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Abstract—Electroencephalogram (EEG) signals have been widely studied in human emotion recognition. The majority of existing EEG
emotion recognition algorithms utilize dozens or hundreds of electrodes covering the whole scalp region (denoted as full-channel EEG
devices in this paper). Nowadays, more and more portable and miniature EEG devices with only a few electrodes (denoted as
few-channel EEG devices in this paper) are emerging. However, emotion recognition from few-channel EEG data is challenging
because the device can only capture EEG signals from a portion of the brain area. Moreover, existing full-channel algorithms cannot be
directly adapted to few-channel EEG signals due to the significant inter-variation between full-channel and few-channel EEG devices.
To address these challenges, we propose a novel few-channel EEG emotion recognition framework from the perspective of knowledge
transfer. We leverage full-channel EEG signals to provide supplementary information for few-channel signals via a transfer
learning-based model CD-EmotionNet, which consists of a base emotion model for efficient emotional feature extraction and a
cross-device transfer learning strategy. This strategy helps to enhance emotion recognition performance on few-channel EEG data by
utilizing knowledge learned from full-channel EEG data. To evaluate our cross-device EEG emotion transfer learning framework, we
construct an emotion dataset containing paired 18-channel and 5-channel EEG signals from 25 subjects, as well as 5-channel EEG
signals from 13 other subjects. Extensive experiments show that our framework outperforms state-of-the-art EEG emotion recognition
methods by a large margin.

Index Terms—Emotion recognition, few-channel EEG, transfer learning, cross-device.

✦

1 INTRODUCTION

EEG-based emotion recognition has attracted consider-
able attention in the past decades. This technique is

widely used in human-computer interaction (HCI) [1] sce-
narios. It can also help in the treatment of mental health con-
ditions like depression, anxiety, etc, where the EEG signals
are usually used to monitor people’s emotional changes [2].

In this paper, we refer to the EEG devices with dozens or
even hundreds of electrodes and the corresponding signals
as full-channel EEG devices and signals, e.g., ESI NeuroScan
System1 used in [3] has 62 electrodes, Biosemi ActiveTwo
System2 used to construct DEAP [4] has 32 electrodes, and
Wearable Sensing’s wireless DSI-24 3 has 18 electrodes.
However, these devices are usually non-portable, expen-
sive, and are mainly applicable to lab experiment scenarios,
which limits the expansion of existing works to more gen-
eral daily applications. Nowadays, more and more portable
and miniature EEG devices with only a few electrodes are
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3. https://wearablesensing.com/research/#publications

emerging, with some interesting research reported on emo-
tion recognition [5], [6] and depression detection [7], [8], [9]
using EEG signals from a few electrodes. We denote EEG de-
vices with only a few electrodes as few-channel EEG devices
in this paper, e.g., EMOTIV EPOC+4 has 14 channels [5],
OpenBCI5 has 8 channels [6], InteraXon MUSE6 has 4 chan-
nels [10] and SleepUp2.0 Naolubrain has 5 channels [11].
While these few-channel EEG devices bring convenience to
a variety of applications, they also make EEG-based emotion
recognition more challenging, as fewer electrodes capture a
lower density of EEG signals. More specifically, almost all
few-channel EEG devices provide electrodes that cover only
a portion of the brain area. Previous studies have shown
that emotions are not a function of a single brain region,
but rather exist in the activation or connectivity patterns of
a whole-brain network [12], [13]. This means that emotion
recognition using only part of the brain’s EEG signals is
more difficult than using all of them.

Most existing emotion recognition algorithms, including
those based on handcrafted features (e.g., power spectral
density (PSD), differential entropy (DE) [14], etc) and deep
learning techniques (e.g., convolutional neural networks
(CNN) [15], recurrent neural networks (RNN) [16], [17],
graph convolutional neural networks (GCN) [18], [19], etc.),
are designed to extract emotional patterns from the whole

4. https://www.emotiv.com/epoc/
5. http://openbci.com/
6. https://choosemuse.com/
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Fig. 1. (a) Few-channel (5-channel) EEG device with corresponding
electrodes shown in red. (b) Full-channel (18-channel) EEG device with
corresponding electrodes shown in red and light blue. Top: EEG elec-
trode placements according to the International 10-20 system. Bottom:
the energy distributions of the same subject in the “disgust” emotional
state.

cerebral cortex. We cannot directly apply these full-channel
methods on few-channel signals as, on the one hand, it
is more challenging to extract efficient emotional patterns
from EEG data with very limited sparse channels [20]. On
the other hand, the inter-variation between these two types
of EEG devices is large. For example, both the full-channel
device (Wearable Sensing’s wireless DSI-24) and the few-
channel device (SleepUp2.0 Naolubrain) used in this study
have frontal lobe electrodes F7, Fp1, Fp2, F8, and occipital
lobe electrode O1 as shown in Figure 1; however, the dis-
tributions of the EEG signals in these channels of the two
devices differ significantly. Specifically, the 5 electrodes in
the SleepUp2.0 Naolubrain EEG device are Fp1/2, F7/8, and
O1, and the electrodes in the 18-channel Wearable Sensing’s
wireless DSI-24 device are Fp1/2, Fz, F3/4, F7/8, Cz, C3/4,
T3/4, A1/2, Pz, P3/4, T5/6, and O1/2, according to the
international 10-20 system.

To address the above challenges, we aim to perform the
emotion recognition task using few-channel EEG signals
from the perspective of knowledge transfer. We propose
to enhance the emotion recognition performance from few-
channel EEG data with the help of knowledge learned
from full-channel EEG data. Specifically, we formulate the
full-channel-assisted few-channel EEG emotion recognition
task as a transfer learning problem and propose a novel
feature-aggregation-based cross-device EEG transfer net-
work called CD-EmotionNet for emotion recognition. Our
CD-EmotionNet consists of two parts: i) a base emotion
model that extracts spatial-spectral-temporal EEG features
and performs emotion classification, and ii) a cross-device
transfer learning strategy. The base emotion model is first
trained using the full-channel EEG dataset. Then, the
learned emotional features and model parameters are trans-
ferred to the few-channel scenario to help enhance emotion
recognition performance from few-channel EEG data.

Our base emotion model is inspired by the Vector of
Locally Aggregated Descriptors (VLAD) [21], a successful
feature descriptor for image classification(VLAD) that aims
to convert local feature descriptors into a compact global
representation based on a feature clustering process. Con-
sidering that the emotional EEG information has a whole-
brain activation pattern, we build our base emotion model
by integrating graph operations and a deep aggregation-

and-fusion network to extract efficient spatial-temporal EEG
features for emotion classification, because the graph model
is effective at capturing spatial relationships. Through clus-
tering and aggregating spatial-spectral EEG features in a
learned way, our method can capture effective emotion-
related temporal patterns in the EEG data. To further ad-
dress the information sparsity issue caused by the lack of
full-channel information, we integrate our base emotion
model with a transfer learning strategy to utilize the knowl-
edge from full-channel EEG signals. Specifically, our few-
channel signals are collected within the subjects’ pre-frontal
region, while the full-channel signals are collected with
devices that cover the whole brain. The knowledge learned
from full-channel EEG signals can offer necessary supple-
mentary information for few-channel signals, as previous
studies indicate that all the pre-frontal, parietal, and occipi-
tal regions may provide emotion-related information [22].

