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Emotion Dictionary Learning with Modality
Attentions for Mixed Emotion Exploration
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Abstract—Multi-modal emotion analysis, as an important direction in affective computing, has attracted increasing attention in recent
years. Most existing multi-modal emotion recognition studies are targeted at a classification task that aims to assign a specific emotion
category to a combination of several heterogeneous input data, including multimedia signals and physiological signals. Compared to
single-class emotion recognition, a growing number of recent psychological evidence suggests that different discrete emotions may
co-exist at the same time, which promotes the development of mixed-emotion recognition to identify a mixture of basic emotions.
Although most current studies treat it as a multi-label classification task, in this work, we focus on a challenging situation where both
positive and negative emotions are presented simultaneously, and propose a multi-modal mixed emotion recognition framework,
namely EmotionDict. The key characteristics of our EmotionDict include the following. (1) Inspired by the psychological evidence that
such a mixed state can be represented by combinations of basic emotions, we address mixed emotion recognition as a label
distribution learning task. An emotion dictionary has been designed to disentangle the mixed emotion representations into a weighted
sum of a set of basic emotion elements in a shared latent space and their corresponding weights. (2) While many existing emotion
distribution studies are built on a single type of multimedia signal (such as text, image, audio, and video), we incorporate physiological
and overt behavioral multi-modal signals, including electroencephalogram (EEG), peripheral physiological signals, and facial videos,
which directly display the subjective emotions. These modalities have diverse characteristics given that they are related to the central
or peripheral nervous system, and the motor cortex. (3) We further design auxiliary tasks to learn modality attentions for modality
integration. Experiments on two datasets show that our method outperforms existing state-of-the-art approaches on mixed-emotion
recognition.

Index Terms—Emotion distribution learning, multi-modal, mixed emotion, modality attention.

✦

1 INTRODUCTION

EMOTION recognition has emerged as an important topic
in the affective computing field not only because it is a

basis of a wide range of downstream tasks and applications
(e.g., media analytical tasks [1], human-computer interac-
tion [2], and mental health treatment [3]), but also because
emotion plays a critical role in people’s mental states [4].
The emotion space is primarily described by two models:
(1) the discrete model that maps an emotional state to a
set of basic emotion categories, such as happiness, sadness,
surprise, fear, anger, and disgust [5], and (2) the dimensional
model that divides the space into valence-arousal (VA) [6],
[7] or valence-arousal-dominance (VAD) dimensions [8],
where valence indicates whether the emotion is positive
or negative, arousal reflects the intensity of the emotion,
and dominance refers to whether the subject can control the
emotion. Although recent studies have achieved promising
emotion recognition results, there still exists an important
issue: most works of emotion recognition only identify the
dominant emotion from the input signals [9], [10], while ex-

• F. Liu, P. Yang, Y. Shu, and Y.-J. Liu are with BNRist, the
Department of Computer Science and Technology, Tsinghua Uni-
versity, and MOE-Key Laboratory of Pervasive Computing, Beijing
100084, China. E-mail: {lfang@, yangpei20@mails., shuyz19@mails.,
liuyongjin@}tsinghua.edu.cn.

• F.Yan is with the School of Computer Science and Technology, Changchun
University of Science and Technology, Changchun 130022, China. E-mail:
yanfei@cust.edu.cn.

• G. Zhang is with the Institute for Visualisation and Interactive Sys-
tems, University of Stuttgart, Germany. E-mail: guanhua.zhang@vis.uni-
stuttgart.de.

• Y.-J. Liu is the corresponding author.

isting studies have shown that humans can experience a co-
occurrence of two or more emotional feelings with different
intensities at the same time [11], [12], [13]. Current single-
class emotion recognition studies do not account for the
diversity, complexity, and ambiguity of human emotions.

Mixed-emotion recognition is a specialized sub-field of
emotion recognition that focuses on identifying and under-
standing complex emotional states involving multiple emo-
tions simultaneously. A growing number of studies have
found that people can experience a co-occurrence of two
or more emotional feelings with different intensities [14].
Such mixed emotions are common in everyday scenarios,
where individuals often experience conflicting or blended
emotions in response to complex life events, relationships,
or decisions. Recognizing and understanding these mixed
emotions provide more fine-grained insights into the psy-
chological complexities of human emotions. Moreover, it has
a range of practical applications in various fields, such as
human-computer interaction [15], and healthcare [16].

In this paper, we improve emotion recognition based
on the discrete model by incorporating the intensities of
multiple basic emotions. As such, mixed-emotion recogni-
tion is regarded as an emotion distribution learning (EDL)
task. Note that EDL differs from multi-label emotion learn-
ing [17], [18], [19], although both tasks address mixed-
emotion recognition. The goal of multi-label learning is only
to identify whether specific emotions exist or not, while EDL
further detects the intensity of each emotion.

Although several attempts at mixed human emotion
recognition and EDL have been carried out in the last
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few years, most of them were based on single-modal sig-
nals, including facial expressions [20], text [21], eye move-
ments [22], peripheral physiological signals [23], or elec-
troencephalogram (EEG) [9]. Specifically, visual emotion
distribution learning aims to recognize multiple emotions
with different description degrees evoked by images [24].
Affective text emotional analysis maps text sentences to
emotion distributions of multiple emotions and their respec-
tive intensities [25]. Another related field is multi-label emo-
tion recognition. Mixed-emotion recognition differs from
conventional multi-label emotion recognition mainly in two
aspects: (1) Mixed-emotion recognition deals with emotions
that are not limited to single, discrete categories (such as
happy, sad and angry). Instead, it aims to capture the
complexities of emotions that can exist at the same time,
which are harder to categorize into traditional emotion
labels. (2) Mixed-emotion recognition detects the intensity
of each emotion, while multi-label emotion recognition only
identifies if each emotion exists.

Existing works based on single-modal signals usually
only utilizes one specific type of information while disre-
garding the fact that emotions are multifaceted subjective
feelings including subjective experiences, external manifes-
tations, and physiological responses [26]. Starting from this
point, we study multi-modal emotion recognition in this
paper. The most related works on multi-modal emotion
distribution learning are MEDL [27] and EDL networks [28].
MEDL conducted EDL with audio and video modalities,
while the EDL network is built on peripheral physiological
signals. In contrast, our method unitizes overt behavioral
facial videos and non-behavioral physiological signals, in-
cluding EEG, photoplethysmogram (PPG), and galvanic
skin response (GSR). Though multi-modal signals can offer
supplementary emotional information, integrating these
multi-modal signals related to different parts of nervous sys-
tems (motor cortex, central and peripheral nervous systems)
makes our EDL task more challenging.

Our motivation in this paper has two aspects. (1) Since
multi-modal information can reflect more aspects of mixed
emotions from different perspectives, compared to most
existing studies which usually utilize single type of mul-
timedia information to analyze mix emotion, in this paper,
we propose to address the mixed-emotion analysis prob-
lem as a label distribution learning task with multi-modal
information. Subjects’ objective feelings are considered to
be reflected in their behaviors and physiological perfor-
mance (also called physiological arousal) [29], and we use the
fusion of EEG, peripheral physiological signals (i.e., PPG
and GSR), and facial videos to conduct a mixed-emotion
analysis. (2) We are motivated by the view of the General
Psychoevolutionary Theory of Emotion that states (i) there is
a small number of basic, primary, or prototype emotions;
(ii) all other emotions are mixed or derivative states, that
is they occur as combinations, mixtures, or compounds
of the primary emotions. Moreover, inspired by the latent
representation composition and learning widely studied in
the deep learning field [30], [31], we propose to model each
emotion distribution with a combination of a set of basic
latent vectors and their weights. Specifically, we present an
emotion distribution learning framework named Emotion-
Dict, which aims to learn efficient emotion features for EDL

Fig. 1. Multi-modal emotion distribution learning. Existing mixed emotion
recognition studies rather focus on multi-label classification or analyzing
with overt behaviors, while we aim to integrate both subject’s physio-
logical signals and overt behavior (facial videos) to conduct emotion
distribution learning in this paper.

by learning an emotion dictionary consisting of a set of basic
emotion elements in the latent feature space. In this way,
the emotion features of an mixed emotional state could be
disentangled into a weighted combination of the set of basic
emotion elements and their associated weights in the latent
representation space.

