse set of key poses.
Our model is probabilistic, and describes the distribution of
real dance poses. Thus, it enables the generation of rich natural
variations of dance motions. We build the model to generate dance
motions autoregressively, and thus it is able to generate arbitrarily-
long dance motions. Moreover, we introduce a time embedding at
each timestep for a robust transition generation between keyframes.

Although our method successfully generates a diverse set of
dance sequences aligned with music beats and target poses, it
has several limitations. First, our method cannot generate dance
styles not covered in the training dataset. This might be improved
by expanding the datasets with additional styles, like Classical,
Jazz, etc. Second, the generated poses in key frames might still
have small differences compared to the given key poses. The gaps
particularly exist in rotation angles of end effectors (feet and hands).
This issue might addressed by a further refinement in the feet and
hand details.

For future research, we are interested in developing an interac-
tive dance composing system, where users can easily input desired
music pieces and target poses to drive automatic dance generation.
In more details, the target poses can be chosen from a database
or reconstructed from user-specified human dancing photos by
a reconstruction function integrated in the system. Additionally,
synthesizing dance motions conditioned on human emotion is
another interesting research direction.
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