Our cross-device EEG emotion transfer learning
method is built upon the Model-Agnostic Meta-Learning
(MAML) [23] framework, which is a type of meta-learning
method designed for learning a good parameter initializa-
tion and for easy finetuning. By proposing a novel MAML-
based network updating mechanism, we aim to learn a
shared feature aggregation network between different de-
vices. The core idea of MAML is to train a model on a
variety of learning tasks (meta-training stage) so that it
can swiftly adapt to new tasks using just a few examples
(meta-testing stage). In this paper, both full-channel and
few-channel paired EEG signals are leveraged in the meta-
training stage to train the network, while only few-channel
signals are used in model fine-tuning and testing stages.
The most significant difference between the original MAML
framework and our method is that MAML updates the same
network parameters in both the inner loop (meta-training)
and outer loop (meta-testing) stages, while our method sets
different learning tasks for the inner and outer loops. In the
inner loop, the model focuses on extracting spatial-temporal
features from the full-channel EEG data. In the outer loop,
the model adapts these features to the target domain with
few-channel data. By sharing the feature aggregation and
classification layers between loops, our model also incorpo-
rates temporal information, which proves to be effective in
experiments. In summary, our proposed transfer learning
approach integrates the base emotion model with our trans-
fer learning strategy in a collaborative and progressive fash-
ion. By designing separate learning objectives and network
parameters for the meta-training and meta-testing stages,
our method can better adapt to emotion recognition with
few-channel EEG signals and achieve superior performance.

To evaluate our method, we construct a cross-device EEG
dataset CDEED, which consists of (1) paired data from 25
subjects, where each paired data consists of 5-channel and
18-channel EEG signals collected with the same subjects us-
ing the same set of video stimuli and experimental protocol,
and (2) 5-channel EEG signals from 13 other subjects (dif-
ferent from the 25 subjects mentioned above). Experimental
results show that our CD-EmotionNet model can efficiently
enhance the performance of EEG recognition with few-
channel signals and achieves state-of-the-art performance
on the CDEED dataset and three more publicly available
datasets: SEED-IV [24], SEED-V [25] and DEAP [4].
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The contributions of this paper are two-fold:

1) We address the challenging few-channel EEG emo-
tion recognition task from the perspective of knowl-
edge transfer. Specifically, we leverage full-channel
EEG signals to provide supplementary informa-
tion for few-channel signals by designing a trans-
fer learning-based model CD-EmotionNet, which
is comprised of a base emotion model for ef-
ficient emotional feature extraction and a cross-
device transfer learning strategy that enhances the
emotion recognition performance with few-channel
EEG data using the knowledge acquired from full-
channel EEG data.

2) We constructed a paired full-channel and few-
channel EEG signal dataset containing EEG of the
same subjects using the same set of stimuli and ex-
periment protocol to validate our cross-device EEG
emotion transfer network. The proposed dataset
can also be set as a benchmark for the few-
channel EEG emotion recognition task. Experiments
on three other public datasets (SEED-IV, SEED-V,
and DEAP) also demonstrate that our proposed
CD-EmotionNet can achieve state-of-the-art perfor-
mances.

2 RELATED WORK

2.1 EEG Emotion Recognition with Deep Learning

PSD and DE of EEG signals are frequently used to distin-
guish emotions by capturing different characteristics of the
brain’s electrical activity associated with emotional states,
and are usually incorporated with deep features together
to recognize emotions. PSD effectively captures how signal
power is distributed across different frequency components,
and the core concept is to extract EEG features by de-
picting the energy variation within the signal’s frequency
domains [26], [27]. DE features are also employed to con-
struct features in multiple frequency bands to measure the
dynamics of uncertainty for continuous EEG signals [28].

Recently, various deep neural networks that have been
designed for EEG emotion recognition tasks either focus on
the design of feature extraction networks or fuse features
from different domains. Zhang et al. [29] employs a heuristic
Variational Pathway Reasoning (VPR) method based on
pathway sampling and salient pathway reasoning. Suh et
al. [30] leverages the concept of “separate to learn” to EEG
signal analysis by dividing the embedding space into K-
subproblems and building a model for each one of them.
Thammasan et al. [31] studies the fusion of EEG and music
features to identify the arousal and valence of emotion. Lu et
al. [32] combines eye movements and EEG to classify emo-
tions and reveal that they are complementary to emotion
recognition. Similarly, Li et al. [33] also leverages multi-
domain (i.e. temporal, frequency, and topology of channels)
EEG information to classify emotions.

Multimodal information has been integrated to enhance
emotion recognition. TSIN [34] incorporates temporal and
semantic consistency into multimodal emotion recognition
tasks. SAMS [35] is a multimodal approach to emotion
recognition, achieving local and global alignment between

modalities through a multi-spatial learning framework for
each modality and a self-modal interaction module for
cross-modal semantic learning.

Besides, EEG has also been incorporated with other
modalities to conduct emotion recognition. For instance,
DREAMER [5] is a multimodal database consisting of EEG
and ECG signals from 23 participants, and the authors
propose a participant-wise affect recognition method using
EEG and ECG features. While leveraging multiple neural
or physiological signals as complementary cues to improve
emotion recognition performance, none of these approaches
consider the variation across devices, which is the focus of
our work. Our proposed CD-EmotionNet aims to address
the device variation between full-channel and few-channel
EEG by transferring knowledge learned from full-channel
data to few-channel data.

In addition, another mainstream idea is to exploit the
correlations between different channels or emotions by
leveraging attention mechanisms. ACRNN [36] introduces
an attention mechanism to recurrent neural networks for
EEG feature extraction. SST-EmotionNet [37] integrates
spatial-spectral-temporal EEG emotion features into an at-
tention 3D dense network. More recently, TransEEG [38]
addresses long-distance temporal dependencies, as well as
inter-emotion correlations, to refine the emotional EEG fea-
ture extraction with a transformer-based architecture. Previ-
ous studies demonstrated the effectiveness of applying at-
tention operations on EEG features to learn better emotion-
related embeddings. The feature aggregation procedure that
learns dynamic feature clusters in our base emotion model
can also be seen as a kind of attention mechanism operating
on the spatial-spectral EEG features.