One of the most important issues in the multi-modal
analysis is to model the contributions of each modality and
set up an appropriate fusion mechanism, which is even
more difficult in a mixed-emotion situation. For example,
as shown in Figure 1, though visual modality is easier
to get, it is likely to cause emotional misjudgment, and
physiological signals have the advantage of being difficult
to disguise. To effectively utilize the diverse information
covering subjects’ overt behavior and physiological arousal,
we have designed a multi-modal integration module, where
two auxiliary modality integration tasks are set as attention
mechanisms for the emotion dictionary.

The main contributions of this paper are three-fold:
1) We address the challenge of mixed emotion analysis

as a distribution learning task utilizing multi-modal
signals, including subjects’ overt behavior and physio-
logical responses, in which way external manifestations
and physiological responses are integrated to offer com-
plementary information for emotion recognition. An
end-to-end mixed-emotion recognition model, namely
EmotionDict, is proposed for the EDL task, which can
combine heterogeneous signals to improve the perfor-
mance of EDL.

2) Inspired by the idea that mixed emotions can be repre-
sented by a set of basic emotions, we design an emotion
dictionary module in our EDL method. This module
aims to disentangle emotion features of an emotional
state into a weighted combination of a set of basic
emotion elements and their associated weights in a
latent representation space.

3) We design two auxiliary tasks as the explicit supervi-
sion to assign attention to the emotion dictionary, which
exploits the feature correlations of multi-modal signals
to help learn emotional features and further enhance
the emotion distribution learning performance. More-
over, the two auxiliary tasks improve the multi-modal
feature fusion process by integrating the consistency
and diverse information of the heterogeneous modal-
ities (behavioral and physiological signals).

The task setting of our EmotionDict, which utilizes the
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combination of subjects’ overt behavior (facial videos) and
physiological response (EEG, PPG, and GSR) signals as
the input to conduct EDL, comes from the inherent char-
acteristics of human emotion. These multi-modal signals
can represent different and supplement aspects of human
emotions, i.e. behavioral and physiological arousal. Ex-
periments on two datasets show that our proposed EDL
model achieves superior performance compared to exist-
ing state-of-the-art methods on both subject-dependent and
subject-independent protocols. Additional experiments on
our method, modified with various multi-modal fusion
strategies, have also conducted to further validate the ef-
fectiveness of our attention-based emotion dictionary.

2 RELATED WORK

Our work is related to prior works on (1) label distribution
learning, (2) human emotion recognition with multi-modal
signals, (3) emotion distribution learning, and (4) multi-
modal multi-label emotion recognition, which are briefly
summarized below.

2.1 Label Distribution Learning
Label distribution learning (LDL) was systematically pre-
sented in [32] to address the label ambiguity problem where
both the labels and their weights are necessarily needed.
Pioneering LDL methods are primarily divided into three
types according to the LDL strategies, i.e., Problem Transfor-
mation (PT), Algorithm Adaptation (AA), and Specialized
Algorithms (SA). Several specific LDL approaches based on
deep learning have been developed. A typical example is the
deep label distribution learning (DLDL) method [33], which
is an end-to-end LDL framework built by utilizing the label
ambiguity in both feature learning and classifier learning.
Moreover, a lightweight ranking method is presented in
[34] to jointly learn age distribution and predict the user’s
age. Chen et al. [35] proposed a Label Distribution Learning
on Auxiliary Label Space Graphs (LDL-ALSG) to leverage
the topological information of the labels from related and
distinct tasks, such as action unit recognition and facial
landmark detection. Different from the above-mentioned
general LDL methods, in this paper, we design an end-
to-end LDL network by exploiting the comprehensiveness,
diversity and ambiguity of multi-modal overt behavioral
and physiological signals. Our LDL framework is specifi-
cally built for mixed emotions, where an emotion dictionary
module is designed to exploit the basis of mixed emotion
decomposition.

2.2 Human Emotion Recognition with Multi-Modal Sig-
nals
Human emotion recognition has been long studied with
subjects’ behavior and physiology signals, ranging from
facial expressions [36], body language [37], audio [38] to
EEG [7] and peripheral physiological signals [39]. Since
emotions are complex subjective experiences involving
behavioral responses and related to physiological reac-
tions [40], in this paper, people’s facial videos and phys-
iological signals are combined to conduct the EDL task.
Similar to us, Yang et al. [29] integrate behavioral (i.e. facial

expressions, speech, keystroke) and physiological (i.e. blood
volume, electrodermal activity, skin temperature) signals
by an attention-based LSTM system to conduct emotion
recognition, but their goal is to use signals collected from
portable devices (i.e. smartphones and wristbands) to detect
single emotion category in an unobtrusive manner, while
this paper aims to study EDL via the fusion of multi-modal
signals. Compared with the physiological signals that are
only from the peripheral nervous system in [29], we include
EEG responses of the central nervous system in this work to
make use of more emotion-related information.

2.3 Emotion Distribution Learning

While the dominant emotion recognition research has been
devoted to single-class emotion recognition, EDL has gained
increasing attention nowadays. Emotion distribution which
is based on the discrete emotion model, is utilized to pro-
vide a characterization of emotional states. Existing discrete
models contains a diverse numbers of emotional categories.
For instance, the classic Plutchik’s model [41] contains eight
distinct emotional categories, while the newly proposed
EDL dataset [28] includes seven basic emotions. In our
DMER dataset, ten affect items selected from a simplified
version of the original 20-item PANAS [42] are used as
fundamental emotions for emotion distribution. These basic
emotion categories depict various facets of the emotional ex-
perience and are essential and reliable for a comprehensive
representation of emotional states.

Major EDL approaches have been developed to recog-
nize emotions and their intensities across various media
data [1], [21], [24]. For text data, a multi-task CNN frame-
work is applied to learn text emotion distribution [21]. In the
context of visual data, a circular-structured representation
has been presented for visual emotion distribution learning
in [24]. Additionaly, the Emotion Wheel Attention-based
Emotion Distribution Learning (EWA-EDL) model is pro-
posed in [43], which generates a prior emotion distribution
describing the relevance of emotional psychology for each
basic emotion. Similarly, another EDL framework has been
proposedin [44] to investigate the subjectivity in visual
emotion distribution and the divergence between individ-
uals. Moreover, Xu et al. [45] investigated the relationships
between different image regions and the arousal of each
emotion. They propose a region-wise attention-based multi-
feature fusion framework for emotion discrete probability
distribution prediction.

Moreover, EDL has also been studied with a combination
of multiple modalities. For example, MEDL [27] combines
audio and video for fine-grained emotion recognition. In
addition, Shu et al. [28] use four peripheral physiological
signals, i.e., galvanic skin response (GSR), skin temperature
(SKT), electrocardiogram (ECG), and heart rate (HR), and
establish a CNN-based network for EDL. In this paper, we
focus on the mixed emotion analysis of humans, and take
advantage of the comprehensive and abundant information
offered by multi-modal signals, including EEG from central
nervous, PPG, and GSR of peripheral physiological signals,
and facial videos of overt behavior, to construct an EDL
framework for mixed emotion analysis.
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2.4 Multi-Modal Multi-label Emotion Recognition
Another relevant domain is multi-modal multi-label emo-
tion recognition, whose goal is to assign an arbitrary num-
ber of emotion category labels to an input sample. Multi-
label emotion recognition has also been studied with a
wide range of media data, including text [46], [47], facial
expressions [17], videos [48], EEG [49], etc. Kostiuk et
al. [50] employ multiple classifiers to address the multi-
label emotion recognition task from music videos. Li et
al. construct a multi-label expression database RAF-ML [17]
and propose a deep bi-manifold convolutional network
for multi-label classification from expressions. In addition,
multi-modal signals have been also ensembled detecting
multiple emotions. The MESGN, proposed in [51], is a vari-
ation of the transformer network designed for multi-label
emotion detection using textual, visual, and acoustic modal-
ities. Similarly, Zhang et al. [19] fuse text, visual, and audio
modalities by integrating transformer networks and multi-
head modality attention to predict emotions. More recently,
Yu et al. [52] design a self-supervised multi-task learning
strategy to enhance the consistency and difference of multi-
modal emotion feature representations. Based on textual,
acoustic, and visual modalities, Zhang et al. [18] present a
heterogeneous hierarchical graph message passing network
to simultaneously model the feature-to-label, label-to-label,
and modality-to-label dependencies.

Stepping forward from the above studies, our multi-
modal EDL approach not only considers a set of emotion
categories, but also detects the intensity of each category.