GCN is suitable for modeling the spatial and temporal
correlations across multiple EEG channels. In the field of
applying GCN on EEG-based emotion recognition, exist-
ing studies usually model EEG signals collected with each
electrode as a node in the graph, and the edge connect-
ing two EEG-electrode nodes represents their correlation.
DGCNN [39] explores the relationship between different
EEG signal channels and uses graph operations to learn a
dynamic adjacency matrix for emotion recognition. Zhang et
al. [19] further improves DGCNN by employing a sparse
constraint and proposes the SparseDGCNN framework for
multichannel EEG analysis. Song et al. [18] presents a multi-
level and multi-graph convolutional operation for EEG fea-
ture extraction. Other GCN-based EEG studies have also
been proposed in [22], [40]. To enhance the robustness of
emotion recognition, Li et al. [41] proposes to leverage
multiple emotion-related spatial network topology patterns
to capture discriminative graph topologies within EEG brain
networks. In this paper, the proposed base emotion model
is also constructed using a GCN to capture the whole-brain
activation patterns of EEG signals and refine the extracted
emotional features.

All the above-mentioned methods use full-channel EEG
signals. Moreover, the EEG signals in the widely used EEG
emotion benchmarks such as SEED [3] and DEAP [4] are
also full-channel data, i.e., they are recorded using a 62-
channel wet-electrode ESI NeuroScan System and 32 ac-
tive AgCl electrodes respectively. In contrast, we focus on
emotion classification with weaker supervision information
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provided by few-channel EEG signals.

2.2 Transfer Learning in EEG Processing

Transfer learning, which aims at applying the knowledge
learned from one domain to another different but related
domain, has recently drawn increasing attention in the field
of EEG signal analysis [42]. According to the amount of
target data and whether the target data is labeled, trans-
fer learning methods can be roughly classified into fine-
tuning, multitask learning, domain adaptation, zero-shot
learning, self-taught learning, self-taught clustering, etc.
In EEG-based emotion recognition tasks, transfer learning
techniques have been adopted to solve the performance
limitations of algorithms caused by inherent EEG signal
differences between different subjects [43], EEG signals col-
lection scenarios [44], experiment sessions [45], datasets [46],
etc. Among them, most attention has been paid to the
cross-subject situation, where the main problem is the EEG
data distribution domain gap between different individuals.
Zheng et al. [47] explores two kinds of cross-subject transfer
methods, i.e., network structure sharing and parameters
transferring, to improve emotion recognition performance.
Zhao et al. [48] divides EEG data into private and shared
components and builds a plug-and-play emotion classifier
via domain adaptation techniques. Personal-Zscore is pro-
posed in [49] to enhance the robustness of cross-subject EEG
emotion recognition models by improving the emotional
representation ability for individuals. Li et al. [50] proposes
a multisource transfer learning framework to eliminate the
impact of personal differences in EEG emotion recognition,
where existing people are seen as sources and the new
person is the target; the algorithm contains a calibration
session and a test session for each new target. Their method
is similar to our transfer learning strategy in this paper to
some extent; in our case, the full-channel EEG signals of
existing people can be seen as the source, and the few-
channel EEG signals of new people are set as the target.
Moreover, there is also a base emotion model refining stage
and a testing stage for new targets.

In the last few years, an increasing number of portable
and miniature EEG devices equipped with only a limited
number of electrodes are becoming available. Lakhan et
al. [6] assesses OpenBCI’s potential by comparing its per-
formance to research-grade EEG systems and presenting
evidence in support of the applicability of consumer-grade
EEG device for emotion recognition research. Furthermore,
there has been a growing body of research on depres-
sion detection using few-channel EEG signals, typically
employing three electrodes [7], [8], [9]. However, very
few studies have investigated the cross-device task based
on transfer learning technology. Liu et al. [51] examines
the brain-computer interface (BCI) between wet and dry
EEG headsets and utilizes a transfer learning framework
to exploit auxiliary wet-electrode EEG to improve the BCI
implemented in dry electrodes. Different from our work,
the task in [51] is steady-state visual-evoked potential-based
BCI (SSVEP-BCI), while our goal is emotion recognition.

Similarly, Nakanishi et al. [52] also solves the cross-device
scalp-channel EEG calibration problem in SSVEP-BCI using
transfer learning algorithms that applied spatial filtering to

extract shared features across different devices. In addition,
Feng et al. [53] tackles cross-subject and cross-device EEG
signal transfer learning simultaneously. They construct two
VR-induced EEG emotion datasets and propose a domain
adaptation network (MSDAN) for cross-subject and cross-
device EEG emotion recognition. However, there are only
two emotion categories (positive and negative) in their
datasets, and the authors build their transfer network by
directly comparing the similarity of data from different
domains. Closely related to ours, Xu et al. [54] proposes
Armaiti, an EEG analysis model based on 5-channel EEG
signals, but they aim to combine multi-modal signals (EEG
and EOG) to build a lightweight EEG classification network
to reduce the network depth and the training time, while
we focus on boosting the performance of few-channel EEG
emotion recognition. Few-channel EEG analysis for other
mental state recognition also raised increasing attention re-
cently, e.g. depression detection [55]. The MODMA dataset
consists of both 128 and 3-channel EEG data for mental-
disorder analysis [56]; a multi-modal fusion technique was
also designed for depression detection with the MODMA
dataset [57], [58]. The EEG devices used to collect few-
channel signals in Armaiti is a 5-channel portable device,
and the EEG data in MODMA is collected with a 3-channel
device. These works solve the mental disorder detection task
with few-channel EEG, while we concentrate on emotion
recognition in this research.

3 METHOD

3.1 Overview

In order to perform the emotion recognition task using
few-channel EEG signals, we need to learn discriminative
emotion representation from EEG data with a very limited
number of channels. These few channels convey neural
activation information from only a portion of the cerebral
cortex. Our proposed CD-EmotionNet mainly consists of
two parts: (i) a base emotion model, including a graph con-
volutional module, a deep feature aggregation and fusion
module, and an emotion classifier (see Figure 2), and (ii)
a transfer learning strategy, which unitizes the full-channel
EEG signals in the training data to facilitate the represen-
tation learning of the target few-channel EEG signals (see
Figure 3).

Our base emotion model is trained with the proposed
transfer learning strategy in a synergistic and progressive
manner. Given that EEG signals have an inherent graph
structure (electrode connectivity) that GCNs can leverage,
we deploy separate GCN modules for the inner and outer
loops of transfer learning. In the inner loop, the model
concentrates on extracting spatial-temporal features from
the full EEG data; while in the outer loop, GCN learns to
adapt these features to the target domain. Our model also
incorporates temporal information by sharing the feature
aggregation and classification layers between loops, which
has been demonstrated to be an effective approach in the
experiments.

The proposed base emotion model and feature-
aggregation-based cross-device transfer learning strategy
are described in detail in Sections 3.2 and 3.3, respectively.
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Fig. 2. The pipeline of our base emotion model. Our base emotion model mainly consists of a graph convolutional module, a deep feature
aggregation and fusion module, and a classifier.

3.2 Base Emotion Model

Existing studies demonstrated that graph convolution-
based methods can extract effective EEG features in the
spatial domain by modeling the relationships between dif-
ferent EEG signal channels. This study combines the graph
convolutional layer with feature aggregation networks in
our base emotion model to learn efficient representations.
Graphs are suitable for modeling the spatial dependencies
in EEG data. By adopting GCN layers, the base emotion
model can extract high-level emotional features that contain
information about the dynamics and connectivity across
different brain regions. It is worth noting that the feature
aggregation network in the base emotion model is designed
to capture the difference of EEG signal distributions in the
time domain, which provides supplementary information to
the spatial features extracted by GCNs.

3.2.1 Graph Convolutional Module

First, we employed a GCN layer proposed in [39] to extract
the spatial-spectral channel features from input EEG signals.
Each EEG sample is denoted as x ∈ Rt×n×d, where t is
the length of the time sliding window, n is the number of
signal channels, and d is the extracted feature dimension.
Specifically, we extract power spectral density (PSD) [4]
and differential entropy (DE) [59] features from multiple
frequency bands (i.e., δ band: 1.5-4 Hz, θ band: 4-8 Hz,
α band: 8-14 Hz, β band: 14-31 Hz, and γ band: 31-49
Hz) as representative spectral features. Then, we construct
a graph G = (V,E) for each EEG sample x to feed into
the convolutional layer. More specifically, V = {vi} denotes
the node-set representing the features of each channel, and
E = {ei,j} is the edge set, in which ei,j represents a
learnable weight built on nodes vi and vj . The original
graph spectral filter [60] learns a function g(·) to extract EEG
features from G = (V,E) as:

y = g(L)x = Ug(Λ)UTx, (1)

where L is the Laplacian matrix of the graph, and U is
the orthonormal matrix obtained by the singular value de-
composition (SVD) of L. DGCNN [39] applies a Chebyshev
polynomials framework to the regular graph operation by
approximating g(Λ) with

∑K−1
k=0 θkTk(Λ̃), in which θk and

Tk(Λ̃) are the k-order Chebyshev coefficient and Chebyshev

polynomial, respectively. The graph convolution of x can be
further expressed as:

y = g(L)x ≈
K−1∑
k=0

θkTk(L̃)x, (2)

where L̃ can be obtained by normalizing L as L̃ =
2L/λmax − IN , λmax is the largest element of the diagonal
entries of λ, and IN is a N ×N identity matrix.

Finally, we convert the output of the graph convolutional
layer y ∈ Rt×n×d into a spatial-spectral feature ẋ ∈ Rt×D :

ẋ = FCgcn(σ(y)), (3)

where σ is a rectified linear unit (ReLU) activation function,
and FCgcn(·) represents a fully-connected layer. We set D =
1024 in our implementation. In summary, the GCN layers
learn the spatial relationships between EEG channels, while
the PSD and DE features characterize the spectral attributes
of the signals.

3.2.2 Feature Aggregation and Fusion Module

As typical time series signals, temporal clues are also im-
portant in EEG emotion prediction. Aiming to extract more
powerful EEG features with stronger representation ability
in the time domain, we adopt a VLAD descriptor-based net-
work, NeXtVlad [61], to conduct EEG feature aggregation
and fusion. On the one hand, different emotions may have
different EEG features as pointed out by previous work [37],
and there may exist multiple discriminative local patterns
for the emotional state in an EEG data segment. On the other
hand, there are significant inter-variations in EEG signals,
which means each subject’s local pattern is different even
under the same emotional stimuli. Our goal of introducing
VLAD to emotion feature extraction is to construct feature
descriptors that are universal for all subjects’ EEG signals
and invariant to the number of signal channels.

The VLAD-based feature aggregation module effectively
models the temporal emotional clues in EEG signals and
provides complementary information to the spatial features
extracted by GCNs. VLAD compresses several local features
into a global feature of a certain size by first conduct-
ing feature clustering and then accumulating all feature
residuals for each cluster. We use the output of the graph
convolutional module ẋ ∈ Rt×D as the input to the VLAD
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module. This VLAD module then outputs a compact global
feature V ∈ RK×D :

V(j, k) =

t∑
i=1

ak(ẋi)(ẋi(j)− ck(j)), k ∈ K, j ∈ D, (4)

where ẋi is the ith local feature in ẋ, ck is the kth cluster
center, and ak(ẋi) is a symbolic function, which is 1 if ẋi

belongs to cluster ck and 0 otherwise. V(j, k) is the residual
sum of all local features and the corresponding cluster
centers in a class.

Original VLAD cannot be used in backpropagation net-
works since the symbolic function ak(·) is non-derivable.
To overcome this problem, Arandjelovic et al. [62] proposed
NetVLAD, which replaces ak(·) with a softmax function as
in Equation 5. Then, the compact global feature V can be
updated according to Equation 6.

Softmaxk(ẋi) = ak(ẋi) =
ew

T
k ẋi+bk∑

k′ ew
T
k′ ẋk′+b′k

, (5)

V(j, k) =

t∑
i=1

Softmaxk(ẋ)(ẋi(j)− ck(j)), k ∈ K, j ∈ D,

(6)
where wk, bk, and ck are the parameters to be learned.
Different from VLAD, which needs to manually compute
the clusters (e.g. using the K-means algorithm), NetVLAD
calculates the ck in a learned way and enables an end-to-
end updating process. In our work, we use the improved
version of NetVLAD, i.e., NeXtVLAD proposed in [61], to
reduce the network parameters and improve the training
speed. Specifically, the NeXtVLAD decomposes the input
feature ẋ ∈ Rt×D into a group of lower-dimensional vectors
x̃ ∈ Rt×C×D

C before aggregation, where C is the number of
groups:

Vg(j, k) =

t∑
i=1

σg(ẋi)Softmaxgk(ẋi)(x̃ig(j)− ck(j)),

g ∈ {1, ..., C}, i ∈ {1, ..., t}, k ∈ {1, ...,K}, j ∈ {1, ..., D
C
}.
(7)

Then, we obtain the global spatial-spectral-temporal EEG
emotion feature X by adding V g(j, k) over groups followed
by a fully-connected fusion layer FCfusion(·) as:

X = FCfusion(

C∑
g=1

Vg(j, k)). (8)

The global spatial-spectral-temporal EEG emotion fea-
ture X can also be represented as:

X = (o1, o2, ..., oc), (9)

where oi is the ith neuron of the fully-connected layer
FCfusion(·) of the base emotion model, and c is the number
of emotion classes.

Finally, we apply a softmax function to map the global
spatial-spectral-temporal feature X to probabilities Ŷ =
{Ŷ1, Ŷ2, ..., Ŷc} corresponding to each emotion as:

Ŷi = Softmax(oi). (10)

Fig. 3. The framework of our EEG emotion transfer learning includes
two stages: (1) in the meta-model training stage, we aim to learn a good
initialization for feature-aggregation-based cross-device EEG transfer
network with 18-channel and 5-channel paired EEG signals of existing
subjects. (2) In the model fine-tuning and testing stage, the feature
aggregation network is adapted to new subjects with only few-channel
data. Specifically, only a very small amount of 5-channel EEG signals
are needed in the fine-tuning process, and the model can fit well on new
subjects.