3 METHOD

In this section, we first define the EDL task of this paper
and then introduce our proposed EmotionDict framework,
which mainly consists of a feature preprocessing module,
a multi-modal feature encoder, an emotion dictionary mod-
ule, two auxiliary tasks, and an attention-based classifier.
The overall architecture of EmotionDict is shown in Figure 2.
The feature encoder module contains one public Trans-
former [53]-based multi-modal encoder, which embeds all
four modalities (EEG, PPG, GSR, and video), and four
modality-specific encoders, each dedicated to one of the
four signal types. The emotion dictionary module is the key
component of our EmotionDict, which learns an emotion
feature representation with a set of basic emotion vectors
and their corresponding weights in a latent representation
space. Furthermore, two auxiliary tasks are designed to
utilize the relationships between overt behavior and phys-
iological signals to offer modality-attention supervision for
the emotion dictionary module. Finally, an attention-based
classifier is utilized to predict the emotion distribution.

3.1 Preliminary and Task Definition
We follow the task definition of previous emotion dis-
tribution learning studies in [20], [28], [32]. Let Y =
{y1, y2, ..., yL} be the set of predefined emotion labels,
where L is the total number of emotion categories.

Given a training set S = {(xi, Dxi
)|i = 1, ..., N}, where

Dxi
= {dy1

xi
, dy2

xi
, ..., dyL

xi
} is the emotion distribution corre-

sponding to the sample xi indicating a signal in a time win-
dow. N means the total number of samples. dyj

xi represents

that, to which extent the class yj describes the emotion state
of sample xi. Therefore, it satisfies: (1) 0 ≤ d

yj
xi ≤ 1; (2)∑L

j=1 d
yj
xi = 1.

Furthermore, the sample data xi is composed of
EEG, PPG, GSR, and facial video signals, i.e., xi =
{xEEG

i , xPPG
i , xGSR

i , xV
i }. Our multi-modal EDL aims at find-

ing a label distribution D̂xi
={d̂y1

xi
, · · · , d̂yL

xi
} that is optimally

close to Dxi
from the multi-modal input xi. Specifically,

our goal is to learn a conditional probability mass function
p(D̂xi

|xi; θ), where θ is the learnable network parameter
set. We compute the optimal parameter θ∗ by solving the
problem as follows:

θ∗ = argminθ

N∑
i=1

Dist(D̂xi
, Dxi

) (1)

where Dist(·) is the distance function measuring the simi-
larity of the predicted emotion distributions and the ground
truth distributions.

3.2 Data Preprocessing and Feature Extraction

We first employ signal preprocessing and feature extraction
operations to the original multi-modal raw data (refer to
Section 4.2 for more details).

EEG preprocessing and feature extraction. We extract two of
the most widely used EEG features from the EEG signals, i.e.
the Power Spectral Density (PSD) [10] and the Differential
Entropy (DE) [54] features. Specifically, a bandpass filter
(1-50 Hz) and a 50 Hz notch filter are first used to remove
noise, then an independent principal component analysis
are conducted to eliminate artifacts. The signals are down-
sampled to 100 Hz to speed up the computation. A time
sliding window of 1 second is set for the PSD and DE feature
extraction. Within each window, the Short Time Fourier
Transform (STFT) is used to extract the PSD and DE features
in each EEG channel over five frequency bands, which are
δ band: 1-4 Hz, θ band: 4-8 Hz, α band: 8-14 Hz, β band:
14-31 Hz and γ band: 31-45 Hz.

Peripheral physiological signal preprocessing and feature ex-
traction. The GSR signals are first filtered with a bandpass
filter with a lower cutoff frequency of 0.01 Hz and a higher
cutoff frequency of 49 Hz, and the PPG signals are filtered
with a bandpass filter of 0.01 Hz-1.9 Hz. Following the PPG
and GSR feature extraction procedures in [28], [55], we
extract a total number of 27 and 28 features from PPG
and GSR, respectively. These features are statistical features
from both the time domain and frequency domain. The
sliding window for peripheral physiological signal feature
extraction is set as 5 seconds with an overlap of 4 seconds
between two consecutive windows. The full details of PPG
and GSR features are listed in Table A1 in Appendix A.

Facial video preprocessing and feature extraction. For facial
videos, we first conduct face detection on 1 out of 30 video
frames collected in 1s. Then the facial images are resized to a
resolution of 128× 128. We further extract a 32-dimensional
feature for each image using VGG-16 [56] pre-trained on
ImageNet [57].

Time alignment. Finally, we conduct time alignment of
the four modalities according to the end of each trial. As
a 5-second sliding window with an overlap of 4 seconds
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Fig. 2. The framework of our proposed EDL method. We first apply an emotion dictionary module which decomposes mixed emotion into the
combination of a set of basic emotion vectors and their weights for emotion representation learning (see Section 3.3). Then we set multi-modal
integration as auxiliary tasks to offer attention to the emotion dictionary, to enhance the overall EDL performance. At last, an attention-based
classifier, which is composed of three LBL sub-modules and one LBS sub-module, is applied to obtain the final predicted emotion distribution. Both
the LBL and LBS sub-modules are constructed with Linear (fully-connected) layers, Batch normalization layers, and activation functions.

between two consecutive windows has been set for the PPG
and GSR feature extraction and the sliding window for the
EEG and facial video feature extraction is 1 second with
no overlap, we time-align all features using the backend
alignment method, where the EEG features of the first 4
seconds of each trial are discarded.

In this way, we get a sample input x composed of four
components, i.e., xEEG ∈ Rt×nEEG×dEEG , xPPG ∈ Rt×nPPG×dPPG ,
xGSR ∈ Rt×nGSR×dGSR , xV ∈ Rt×dV , where t is the length of
the time window, nEEG, nPPG, nGSR and nV are the number
of signal channels, and dEEG, dPPG, dGSR and dV are the
corresponding dimensions of the extracted features. The
four types of features are concatenated and reshaped to form
a fused representation X .

3.3 EDL with Latent Emotion Dictionary

On one hand, prior works [58] have shown that complex
emotions are constructed by a set of basic emotions. On the
other hand, several recently proposed studies in the deep
learning field leverage the concept of “latent representation
decomposition” for better representation learning [31], [59],
[60]. Our introduction of the emotion dictionary is deeply
inspired by the effective linear deep feature decomposition
mechanism in the computer vision field [30]. Similar to
the basic emotions that make up the mixed emotions, we
hypothesize that there also exists a set of basic emotion
elements in the latent space of emotional features that can
be used to represent any emotion state. Thus, instead of
directly learning entangled and unexplainable multi-modal
feature representations from X , we assume that the latent
representation h of any emotion state can be represented by
a linear combination of a set of basic emotion elements with
different weights:

h =
M∑
i=1

wid⃗i (2)

where d⃗i ∈ Dic = {d⃗1, d⃗2, ..., d⃗M} represents a set of
basic emotion elements in the latent space, wi ∈ W =
{w1, w2, ..., wM} is the weight of element d⃗i in the emotion
dictionary. The weights were obtained via a Transformer en-
coder [53] applied on the preprocessed multi-modal sample
X :

W = Transformer(X ) (3)

In the latent space, we apply the QR decomposition to
obtain the emotion dictionary matrix Dic, where the vectors
in the matrix Dic are all orthogonal. That is, the inner
product of di and dj is 1 if i = j, and otherwise is 0.
Specifically, Dic ∈ RK∗M , where K is the size of d⃗i, which
keeps consistency with the dimension of the Transformer
encoder output. Both K and M are hyper-parameters, and
we set them as 128 and 32 respectively in our experiments,
reaching a stable EDL performance. The influence of dif-
ferent numbers of the basic emotion elements M on the
performance of our method is shown in Section 4.5.5.

The emotion dictionary is trained with the other mod-
ules of the entire network to learn the set of basic emotion
elements. In the training process, weights are computed
based on input multi-modal signals, and the corresponding
emotion distributions serve as supervision. Once the net-
work training process is completed, the set of basic emotion
elements remains fixed. During the testing stage, the basic
emotion elements are used to embed the input multi-modal
features, enabling the final emotion distribution learning.

Moreover, we integrate the emotion dictionary with
a self-attention classifier module (as shown in the right
part of Figure 2), which is composed of three LBL sub-
modules and one LBS sub-module. Both the LBL and LBS
sub-modules are constructed with Linear (fully-connected)
layers, Batch normalization layers, and activation functions
(i.e., the Leaky ReLU function for LBL and the Sigmoid
function for LBS). These two kinds of network sub-modules
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are denoted as:

LBL(x) = σ1(BN(FC(x))) (4)

LBS(x) = σ2(BN(FC(x))) (5)

where FC(·) is the fully-connected layer, BN(·) is the batch
normalization, σ1 and σ2 are two activation functions, i.e.,
Leaky ReLU and Sigmoid.