We use the cross-entropy loss for our base emotion
model:

lbase = −
c∑

j=1

Yj logŶj . (11)

where Y = (Y1, · · · , Yc) represents the ground truth emo-
tion label.

3.3 Feature-Aggregation-Based Cross-Device Transfer
Learning
We denote our EEG emotion recognition base model de-
scribed in Section 3.2 as M, which consists of a GCN
module and a VLAD module, and maps an EEG signal
sample x to an emotion state Ŷ :

Ŷ =M(x). (12)

In this section, we propose an EEG emotion trans-
fer learning strategy by combining full-channel and few-
channel EEG signals to jointly train a modelMmeta, which
is then adapted to a new model Mfine tune to recognize a
new subject’s emotion states via fine-tuning with only few-
channel EEG signals. Since GCN is highly related to the
input sizes of EEG signal channels, we use separate graphs
for full-channel and few-channel EEG signals and aim to
learn a shared NeXtVLAD to fuse graph features of different
subjects across different devices. The shared NeXtVLAD
between different subjects and different EEG devices (1) has
more data for stable training, and (2) can learn universal fea-
ture aggregations and fusion representations. As shown in
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Algorithm 1 EEG Feature Aggregation Transfer Learning
Input: Dtrain = {Ci|i = 1, ...,M}: full-channel and few-
channel paired dataset (Ci full and Ci few)
Parameter:Mmeta: ϕ, graph module in the inner loop: θgin ,
graph module in the outer loop: θgout

, all parameters of the
inner loop: θi

Output: ϕ: Parameters initialization of the base model,
including the graph module, the feature aggregation net-
works, and the classifier.

1: randomly initialize ϕ
2: while the iterations do not satisfy the predefined algo-

rithm convergence condition do
3: Sample batch of subjects from Dtrain

4: for all subjects do
5: Evaluate ▽θi

gin
l(θigin) with Ci full

6: Update the parameters θ of the graph operation in
the inner loop with gradient descent

7: Compute l(θ̂i) and MMD(θigin , θ
i
gout

) with Ci few

8: end for
9: Compute Lmeta(ϕ) and MMD(θgin , θgout

)
10: Update the parameters ϕ of the graph operation in the

outer loop with gradient descent
11: end while

Figure 3 and Algorithm 1, our cross-device transfer learning
includes two stages:

1) Meta-model training stage: Using separated GCN
modules, shared feature aggregation layers, and
classifiers to learn common representation between
full-channel and few-channel EEG signals to pro-
vide a good initialization for the next stage.

2) Fine-tuning and testing stage: Fine-tuning the pre-
trained model with EEG signals of new subjects (un-
seen in the training data in the meta-model training
stage), quickly adapting the meta-model into a user-
specific model.

Inspired by the MAML framework [23], we address the
cross-device transfer learning problem by learning an opti-
mal initialization of the EEG feature aggregation network,
which could be quickly adapted to EEG signals of new
subjects. The main differences between the original MAML
framework and our cross-device transfer learning training
strategy are twofold:

• The goal of MAML is to learn a good network
initialization to achieve fast adaptation on new tasks
with a small amount of training data and fast fine-
tuning. MAML is essentially proposed to deal with
the challenge of having unseen classes in the testing
set, where the existing classes are the meta-training
dataset, and the new classes compose the meta-testing
dataset. However, in our case, we set the EEG signals
of existing subjects as the source and the EEG signals
of new subjects as the targets. The theoretical support
behind this is that there exist common patterns of
EEG emotional features among individuals [50].

• The original MAML framework keeps the entire
network structure unchanged and uses two training
loops to get good initialization parameters, while

we aim to keep unique parameters of the graph
operation module for each subject and learn a public
feature-aggregation module common to all subjects
and EEG devices in the outer loop.

Denote Dtrain = {Ci|i = 1, ...,M} as the meta-training
dataset to train the meta-model Mmeta, and Dtest =
{Pj |j = 1, ..., Q} as the meta-testing dataset used to
fine-tune and test the final emotion classification model
Mfine tune. Each Ci contains the paired full-channel (18-
channel) and few-channel (5-channel) EEG signals of the ith
subject, and Pj only has the few-channel EEG signal of the
jth subject (different from those subjects who has paired
data, i.e., the subjects of Dtrain and Dtest are separate).

We define the emotion recognition of the ith person as
the task Ti of the meta-model. We consider the initialization
parameters of our feature aggregation network Mmeta as
ϕ, and the model learned on the task Ti as θi. In our case,
we split the model Mmeta into three parts: the two graph
operations (i.e. the graph modules in the inner loop and
outer loop of the meta training process, θigin and θigout

),
the feature aggregation networks, and the classifier. In the
inner loop of our transfer learning process, we only update
the parameters of the graph operations θigin with gradient
descent:

θ̂igin = θigin − ε▽θi
gin

l(θigin), (13)

where l(θigin) is the cross-entropy loss (defined in Equa-
tion 11) of task Ti with model θigin on the full-channel EEG
signals from Ci, and ε is the learning rate.

l(θigin) = lbase|θigin = −
c∑

j=1

Yj logŶj |θigin , (14)

where Yj and Ŷj are ground truth and predicted labels
within task Ti, respectively.

In the outer loop, the loss function ofMmeta’s initializa-
tion parameters can be computed as the mean of the losses
of all meta-training tasks on the few-channel EEG signals:

Lmeta(ϕ) =
1

M

M∑
i=1

l(θ̂i), (15)

where θ̂i is the whole model (including the graph op-
eration module, the feature aggregation module, and the
classifier) of task Ti updated in the inner loop.

l(θ̂i) = lbase|θ̂i = −
c∑

j=1

Yj logŶj |θ̂i. (16)

We have also introduced a Maximum Mean Discrepancy
(MMD) loss, which evaluates the distribution similarity
between the features extracted by the graph operations of
full-channel and few-channel EEG signals. Denote Ci full

and Ci few as full-channel and few-channel EEG signals of
the ith subject respectively, the MMD loss can be computed
as:

MMD(θgin , θgout
) = || 1

M

M∑
i=1

(gin(Ci full)−gout(Ci few))||2H .

(17)
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The final loss of the transfer learning training process is:

L(ϕ) = Lmeta(ϕ) +MMD(θgin , θgout
), (18)

where Lmeta(ϕ) is minimized by gradient descent:

ϕ← ϕ− η▽ϕ L(ϕ), (19)

where η is the learning rate of the outer loop.
During the fine-tuning and testing stage, we first adopt

the meta-modelMmeta learned in the training stage (see the
right part of Figure 3), then we use the few-channel signals
of a new subject Pj for fine-tuning. The classification cross-
entropy loss ofMfine tune on the support set of Pj is used
to update the model. Finally, we obtain a specific emotion
recognition model Mj

fine tune for subject j in Dtest. In
summary, the meta-model training stage aims to learn trans-
ferable feature aggregations by optimizing ϕ. The model
fine-tuning stage adapts the meta-model to new subjects
by optimizing the graph operation parameters θngin and
θngout

as well as the shared feature aggregation parameters
ϕ. By leveraging transferable knowledge and conducting
quick adaptation, the proposed framework can boost the
performance of few-channel EEG emotion recognition with
limited training data.

4 EXPERIMENT

4.1 Datasets
We build a new Cross-Device EEG Emotion Dataset
(CDEED) with paired full-channel and few-channel EEG
signals, which provides a benchmark for our CD-
EmotionNet framework. Moreover, we also evaluate the
performance of our model on three other publicly avail-
able EEG emotion datasets: SEED-IV [24], SEED-V [25] and
DEAP [4]. These datasets are summarized in Table 1.

4.1.1 The CDEED dataset
38 subjects participated in data collection. Our CDEED
dataset contains two sub-datasets: (1) the BRK-KangII sub-
dataset contains paired data of 25 subjects. Each pair
includes 18-channel (full-channel) and 5-channel (few-
channel) EEG signals of the same subject under the same
set of video stimuli. (2) The KangII sub-dataset contains
5-channel EEG data from the remaining 13 subjects. The
BRK-KangII sub-dataset provides paired full-channel and
few-channel EEG data, which enables cross-device transfer
learning. The KangII sub-dataset acts as the testing set to
evaluate the performance of the model adapted to the BRK-
KangII sub-dataset.

All procedures of the study were carried out in accor-
dance with the Declaration of Helsinki and were approved
by the Ethics Committee of Tsinghua University. Before
the experiment, all participants were thoroughly informed
about the details of the experiment, including its goal, pro-
cedure, and the use of the collected data. Written informed
consent was obtained from all participants.
Stimuli. In the experiments, emotional film clips were used
as stimuli. The emotional film clips are from a standardized
emotional film clips database [14], in eight types of emotions
(disgust, fear, anger, sad, neutral, amusement, tenderness,
and happiness). Each emotion was elicited by two movies,
and each movie lasted about 90 seconds.

Experimental procedure of BRK-KangII sub-dataset. 25
subjects participated in the construction of the BRK-KangII
sub-dataset, where two sessions were performed on differ-
ent dates, and each session contained 16 trials. In each trial
of the first session, the participants watched one of the film
clips, while their EEG signals were collected with the 18-
channel Wearable Sensing’s wireless DSI-24 7. In each trial
of the second session, the EEG signals were collected with
the 5-channel SleepUp2.0 Naolubrain EEG device [11]. To
reduce the confounding factors between the full-channel
and few-channel EEG collection sessions, there was a one-
week interval between the two sessions. Half of the subjects
conducted the 18-channel EEG signal collection first and
then the 5-channel EEG signal, and the other half of the
subjects collected the data in the reverse order. The order
of the eliciting materials was arranged in a Latin square
design [63] among subjects during the emotional elicitation.
Experimental procedure of KangII sub-dataset. As for the
construction of the other KangII sub-dataset, the rest of the
13 out of the 38 subjects participated in the experiment,
where each of them only performed one session. They
watched the 16 film clips in 16 trials, during which their
EEG signals were collected with the 5-channel SleepUp2.0
Naolubrain EEG device.

Figure. 4 shows the time diagram of the experiment,
which was used in the construction of both BRK-KangII
and KangII sub-datasets. The experiment started with the
participants filling in their personal information, followed
by 16 trials. Participants were instructed to minimize head
movements during the experiment. The steps in each trial
were as follows: (1) The display of a film clip. (2) Self-
assessment. (3) Addition and subtraction operations and a
15-second break before the next trial to eliminate the effect
of the previous film on the current one.

The snapshots of the 5-channel SleepUp2.0 Naolubrain
and the 18-channel Wearable Sensing’s wireless DSI-24 EEG
devices are shown in Figure 5. The electrode placements
of the two devices are shown in 1. To point out, there are
three electrodes (the reference electrode Fpz and two ear
clip sensors A1/2) in the DSI-24 device that were not used
in our experiments.

4.1.2 The SEED-IV dataset
The SEED-IV dataset [24] contains EEG data of 15 subjects.
Each subject conducted 3 sessions, and there were 24 trials
for each session. 72 films were used as the stimuli for elicit-
ing four emotions (happiness, sadness, fear, and neutral).
The EEG signals were collected with the 62-channel ESI
NeuroScan System.

4.1.3 The SEED-V dataset
The SEED-V dataset [25] contains EEG data from 20 subjects,
each of whom was asked to participate in three experiments.
The subjects in each experiment needed to watch 15 films (3
pieces of each type of emotion). There are five emotional
states in SEED-V (happy, sad, disgust, fear, and neutral).
The EEG signals were recorded from 62 EEG electrodes
according to the international 10-20 system. We use the
EEG features of 16 subjects provided by the authors in our
experiments.

7. https://wearablesensing.com/research/#publications
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Fig. 4. The timing diagram of the experiment. The experiment procedure in each trial mainly consisted of: (1) the display of a film clip. (2) Self-
assessment. (3) Addition and subtraction operations and a 15-second rest to eliminate the effect of the previous trial on the current one.

TABLE 1
Summary of the four datasets used in our experiments.

Dataset Sub-Dataset Emotion Categories Number of Subjects Is Paired? Channels

CDEED BRK-KangII disgust, fear, anger, sad,
neutral, amusement, tenderness, happiness

25 subjects Yes 18
5

KangII 13 subjects No 5
SEED-IV [24] - happiness, sadness, fear, neutral 15 subjects No 62
SEED-V [25] - happy, sad, disgust, fear, neutral 20 subjects No 62

DEAP [4] - valence (positive/negative), arousal (high/low) 32 subjects No 32

Fig. 5. The snapshots of the devices. (a) 5-channel SleepUp2.0 Naol-
ubrain EEG device.(b) 18-channel Wearable Sensing’s wireless DSI-24
device.

4.1.4 The DEAP dataset

The DEAP database contains EEG data of 32 healthy partic-
ipants (16 males and 16 females) evoked by music video
stimuli. Volunteers were asked to watch 40 one-minute
videos, and the EEG signals of the subjects were collected
at a 512 Hz sampling rate. The EEG signals were recorded
from 32 electrodes according to the international 10-20
system 8. All subjects were instructed to rate the valence,
arousal, dominance, and liking of the viewed videos on a
scale of 1 to 9 after watching the videos. We followed the
partitioning strategy in [17], which transforms the dataset
into binary emotion recognition tasks by segmenting the
valence dimension to positive/negative and the arousal
dimension to high/low arousal. The thresholds of both the
two dimensions are 5. After preprocessing and segmenting,

8. Besides the EEG data, the DEAP database also contains 8 periph-
eral channels, which were removed in our experiments in this paper.

we obtained a balanced dataset to validate our proposed
cross-device EEG emotion transfer model.