The main function of the LBS is to conduct feature
extraction, and the LBS sub-module is set as the attention
to LBL, so as to normalize the feature to [0, 1] for final
classification.

Then, the latent representation h is fed to the self-
attention module:

h1 = LBL(h) (6)

h2 = LBS(LBL(LBL(h1))) (7)

where h2 is the attention weights learned from the LBS
sub-module and is normalized to [0, 1].

Then the embedding extracted by the first LBL sub-
module (i.e., h1) is multipled by the attention weights h2:

o = (o1, · · · , oL) = h1 ∗ h2 (8)

where o = (o1, · · · , oL) is output of the last layer of
the attention-based classifier module before the softmax
layer. Finally, the predicted output D̂x=(d̂y1

x , d̂y2
x , · · · , d̂yL

x )
are obtained by normalizing the features of the last layer in
Equation 8 using a softmax function, i.e.,

d̂yi
x = Softmax(oi) =

eoi∑L
c=1 e

oc
(9)

The Kullback-Leibler divergence (KLD) [61] is adopted
as the loss function to measure the distance between the
predicted distribution and the ground truth:

Lmain = KLD(D̂x, Dx) =
L∑

j=1

dyj
x log

d
yj
x

d
ŷj
x

(10)

where Dx=(dy1
x , dy2

x , · · · , dyL
x ) are the ground truth of the

emotion distribution.

3.4 Modality Integration as Attentions
To further refine and improve the emotion dictionary learn-
ing, we propose a multi-modal alignment module as auxil-
iary tasks (see the “Auxiliary Tasks” module in Figure 2). We
have categorized the modality-specific encoders into two
groups for the two auxiliary tasks: one for EEG and the other
for the remaining three modalities. This classification stems
from the understanding that emotions encompass subjective
feelings, overt behavior, and physiological responses [62].
EEG signals, being activations of the central nervous system
(CNS), significantly influence subjects’ overt behavior (e.g.,
facial videos) and physiological signals (e.g., PPG and GSR
signals). Moreover, our emotion dictionary is based on the
assumption that any emotion can be represented by the
combination of the learned emotion dictionary and the cor-
responding weights in the latent space. Therefore, in addi-
tion to the fusion of multi-modal emotion features, the latent
features of individual modalities, as well as combinations of

several modalities, can also be effectively represented using
the learned emotion dictionary.

Based on the above considerations, we set two modal-
ity alignment and integration-based auxiliary tasks as the
attention mechanism for emotion dictionary learning. The
tasks are (1) emotion representation learning of EEG, and
(2) emotion representation learning of joint behavioral and
peripheral physiological signals.

Specifically, for the pre-extracted features of each modal-
ity xEEG, xPPG, xGSR, xV (see Section 3.2), we use separated
modality-specific encoders to learn the modality-specific
emotion dictionary weights for each modality as:

W k = Ek(x
k), k ∈ {EEG,PPG,GSR,V} (11)

where Ek(·) are four modality-specific feature encoders, and
W k = {wk

1 , w
k
2 , ..., w

k
M} are the weights of basic emotion

elements in the emotion dictionary for the four modali-
ties. Four different Transformer encoders are adopted (with
separate parameters for each modality) as the backbones.
Similar to Equation 2, we obtain the latent features of the
four modalities as:

hk =
M∑
i=1

wk
i d⃗i (12)

where hk(k ∈ {EEG,PPG,GSR,V}) are emotion feature
representations learned by the emotion dictionary for the
four modalities.

The main idea of the two auxiliary tasks is that all
the feature representations of the signals of (i) the central
nervous system (EEG), (ii) the peripheral nervous system
and the motor cortex (PPG, GSR, and facial video), (iii)
the central and peripheral nervous systems, and the motor
cortex (EEG, PPG, GSR, and facial video), have similar
distributions after encoded by the emotion dictionary in the
latent space. Thus, the two auxiliary loss functions are:

Laux 1 = Dis(h, hEEG) (13)

Laux 2 = Dis(h, hPPG + hGSR + hV ) (14)

where the Dis(·) is the distance function between two
feature representations. In our model, the Kullback-Leibler
divergence [61] is adopted for measuring the similarity
between two features.

Finally, the overall learning of our EmotionDict model is
performed by minimizing:

L = Lmain + Laux 1 + Laux 2 (15)

The main loss Lmain is responsible for achieving the desired
emotion dictionary, and the auxiliary losses are effective for
modality integration. We will discuss them in Section 4.5.3.

The training procedure of our proposed EmotionDict
emotion distribution learning framework is shown in Al-
gorithm 1. More details about the experiment setting are
shown in Section 4.2.
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Algorithm 1 Training of EmotionDict
Require:

Input:
The training set of current batch S = {(xi, Dxi)|i =
1, ..., N}, where Dxi = {dy1

xi
, dy2

xi
, · · · , dyL

xi
} is the emo-

tion distribution corresponding to the sample xi;
The predefined emotion labels set Y = {y1, y2, ..., yL};
The total number of samplesN .
Parameter:
The initialization of the parameters of the whole model
θ = {θEn, θDic, θClassifier}, where θEn contains parameters
for a multi-modal encoder and four modality-specific
encoders, i.e. θEn = {θE, θEEEG , θEPPG , θEGSR , θEV};
The hyper-parameters, such as the number of basic
emotion elements in the emotion dictionary and the size
of each basic emotion element, the learning rate.
Output:
The parameters of the whole model θ.

1: Randomly initialize θ
2: for all samples do
3: Evaluate Lmain = KLD(D̂x, Dx) with multi-modal

features from the multi-modal encoder with parame-
ters θE

4: Evaluate Laux 1 with multi-modal features from the
multi-modal encoder with parameters θE and features
from the EEG modality-specific encoder with param-
eters θEEEG

5: Evaluate Laux 2 with multi-modal features from the
multi-modal encoder with parameters θE and features
from the PPG, GSR and video modality-specific en-
coders with parameters θEPPG , θEGSR , θEV

6: end for
7: Update the parameters θ of the EmotionNet with Lmain,

Laux 1, and Laux 2

8: Go to step 2 until convergence, or the algorithm reaches
the maximum number of epochs

9: Return θ = {θEn, θDic, θClassifier} as the trained parame-
ters

4 EXPERIMENTS

We evaluate our model on two recent and publicly available
datasets: DMER [55] and EDL [28] datasets. We first briefly
introduce the two datasets, then describe the implementa-
tion details and the evaluation metrics. Finally, we compare
our proposed model with eleven state-of-the-art methods on
the two datasets with both subject-dependent and subject-
independent protocols.

4.1 Datasets

Most publicly available emotion datasets either contain
single-modal signals or multi-category labels instead of
distribution labels. Exceptions are two lately proposed
multi-modal emotion distribution learning datasets, namely
DMER [55] and EDL [28], which are summarized in Table 1.
They evoke emotion through audio-visual (AV) materials
and recorded multi-modal signals.
DMER dataset [55] contains four modalities (EEG, GSR,
PPG and frontal facial videos) collected from 28 subjects.

TABLE 1
Summary of the two datasets used in our experiments.

Dataset Subjects Emotion Classes Modalities
DMER [55] 28 10 EEG, PPG, GSR, Video

EDL [28] 38 7 ECG, HR, GSR, SKT

Each subject watched 32 video clips, which elicited a mixed-
emotion state composed of 10 basic emotions. Five of them
(inspired, alert, excited, enthusiastic and determined) can be
further categorized as positive emotions and the other five
(afraid, upset, nervous, scared, and distressed) as negative
emotions. The length of each video clip is 20 s-30 s. Each
subject conducted four groups of experiments, each con-
taining 8 trials. In each trial, the subject first watched one
video clip, then completed the self-report for the emotional
adjectives (10-item short positive affect and negative affect
schedules (PANAS [63])). The score for each basic emotion
ranged from 1 (none at all) to 5 (very strong) and was then
transformed into emotion distributions. The positions of the
10 emotional words were randomly assigned. Then there
was a 5-second break before starting the next trial.

The three physiological modalities (EEG, PPG, and GSR)
were collected via portable devices. 21-channel EEG signals
were recorded at a sampling rate of 300 Hz, while the
sampling rates of PPG and GSR were 4 Hz and 100 Hz, re-
spectively. Facial videos were recorded by a built-in camera
with a resolution of 640×480 and a frame rate of 30 fps.