4.2 Implementation Details
We trained our CD-EmotionNet on NVIDIA RTX 2080 GPU,
and the batch size was set as 4. The learning rate was 0.01,
and the Adam optimization was used to minimize the loss
function.

For data preprocessing of the CDEED dataset, we em-
ployed the EEGLAB toolbox in MATLAB [64] to preprocess
the collected raw EEG data. This preprocessing mainly con-
tains data importation, electrode localization, electrode se-
lection, re-referencing, filtering, baseline correction, manual
identification and removal of bad segments and channels,
independent component analysis, and manual exclusion
of irrelevant components. Specifically, a bandpass filter (1-
50 Hz) and a 50 Hz notch filter was first used to remove
noise, then an independent principal component analysis
was conducted to eliminate artifacts. For other datasets in
the experiments, we utilized the preprocessed data provided
by the authors directly.

We conducted experiments mainly with the subject-
dependent scheme. The reason for adopting the subject-
dependent setting is from the definition of our task. The
application scenario of our task in the testing phase is to get
a customized emotional model of a new user by fine-tuning
the base emotion model with only a small amount of his/her
few-channel EEG data. The Dataset Splitting in this section
shows the implementation details for the subject-dependent
setting, and the experimental results are shown in 4.3 and
4.4. Moreover, we also conducted additional experiments to
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TABLE 2
Investigation of our CD-EmotionNet via ablation study on the CDEED, SEED-IV, SEED-V, and DEAP datasets. The mean and standard deviation

(%) of accuracies are shown. Since there is no cross-device EEG data in the SEED-IV, SEED-V, and DEAP datasets, we only apply our full
method containing the transfer learning training process on the CDEED dataset, where the 18-channel and 5-channel paired data of existing

subjects in BRK-KangII are used as the training set, and the 5-channel data of new subjects are used to fine-tune and test.

Method

CDEED SEED-IV SEED-V DEAP
BRK-KangII KangII Valence Arousal

18-channel 5-channel 5-channel ACC /STD (%) ACC /STD (%) ACC /STD (%) ACC /STD (%)ACC /STD (%) ACC /STD (%) ACC /STD (%)
Only Graph 63.14 / 14.17 41.85 / 6.46 40.93 / 12.75 65.97 / 15.03 58.54 / 20.73 75.42 / 10.85 73.97 / 12.61

Only Feature Aggregation 45.00 / 11.57 42.28 / 4.86 40.24 / 8.09 57.66 / 16.07 77.26 / 16.42 71.27 / 10.02 73.83 / 11.26
Graph+Feature Aggregation

(Base Emotion Model) 64.47 / 10.17 45.67 / 5.12 41.15 / 8.64 83.10 / 11.87 82.67 / 16.51 86.29 / 9.71 84.16 / 10.86

Base Emotion Model+Transfer Learning
(Full Method) - - 47.50 / 8.92 - - - -

validate the effectiveness of our proposed method in the
subject-independent scenario. The experiment procedure
and results are shown in Section 4.5.2.

For our main experiments with subject-dependent pro-
tocol on the CDEED dataset, we followed [37] to randomly
shuffle all the data samples. For SEED-IV and SEED-V,
we shuffled the samples within each session and within
each trial, respectively. We ran each experiment 5 times
and report the average value. Within each experiment, we
computed the STDs of each subject and averaged them.
Dataset Splitting The data ratio for training and testing
is set to 8:2. The EEG segment time length is 2s on the
three datasets. (1) For the CDEED dataset, we only use
the last 600 segments (480 for training, 120 for testing)
of each subject watching each video. (2) For the Seed-IV,
each subject conducted 3 sessions, and there were 24 films
(16 for training and 8 for testing) in each session. The
number of training and testing segments are 276/259/256
and 146/152/149 in the three sessions, respectively. (3) For
the Seed-V, each subject watched 15 films (10 for training
and 5 for testing) in each experiment. There are 247/176/215
training segments and 91/91/81 testing segments in the
three experiments, respectively. (4) For the DEAP dataset,
each participant watched a subset of 40 music videos. We
used the preprocessed data provided by the authors, which
was segmented into 60-second trials and downsampled to
128Hz. The data offered by the authors was also applied
with a bandpass frequency filter from 4-45Hz and averaged
to the common reference. PSD features were extracted be-
fore use in our experiments. We used each subject’s data
to evaluate different methods, and the final average recog-
nition accuracy is reported. Within each subject, the data
was randomly split as 80% for training and 20% for testing.
There are 960 training segments and 240 testing segments
for each subject.

4.3 Ablation study

In this section, we demonstrate the emotion recognition per-
formance of our CD-EmotionNet on our proposed CDEED
dataset by investigating the three main components of
our CD-EmotionNet described in Section 3, i.e. the graph
convolutional module, the feature aggregation and fusion
module, and the cross-device transfer learning method, via
an ablation study.

4.3.1 Experiment Results
We conduct an ablation study on the CDEED, SEED-IV,
SEED-V, and DEAP datasets to explore the effectiveness
of each component in our CD-EmotionNet. Specifically, we
compare our full model with three variant models:

• Only Graph: only the Graph Convolutional Module
in the base emotion model in Section 3.2, without
the feature aggregation and fusion module and the
transfer learning training procedure.

• Only Feature Aggregation: only the Feature Aggre-
gation and Fusion Module in the base emotion model
in Section 3.2, without the graph operations and the
transfer learning training procedure.

• Graph+Feature Aggregation: the entire Base Emotion
Model in Section 3.2, without the transfer learning
training procedure.

• Full Method: applying the proposed transfer learn-
ing training procedure to the base emotion model.

The experiments are shown in Table 2. We observe that:
(1) The graph convolutional module, the feature aggregation

and fusion module, and the transfer learning schedule all con-
tribute to the final performance of our CD-EmotionNet. On the
one hand, our full method consisting of the base emotion
model and the transfer learning strategy performs best on
the 5-channel EEG emotion recognition task on the KangII
sub-dataset of the CDEED dataset, reaching a mean of emo-
tion recognition accuracy of 47.5% with only few-channel
EEG signals. On the other hand, our base emotion model
outperforms both the Only Graph model and the Only Feature
Aggregation model on all four datasets. Compared to the
results of Only Graph, our base emotion model increases
recognition accuracy by about 2%, 18%, 24%, 11%, and 10%
on the BRK-KangII sub-dataset of CDEED, the SEED-IV, the
SEED-V and the DEAP (Valence and Arousal) datasets, re-
spectively (the 2nd and 4th rows in Table 2). The recognition
accuracies of our base emotion model are about 12%, 25%,
15%, 15%, and 10% higher than those only using feature
aggregation and fusion on the BRK-KangII sub-dataset of
CDEED, the SEED-IV dataset, the SEED-V dataset, and the
DEAP (Valence and Arousal) datasets (the 3rd and 4th rows
in Table 2).