All procedures of the study were reviewed and approved
by the Ethics Committee of Tsinghua University. Before the
experiment, all participants were thoroughly briefed about
the experiment, including its purpose, procedure and the
utilization of the collected data.
EDL dataset [28] is an emotion distribution dataset, contain-
ing four types of peripheral physiological signals (ECG, HR,
GSR, and SKT) from 38 subjects. The distribution was gen-
erated from seven basic emotions (anger, disgust, sadness,
fear, tenderness, joy, and amusement), which were evoked
by 14 emotional video clips. Each trial in the experiment
procedure mainly consists of four steps: (1) experiment
instruction display; (2) a 1 min go/no go task served as a
distraction to eliminate the effects of previous emotion; (3)
an 80-second rest; (4) video clip presentation. Videos were
arranged in random order and labeled according to the
subjects’ self-reports. The labels were further transformed
into emotion distributions. All the signals were recorded
using an MP150 data recording system (BIOPAC Systems
Inc.).

4.2 Implementations

Data processing in DMER. The multi-modal data prepro-
cessing and feature extraction details are shown in Sec-
tion 3.2. After feature extraction and time alignment of the
four modalities, the shapes of the extracted features are
ti × 18 × 5, ti × 1 × 27, ti × 1 × 28, and ti × 32 for EEG,
PPG, GSR, and facial video, respectively, where ti indicates
the time length of the ith trial and i ∈ {1, 2, ..., 32}. Then
zero-padding is applied to the PPG, GSR, and facial video
features by adding zeros at the end of each feature to ensure
uniform dimensions. The shapes of the EEG, PPG, GSR, and
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facial video features are ti × 18× 5, ti × 1× 36, ti × 1× 36,
and ti × 36 respectively.
Data Preprocessing and Feature Extraction in EDL. We fol-
low the data preprocessing, feature extraction, and feature
selection in [28]. The GSR, SKT, and ECG signals are filtered
by a second-order Butterworth filter. Then a total number of
89 features (39 from GSR, 4 from SKT, 39 from ECG and 7
from HR) have been extracted. Then 50 features have been
selected and used in the EDL algorithms. The shapes of the
extracted features are ti × 39, ti × 4, ti × 39, and ti × 7 for
GSR, SKT, ECG, and HR respectively, where ti indicates the
time length of the ith trial and i ∈ {1, 2, ..., 14}. Detailed
configurations of the network layers of our EmotionDic
framework and the corresponding output dimensions of
samples from the DMER and EDL datasets are listed in
Table 2.
Model Training Protocol. We apply both subject-dependent
and subject-independent evaluations on the two datasets.
For subject-dependent evaluation, data of each subject are
spilt into the training set (80%) and testing set (20%)
randomly. For subject-independent evaluation, we conduct
leave-one-subject-out cross-validation, where the data from
one subject is used as the testing set and data from the
others is used as the training set in each fold. The final
performance is reported by the average across all the folds.
The whole network is trained using Adam optimizer [64]
in an end-to-end manner for 100 epochs. The learning rate
was set to 0.001 and the batch size is 32. Our algorithm is
implemented in PyTorch and our experiments are carried
out on a Tesla A100 GPU. The training time is around 1 h
for each subject on the DMER dataset. For the auxiliary
task construction in the EDL dataset (Section 3.4), the four
peripheral physiological signals (ECG, HR, GSR, and SKT)
are joined to construct the Laux2 , and there is no Laux1 since
EEG modality is not contained in the EDL dataset in our
experiments.

4.3 Evaluation Metrics

We adopted six distribution-based measurements that are
commonly used in emotion distribution learning [20], [24],
[28], [32], including four distance metrics (Chebyshev (↓),
Clark (↓), Canberra (↓), and Kullback-Leibler (KL) (↓)) and
two similarity measurements (Cosine (↑) and Intersection
(↑)). ↓ indicates the metric is “the smaller the better”, and
↑ means “the larger the better”. Moreover, we reported
Average Rank denoting the mean rank of the six metrics
following [24], [28].

4.4 State-of-the-art Methods

To evaluate the effectiveness of our method, we conducted
extensive experiments to compare with eleven state-of-the-
art methods on the DMER and EDL datasets. These baseline
methods can be categorized into four types:

• Label Distribution Learning Methods. Classical LDL
methods could be further sorted into three cate-
gories: Problem Transformation (PT), Algorithm Adap-
tation (AA), and Specialized Algorithms (SA). (1) PT-
Bayes [32] and PT-SVM [32] are based on Bayes and
SVM classifiers with problem transformation strategy,

TABLE 2
Network details. We present the details of the network layers in each

module of our EmotionDic framework, as well as the dimensions of the
latent embeddings of the samples from the DMER and EDL datasets.

“BN” represents the 1d batch-normalization layer. “B” represents
batch-size.

Module Layer Output Shape
DMER EDL

Feature Encoder

Input concatation
& transpose [11, B, 18] [89, B, 1]

Linear [11, B, 24] [89, B, 24]
Positional Encoding [11, B, 24] [89, B, 24]

Transformer
(hidden-dim 32,

multi-head num=4,
layer num=3)

[11, B, 24] [89, B, 24]

Linear [B, 32] [B, 32]

Emotion Dictionary Emotion Dict
(weight shape [32,128]) [B, 128] [B, 128]

Attention Classifier

Linear+BN+LeakyReLU [B, 128] [B, 128]
Linear+BN+LeakyReLU [B, 64] [B, 64]
Linear+BN+LeakyReLU [B, 128] [B, 128]

Sigmoid [B, 128] [B, 128]
Linear [B, 10] [B, 7]

Softmax [B, 10] [B, 7]

which converts LDL to single-label distribution prob-
lems via transforming the training data into weighted
single-label data. (2) AA-BP [32] and AA-KNN [32]
are two adaptation strategy-based methods, which ex-
tend classic machine learning algorithms, i.e., k-Nearest
Neighbor (k-NN) and Back Propagation (BP) neural
network, to handle LDL problems. (3) SA-IIS [32] and
SA-CPNN [65] are specialized algorithms for LDL.
SA-IIS assumes the maximum entropy model as the
parametric model, and SA-CPNN is built on a three-
layer conditional probability neural network.

• Multi-modal Multi-label Emotion Recognition Meth-
ods (denoted as MMER). Since our multi-modal EDL
problem can be seen as an extension of the multi-modal
multi-label emotion recognition task, we also compare
it with two representative multi-label emotion recogni-
tion baselines. TAILOR [66] addresses the commonality
and diversity among multiple modalities and enhances
the discriminative capability of label representations via
adversarially extracting private and common modal-
ity representations. MISA [67] projects each modal-
ity to modality-invariant and modality-specific sub-
spaces for multi-modal representation learning. Both
the two baselines have obtained good performance on
visual, audio, and text modalities. Before comparing
our method with these multi-modal multi-label recog-
nition baselines, we apply a softmax function to the
output of the last layer of the networks to obtain the
predicted emotion distributions.

• Single-modal Emotion Distribution Learning Meth-
ods (denoted as Single-modal EDL). We also compare
the performance of our approach with two state-of-the-
art single-modal emotion distribution learning meth-
ods. EDL-LRL [20] captures local-level label correla-
tions to tackle the emotion label distribution learning
problem on facial expressions. DLDL [33] addresses
label ambiguity in both feature learning and classi-
fier learning, which learns the label distribution by
minimizing a Kullback-Leibler divergence between the
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TABLE 3
Subject-dependent comparison of experimental results of our method and 11 baseline algorithms on six measures on the DMER and EDL

datasets. ↓ indicates “the smaller the better”, and ↑ indicates “the larger the better”. The best results are in bold,and the parentheses show the
corresponding ranks on each evaluation metric and the Average Ranks.

Dataset Measure PT AA SA MMER Single-modal EDL Multi-modal EDL
PT-Bayes PT-SVM AA-KNN AA-BP SA-IIS SA-CPNN TAILOR MISA EDL-LRL DLDL EDLConV Ours

DMER

Chebyshev (↓) 0.7733(12) 0.1025(11) 0.0789(5) 0.0890(10) 0.0786(4) 0.0871(9) 0.0819(7) 0.0807(6) 0.0769(2) 0.0785(3) 0.0823(8) 0.0717(1)
Clark (↓) 2.8673(12) 0.7020(11) 0.5409(2) 0.6490(10) 0.5556(5) 0.6100(9) 0.5968(8) 0.5672(6) 0.5411(3) 0.5423(4) 0.5706(7) 0.4729(1)

Canberra (↓) 8.9723(12) 1.8544(11) 1.4263(2) 1.7358(10) 1.5049(5) 1.7313(9) 1.6380(8) 1.5344(7) 1.4632(3) 1.4785(4) 1.5089(6) 1.2297(1)
KL (↓) 12.6201(12) 0.1378(11) 0.0831(7) 0.1133(10) 0.0777(4) 0.0979(9) 0.0788(6) 0.0707(2) 0.0742(3) 0.0778(5) 0.0854(8) 0.0592(1)

Cosine (↑) 0.4003(12) 0.8776(11) 0.9237(7) 0.9102(10) 0.9288(6) 0.9119(9) 0.9335(3) 0.9418(2) 0.9320(5) 0.9289(4) 0.9202(8) 0.9419(1)
Intersection (↑) 0.1961(12) 0.8025(11) 0.8500(3) 0.8242(9) 0.8445(6) 0.8228(10) 0.8410(7) 0.8535(2) 0.8488(4) 0.8471(5) 0.8406(8) 0.8686(1)

Average Rank (↓) 12(12) 11(11) 4.33(5) 9.83(10) 5(6) 9.16(9) 6.5(7) 4.16(3) 3.33(2) 4.16(3) 7.5(8) 1(1)

EDL

Chebyshev (↓) 0.7568(12) 0.2193(10) 0.1919(5) 0.2245(11) 0.1970(7) 0.1940(6) 0.2111(9) 0.2027(8) 0.1833(2) 0.1849(3) 0.1857(4) 0.1813(1)
Clark (↓) 2.4055(12) 1.0603(10) 0.8819(6) 1.0657(11) 0.8849(8) 0.8808(5) 0.8957(9) 0.8823(7) 0.8274(2) 0.8446(3) 0.8495(4) 0.8201(1)

Canberra (↓) 6.2638(12) 2.4477(10) 2.0920(5) 2.4484(11) 2.1441(6) 2.1452(7) 2.1512(9) 2.1494(8) 1.9785(1) 2.0097(2) 2.0154(3) 2.0195(4)
KL (↓) 12.0230(12) 0.4034(10) 0.2931(9) 0.4255(11) 0.2626(7) 0.2413(4) 0.2765(8) 0.2538(6) 0.2238(2) 0.2385(3) 0.2426(5) 0.2093(1)

Cosine (↑) 0.3862(12) 0.7276(11) 0.7739(8) 0.7359(10) 0.7979(6) 0.8056(5) 0.7722(9) 0.7940(7) 0.8199(2) 0.8102(4) 0.8065(3) 0.8333(1)
Intersection (↑) 0.2182(12) 0.6463(11) 0.6870(7) 0.6537(10) 0.6898(6) 0.6912(5) 0.6798(9) 0.6861(8) 0.7131(1) 0.7068(3) 0.7049(4) 0.7115(2)

Average Rank (↓) 12(12) 10.33(10) 6.67(6) 10.67(11) 6.67(6) 5.33(5) 8.83(9) 7.33(8) 1.66(1) 3(3) 3.83(4) 1.66(1)

Fig. 3. Predicted emotion distributions with baseline approaches and our method. We show two panels of two test samples of Subject #28. GT
indicates the ground truth distribution. The numbers 1 to 10 correspond to emotions inspired, alert, excited, enthusiastic, determined, afraid, upset,
nervous, scared, and distressed.

predicted and ground-truth label distributions.
• Multi-modal Emotion Distribution Learning Method

(denoted as Multi-modal EDL). Emotion distribution
learning network [28] (denoted as EDLConV) is the
most related work to ours, which unitizes a CNN-based
network with four types of peripheral physiological
signals (i.e., ECG, HR, GSR, and SKT) for the EDL
task. When comparing with EDLConV, we use the
same facial video data preprocessing and feature extrac-
tion procedures as our proposed EmotionDict method,
where face detection is firstly conducted on each 1 out
of 30 video frames, and 32-dimensional features are
extracted with a VGG-16 [56] backbone pre-trained on
ImageNet [57] on the resized facial images.

4.5 Evaluation Results

4.5.1 Subject-Dependent Evaluation
The results are summarized in Table 3. In addition to the six
evaluation metrics mentioned in Section 4.3, we also follow
the previous EDL studies [28] to compute the rankings of the
twelve methods on each metric and adopt the mean value
of rankings of all six metrics (Average Rank).

We can conclude that (1) our method has the best overall
performance. Except for the Canberra and Intersection met-
rics on the EDL dataset, our method performs best on all six
metrics on both datasets. (2) Generally, multi-modal multi-
label emotion recognition (MMER), single-modal emotion
distribution learning methods (Single-modal EDL) and
multi-modal emotion distribution learning (Multi-modal
EDL) methods achieve better results than the classic LDL
methods (PT, AA, and SA). An exception is the AA-
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TABLE 4
Subject-independent comparison of experimental results of our method and 11 baseline algorithms on six measures on the DMER and EDL
datasets. ↓ indicates “the smaller the better”, and ↑ indicates “the larger the better”. The best results are in bold,and the parentheses show the

corresponding ranks on each evaluation metric and the Average Ranks.

Dataset Measure PT AA SA MMER Single-modal EDL Multi-modal EDL
PT-Bayes PT-SVM AA-KNN AA-BP SA-IIS SA-CPNN TAILOR MISA EDL-LRL DLDL EDLConV Ours

DMER

Chebyshev (↓) 0.6993(12) 0.1035(9) 0.1027(8) 0.0881(4) 0.0878(2) 0.0882(5) 0.1109(10) 0.1116(11) 0.0880(3) 0.0970(6) 0.0994(7) 0.0858(1)
Clark (↓) 2.7320(12) 0.7445(9) 0.7074(8) 0.6157(3) 0.6236(5) 0.6152(2) 0.8287(11) 0.6507(6) 0.6158(4) 0.6800(7) 0.7777(10) 0.5975(1)

Canberra (↓) 8.4200(12) 2.0409(9) 1.9207(8) 1.7192(3) 1.7256(4) 1.7664(6) 2.3248(11) 1.5958(1) 1.7262(5) 1.8900(7) 2.1334(10) 1.6284(2)
KL (↓) 8.8751(12) 0.1438(10) 0.1301(7) 0.0949(2) 0.0953(3) 0.1011(5) 0.1632(11) 0.1390(9) 0.0953(3) 0.1193(6) 0.1344(8) 0.0898(1)

Cosine (↑) 0.3978(12) 0.8761(9) 0.8802(8) 0.9137(2) 0.9132(4) 0.9087(5) 0.8543(10) 0.8536(11) 0.9134(3) 0.8934(6) 0.8820(7) 0.9172(1)
Intersection (↑) 0.2352(12) 0.7881(9) 0.7963(8) 0.8231(2) 0.8220(4) 0.8190(5) 0.7596(11) 0.8145(6) 0.8224(3) 0.8039(7) 0.7839(10) 0.8299(1)

Average Rank (↓) 12(12) 9.16(10) 7.83(8) 2.66(2) 3.66(4) 4.66(5) 10.66(11) 7.5(7) 3.5(3) 6.5(6) 8.66(9) 1(1)

EDL

Chebyshev (↓) 0.7170(12) 0.2267(11) 0.1969(7) 0.2156(10) 0.2036(9) 0.2005(8) 0.1116(2) 0.1262(3) 0.1928(6) 0.1822(4) 0.1910(5) 0.1093(1)
Clark (↓) 2.3580(12) 1.0265(11) 0.8649(7) 1.0134(10) 0.8969(9) 0.8866(8) 0.7247(3) 0.6154(2) 0.8479(6) 0.7995(4) 0.8392(5) 0.5736(1)

Canberra (↓) 6.0691(12) 2.3925(11) 2.0515(6) 2.3642(10) 2.2107(9) 2.2025(8) 2.0942(7) 1.4494(2) 2.0414(5) 0.1942(3) 2.0319(4) 1.3631(1)
KL (↓) 8.9546(12) 0.3815(10) 0.2868(9) 0.3842(11) 0.2701(8) 0.2483(6) 0.1293(3) 0.1077(2) 0.2500(7) 0.2040(4) 0.2322(5) 0.0863(1)

Cosine (↑) 0.3906(12) 0.7272(11) 0.7766(9) 0.7531(10) 0.7912(8) 0.8009(6) 0.8855(3) 0.9312(2) 0.8004(7) 0.8355(4) 0.8139(5) 0.9445(1)
Intersection (↑) 0.2389(12) 0.6474(11) 0.6895(7) 0.6622(10) 0.6793(9) 0.6826(8) 0.7837(3) 0.8192(2) 0.6982(6) 0.7212(4) 0.7035(5) 0.8296(1)

Average Rank (↓) 12(12) 10.83(11) 7.5(8) 10.17(10) 8.67(9) 7.33(7) 3.5(3) 2.17(2) 5.83(6) 3.83(4) 4.83(5) 1(1)

KNN which performs relatively better, owing to the video
data samples in the DMER dataset having relatively fewer
changes, and there also exist some similar samples in the
EDL dataset. Among the classic LDL methods, the AA-
KNN and SA-IIS methods outperform the PT methods by
a large margin. (3) Although the deep learning methods
(MISA, EDL-LRL, and DLDL) achieve good results on all
six measures, they are more likely to output similar dis-
tributions for different signal samples. In comparison, our
proposed method and EDLConv algorithm tend to produce
more diverse distributions. Visualization examples of the
predicted emotion distributions using all the methods and
the ground truths on the DMER dataset are shown in
Figure 3. These qualitative results show that our method
can predict emotion distributions most similar to the ground
truths.

4.5.2 Subject-Independent Evaluation
We compare our method with the eleven baselines on the
two datasets. Results are shown in Table 4, presenting that
(1) our proposed method has achieved the best perfor-
mance compared to all the eleven baseline methods on the
subject-independent protocol on all the metrics, indicating
that our method is effective to capture the invariant deep
emotion features between individuals. (2) Compared with
the subject-dependent setting (as shown in Table 3), the
superiority of our EmotionDict method over the baseline
methods is more obvious in subject-independent experi-
ments. In other words, compared to the baseline methods,
our method has more significant superiority to handle the
subject-independent EDL task, which is more challenging
than the subject-dependent situation. (3) The performance of
the TAILOR varies dramatically on the two datasets (with an
Average Rank of 10.66 on the DMER dataset and 3.5 on the
EDL dataset), which is also the case for AA-BP, MISA, EDL-
LRL, DLDL, and EDLConV. Compared with these baselines,
our method has reached a more stable EDL performance.

4.5.3 Ablation Study
Investigation of network components. Table 5 shows the
results of our ablation study on the proposed emotion
dictionary, and multi-modal auxiliary losses on the DMER
and EDL datasets. We first evaluate the impact of our emo-
tion feature representation learning based on the emotion
dictionary composition in the latent space. By removing

the emotion dictionary module, and only preserving the
Transformer encoder and attention classifier (denoted as
“w/o Emotion Dictionary”), (i.e., removing the Emotion
Dictionary part in Figure 2), all six metrics are computed
on both datasets. Then we removed the Laux1

and Laux2

losses in turn to investigate the effectiveness of the multi-
modal auxiliary tasks. We observed significant drops in the
performance on both datasets with both subject-dependent
and subject-independent experimental settings. Therefore,
we conclude that both the emotion dictionary and multi-
modal attentions necessarily contribute to the final perfor-
mance of our model.

Investigation of modalities. We also assessed the impact
of each modality by separately removing each modality
from our full model. These experiments were conducted
in both subject-dependent and subject-independent settings.
The results, presented in Table 6, indicate that each compo-
nent contributes significantly to the overall performance of
multi-modal emotion distribution learning.

Fig. 4. Visualization of feature embedding with the emotion dictionary
using t-SNE on the testing set of DMER dataset. The feature spaces
of four subjects are shown in the four panels, each of which shows
the subject conducting 32 trials. Points with the same color represent
samples from the same trial, and 5 samples with lengths 1-s from each
trial are displayed.
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TABLE 5
Ablation study. We investigate the importance of each module to the performance of our final method by removing the loss function of each

module separately. ↓ indicates “the smaller the better”, and ↑ indicates “the larger the better”. The best results are in bold.

Settings Measure DMER EDL
w/o Emotion Dictionary w/o Laux1 w/o Laux2 Ours w/o Emotion Dictionary w/o Laux Ours

Subject-dependent

Chebyshev (↓) 0.0849 0.0870 0.0772 0.0717 0.1952 0.1905 0.1813
Clark (↓) 0.0849 0.6216 0.5489 0.4729 1.0496 1.0057 0.8201

Canberra (↓) 1.5917 1.6316 1.4734 1.2297 2.8569 2.7746 2.0195
KL (↓) 0.0916 0.0964 0.0762 0.0592 0.2327 0.2493 0.2273

Cosine (↑) 0.9168 0.9140 0.9304 0.9419 0.7818 0.7915 0.8333
Intersection (↑) 0.8342 0.8311 0.8477 0.8686 0.7038 0.7010 0.7115

Subject-independent

Chebyshev (↓) 0.0881 0.0871 0.0856 0.0858 0.1355 0.1267 0.1093
Clark (↓) 0.6393 0.6283 0.5975 0.5975 0.6717 0.6401 0.5736

Canberra (↓) 1.7464 1.7123 1.6827 1.6284 1.6309 1.5434 1.3631
KL (↓) 0.0986 0.0966 0.0913 0.0898 0.1325 0.1170 0.0863

Cosine (↑) 0.9108 0.9122 0.9171 0.9172 0.9022 0.9163 0.9445
Intersection (↑) 0.8196 0.8224 0.8273 0.8299 0.7791 0.7952 0.8296

TABLE 6
Investigation of modalites. The EDL results of our EmotionDict framework using different combinations of signals are shown. ↓ indicates “the

smaller the better”, and ↑ indicates “the larger the better”. The values in parentheses are the standard deviations. The best results are in bold.

Modality Subject-dependent Subject-independent
w/o EEG w/o PPG w/o GSR w/o Video Ours w/o EEG w/o PPG w/o GSR w/o Video Ours

Chebyshev (↓) 0.0856 (0.0128) 0.0873 (0.0170) 0.0792 (0.0126) 0.0849 (0.0156) 0.0717 (0.0149) 0.0859 (0.0168) 0.0993 (0.0098) 0.1006 (0.0085) 0.0998 (0.0085) 0.0858 (0.0134)
Clark (↓) 0.6254 (0.1092) 0.6328 (0.1106) 0.5581 (0.0748) 0.5883 (0.1187) 0.4729 (0.1417) 0.6076 (0.1296) 0.6173 (0.1283) 0.6115 (0.1246) 0.6191 (0.1378) 0.5975 (0.1438)

Canberra (↓) 1.6350 (0.3055) 1.6872 (0.3296) 1.4939 (0.2337) 1.5550 (0.3527) 1.2297 (0.4207) 1.6537 (0.4002) 1.6987 (0.4481) 1.6713 (0.4091) 1.6976 (0.4664) 1.6284 (0.4248)
KL (↓) 0.0933 (0.0295) 0.0979 (0.0292) 0.0776 (0.0167) 0.0866 (0.0284) 0.0592 (0.0227) 0.1015 (0.0311) 0.1004 (0.0280) 0.0997 (0.0264) 0.1021 (0.0291) 0.0898 (0.0223)

Cosine (↑) 0.9159 (0.0221) 0.9109 (0.0237) 0.9246 (0.0147) 0.9189 (0.0225) 0.9419 (0.0175) 0.9004 (0.0250) 0.9037 (0.0170) 0.9040 (0.0171) 0.9023 (0.0184) 0.9172 (0.0163)
Intersection (↑) 0.8299 (0.0297) 0.8229 (0.0320) 0.8415 (0.0192) 0.8368 (0.0322) 0.8686 (0.0376) 0.8189 (0.0369) 0.8183 (0.0353) 0.8208 (0.0338) 0.8181 (0.0383) 0.8299 (0.0375)

TABLE 7
Results of different fusion strategies. We investigate the effectiveness of different multi-modal feature fusion mechanisms by modifying the Emotion
Dictionary and Auxiliary Tasks in our full EmoDict EDL framework. ↓ indicates “the smaller the better”, and ↑ indicates “the larger the better”. The

best results are in bold.

Settings Fusion Strategy DMER EDL
w/o Emotion Dictionary Concatenation Transformer Ours w/o Emotion Dictionary Concatenation Transformer Ours

Subject-dependent

Chebyshev (↓) 0.0849 0.1382 0.0723 0.0717 0.1952 0.1958 0.1934 0.1813
Clark (↓) 0.0849 1.1138 0.4927 0.4729 1.0496 0.8684 0.8579 0.8201

Canberra (↓) 1.5917 2.9528 1.3266 1.2297 2.8569 2.155 2.1296 2.0195
KL (↓) 0.0916 0.2990 0.0664 0.0592 0.2327 0.2341 0.2286 0.2273

Cosine (↑) 0.9168 0.8053 0.9406 0.9419 0.7818 0.8120 0.8168 0.8333
Intersection (↑) 0.8342 0.7085 0.8659 0.8686 0.7038 0.6901 0.6946 0.7115

Subject-independent

Chebyshev (↓) 0.0881 0.1573 0.0976 0.0858 0.1355 0.1976 0.1959 0.1093
Clark (↓) 0.6393 1.1232 0.6952 0.5975 0.6717 0.8604 0.8666 0.5736

Canberra (↓) 1.7464 3.0116 1.9799 1.6284 1.6309 2.1372 2.1547 1.3631
KL (↓) 0.0986 0.3334 0.1128 0.0898 0.1325 0.2320 0.2332 0.0863

Cosine (↑) 0.9108 0.7739 0.9073 0.9172 0.9022 0.8127 0.8130 0.9445
Intersection (↑) 0.8196 0.6912 0.8059 0.8299 0.7791 0.6918 0.6907 0.8296

4.5.4 Analysis of the Multi-modal Fusion Strategy

As the multi-modal fusion strategy based on the emo-
tion dictionary module is the most important part of our
EmotionDict framework, we conducted a comprehensive
analysis to assess its effectiveness. We further compare it
with three other conventional fusion mechanisms: (1) re-
moving the emotion dictionary module directly from our
full method, which is the same condition as “w/o Emotion
Dictionary” setting in the investigation of network compo-
nents in our ablation study. (2) Substituting the Emotion
Dictionary component in Figure 2 by concatenating all
the multi-modal features (i.e., the features learned from
the Transformer encoders) and the four modality-specific
features (i.e., the features from the EEG, PPG, GSR and
video encoders) to form a fusion feature for subsequent
classification (denoted as “Concatenation”). (3) Instead of
directly removing the Emotion Dictionary part in Figure 2
as in (1) or simply concatenating the multi-modal fea-
tures as in (2), we employ a Transformer-based attention
network [53] to fuse both the multi-modal and modality-
specific features (denoted as “Transformer”). These exper-
iments were conducted under both subject-dependent and

subject-independent settings.
The results on the DMER and EDL datasets, presented

in Table 7, shows that our multi-modal fusion strategy,
leveraging the emotion dictionary and auxiliary tasks as at-
tentions, achieves the best EDL performance in both subject-
dependent and subject-independent settings.

4.5.5 More Analysis of the Emotion Dictionary
We further explore the effectiveness of the emotion dictio-
nary module by visualizing the latent representation learned
by the emotion dictionary, i.e., the h feature vector in Equa-
tion 2. Feature distributions of four subjects (Subject #9,
Subject #10, Subject #34, and Subject #35) from the DMER
dataset are shown in 2-dimensional space with t-SNE. For
each subject, we randomly visualize five latent feature vec-
tors of length 1-s from each trial in the testing set. The results
are shown in Figure 4, where every five points with the same
color represent latent feature vectors from the same trial.
There are a total of 32 color points in Figure 4 (5 points for
each color), corresponding to the 32 trials or video clips in
DMER. It can be observed that (1) the distance between the
points with the same color is relatively close, indicating that
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Fig. 5. Emotion distribution learning performance with respect to the
number of basic emotion elements d⃗i in the latent emotion dictionary
in Equation 2. The experimental results with numbers of basic emotion
elements as 8, 16 32, 64, and 128 with both subject-dependent and
subject-dependent protocols are shown. ▽ indicates “the smaller the
better”, and • indicates “the larger the better”.

Failure Case

TAILOR MISA EDL-LRL EDLConVDLDL Ours

PT-BayesGT PT-SVM AA-KNN SA-IISAA-BP SA-CPNN

TAILOR MISA EDL-LRL EDLConVDLDL Ours

GT Ours

(a)

(b)

Fig. 6. Failure cases. We show two panels of two test samples, each
of which the ground truth (GT) and the predicted emotion distributions
with our method are shown. GT indicates the ground truth distribution.
The numbers 1 to 10 correspond to emotions inspired, alert, excited,
enthusiastic, determined, afraid, upset, nervous, scared, and distressed.

the learned latent feature vectors can distinguish the unique
emotion distribution of different trials. (2) Points of arbitrary
numbers of colors are gathered into clusters because, for
each subject, the similarities of the emotion distributions in
different trials are different. Overall, the latent features have
smaller distances within the same trial and larger distances
between different trials, which proves the effectiveness of
our method.

Moreover, we conduct an experiment with our Emo-
tionDict framework with varying numbers of basic emo-
tion elements d⃗i in Equation 2 to explore the influence of
the size of emotion dictionary on the emotion distribution
learning performance. Figure 5 shows the EDL results with
the number of basic emotion elements as 8, 16, 32, 64, 128
with both subject-dependent and subject-independent ex-
perimental protocols on the DMER dataset, indicating that
our EmotionDict can obtain stable EDL results even though
the size of emotion dictionary changes. The number of basic

emotion elements in our final EmotionDict is set as a hyper-
parameter of 32, leading to relatively better performance.

5 DISCUSSIONS

In this paper, we address the challenge of recognizing mixed
emotions in situations where both positive and negative
emotions co-exist. Our task is formulated as a label dis-
tribution learning task. In our approach, we extract and
fuse features from multi-modal signals related to both sub-
jects’ overt behavior (facial video) and physiological signals
(EEG, PPG, GSR, and video). We have designed an emotion
distribution learning framework primarily centered around
learning an emotion dictionary with two auxiliary tasks.
Extensive experiments demonstrate the superiority of our
proposed EmotionDict method over all 11 baseline methods
on two datasets. Every key component in our framework
contributes significantly to the final performance of our
method.

Moreover, we conducted an in-depth investigation of
our emotion dictionary, including the multi-modal fusion
strategy and the impact of the number of basic emotion
elements in the dictionary. Experimental results indicate
that our multi-modal fusion strategy, utilizing the emotion
dictionary and auxiliary tasks as attentions, outperforms
the baselines. Additionally, our EmotionDict framework
maintains stable performance with varying numbers of ba-
sic emotion elements. Finally, the visual results depicting
the latent representation learned by the emotion dictionary
further verify the effective emotion representation learning
capabilities of our method.

Limitations. While our EmotionDict framework demon-
strates superior performance compared to the 11 baseline
methods, as indicated by both the quantitative results (Ta-
ble 3 and Table 4) and the qualitative results (Figure 3), there
are certain limitations to our approach. Despite the fact that
our method generally aligns well with the ground truth in
most cases, occasional fluctuations in the prediction results
are observed. Figure 6 provides two examples depicting
the ground truth alongside the corresponding predicted
distributions generated by our approach. It is evident that
our method performs well in predicting dominant emo-
tions, i.e., the basic emotional categories characterized with
significantly high intensities. However, for basic emotional
categories with relatively lower intensities (such as the
emotion categories 5 to 10 in (a) and 1 to 5 in (b) of Figure 6),
there exists a moderate discrepancy between the predicted
emotional intensities and the ground truth.

Future works. In our future research, we plan to inves-
tigate the distinctions in multi-modal behavior and phys-
iological signals among individuals when they undergo
similar emotional states. This exploration aims to enhance
our understanding and modeling of mixed emotions. Given
that our method is tailored to improve representations from
emotional features extracted from multi-modal signals, we
aim to enhance our capability to capture the inherently
unique traits of individuals. Therefore, our future work will
involve leveraging the similarities and differences among
individuals to construct a more generalized EDL frame-
work.
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6 CONCLUSIONS

In this study, we studied the multi-modal emotion distribu-
tion learning task, and propose a multi-modal EDL frame-
work, EmotionDict, that learns an “emotion dictionary” of
a set of basic emotion representations in a latent space.
Further, we enhance the emotion dictionary by learning at-
tention via a multi-modal integration module that is trained
with two auxiliary tasks, i.e., (1) learning emotion repre-
sentation from EEG signals, and (2) learning emotion repre-
sentation from joint behavioral and peripheral physiological
signals (PPG, GSR and facial videos). Experiments on two
multi-modal emotion distribution datasets show that the
proposed method effectively handles mixed emotions recog-
nition, outperforming eleven state-of-the-art approaches in
both subject-dependent and subject-independent settings.
Experiments have also been conducted to verify the effec-
tiveness of the key components of our proposed model,
including the Emotion Dictionary, the two auxiliary losses.
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