(2) The Base Emotion Model can efficiently capture the emo-
tional features in full channel EEG signals. The fourth row in
Table 3 shows the accuracy and standard deviation of our
base emotion model built on GCNs and feature aggregation
network (without transfer learning strategy) on the three
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Fig. 6. The confusion matrix for the 8-class emotion classification of the KangII (13 subjects) dataset. We show the results without/with our transfer
learning strategy. Except for the “fear” emotion, the recognition accuracy of all other emotions improved when applying the transfer learning training
procedure, indicating the effectiveness of our transfer learning strategy.

Fig. 7. Visualization of latent features using t-SNE on the KangII dataset.
We presented the features extracted by four models: (a) Only Graph, (b)
Only Feature Aggregation, (c) Base Emotion Model, and (d) Full Method.
The different colors represent different emotions.

datasets. Our base emotion model achieves 64.47% and
45.67% in the eight-class emotional classification task on the
full-channel (18-channel) and few-channel (5-channel) EEG
data from the BRK-KangII sub-dataset of CDEED. Moreover,
our base emotion model obtains an accuracy of 83.10% for
four-class emotion discrimination on the SEED-IV dataset
and 82.67% for five-class emotion recognition on the SEED-
V dataset. These results indicate that our base emotion
model is able to extract effective EEG features for emotion
recognition.

(3) The capability of using only few-channel EEG data to

conduct emotion recognition is relatively weak for the models
without the transfer learning framework. Even the accuracy
improvement of the base emotion model is limited on the
KangII sub-dataset of CDEED, indicating the necessity of
introducing extra information to help the feature learning of
few-channel EEG signals (the 4th column in Table 2).

(4) The transfer learning strategy improves the emotion recog-
nition accuracy of most emotions. We analyze the EEG emotion
recognition results with and without transfer learning on
the KangII sub-dataset of the CDEED dataset in Table 3.
Recall that there is a meta-model training stage and a fine-
tuning and testing stage in our transfer learning framework,
as described in Section 3.3. In the experiments, the meta-
model is trained with the 18-channel and 5-channel paired
EEG signals in the BRK-KangII sub-dataset, and the model
is fine-tuned and tested with the 5-channel EEG signals of
new subjects in the KangII sub-dataset. We observe that the
accuracy of emotion classification on the KangII sub-dataset
increases from 41.15% to 47.50% when applying our transfer
learning strategy to the base emotion model.

4.3.2 Visualization Analysis
Confusion Matrix Visualization. We analyze the confusion
matrix of the KangII sub-dataset (13 subjects) in Figure 6.
It is observed that regardless of transfer learning, the algo-
rithms have high classification accuracies on the “sad” and
“disgust” emotions. Similar to ours, the experiments in [65]
also indicate that recognizing the “disgust” emotion has
the best performance. Moreover, the classification accuracy
of most emotions (except for the “fear” emotion) increases
when applying our transfer learning strategy, among which
recognizing the “amusement” emotion improved the most
(with an accuracy increment of 8%), followed by the “ten-
derness” emotion (with an accuracy increment of 6%).

T-SNE Visualization. We further explore the effective-
ness of our proposed CD-EmotionNet by visualizing the
latent EEG patterns learned by different components of

This article has been accepted for publication in IEEE Transactions on Affective Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2023.3336531

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on July 10,2024 at 06:54:44 UTC from IEEE Xplore.  Restrictions apply. 



SUBMITTED TO IEEE TRANS. AFFECTIVE COMPUTING 12

our method (as shown in Section 4.3.1), i.e., Only Graph,
Only Feature Aggregation, Base Emotion Model, and Full
Method. Feature distributions of four subjects from the
KangII dataset are shown in a 2-dimensional space with t-
SNE. For each subject, we randomly visualize four latent
features of length 1-s corresponding to the four methods
from a trial in the testing set. As shown in Figure 7, we
can observe that our full method that integrates the base
emotion model and the transfer learning strategy is able to
obtain more effective EEG features.

4.4 Comparison With State-Of-The-Art Methods

We compare our method with several mainstream tradi-
tional machine learning and state-of-the-art deep-learning-
based methods. Then, we also conduct cross-device EEG
emotion recognition tasks with our CD-EmotionNet and
four representative transfer learning algorithms on the
CDEED dataset.

4.4.1 Comparison with Representative EEG Emotion
Recognition Methods
We compare our base emotion model with several repre-
sentative EEG emotion recognition methods on all three
datasets using traditional classifiers and deep learning-
based networks. (1) Traditional machine learning methods:
SVM [66] and Random Forest [67] are two classic machine
learning classifiers that have been widely used to recognize
emotion from EEG. SVM is a classic linear support vector
machine classifier that has been used to recognize emotion
from EEG data in various experiments. Random Forest is an
ensemble classifier using multiple decision trees to train and
predict samples. (2) Popular convolutional neural network
(CNN) based methods: EEGNet [15] and DBN [3] are
two representative CNN-based EEG signal analysis models.
EEGNet is a flexible and easy-to-use CNN-based model de-
signed for BCI. Deep Belief Networks (DBN) contain many
layers of hidden variables and are able to fuse multi-channel
and multi-frequency EEG features. SST-EmotionNet [37] is
an attention 3D dense network based on the assumption
that different emotions may have very different local spatial-
spectral-temporal features. (3) Graph convolutional net-
work (GCN) based methods: we compare with three state-
of-the-art GCN-based methods: DGCNN [39], RGNN [22],
and SparseDGCNN [19]. DGCNN explores the relation-
ships between different channels via learning a dynamic
adjacency matrix. RGNN considers the biological topology
among different brain regions. SparseDGCNN is a sparse
version of DGCNN. (4) Recurrent neural network (RNN)
based method: We also compare with the recently pro-
posed RNN-based method ACRNN [36], which adopts an
attention-based RNN framework and combines features in
the channel and time domains.

Table 3 presents the emotion recognition results of our
CD-EmotionNet and all the baselines on the three datasets.
We observed that: (1) our CD-EmotionNet outperforms all
baseline methods with a large margin (the last row in
Table. 3). (2) The graph-based methods (DGCNN, RGNN,
and SpareDGCNN) outperform the classic methods (SVM
and Random Forest) by a significant margin on all datasets.
(3) EEGNet and DBN perform relatively worse on these

datasets, possibly due to the fact that they were originally
designed for fewer-category emotion recognition tasks, and
their performance drops significantly when the number
of emotion classes becomes larger. For instance, previous
studies [17], [59] have shown that EEGNet performs well
on the widely used EEG emotion dataset SEED [3], which
contains three emotion classes (positive, neutral, and neg-
ative emotions). However, EEGNet’s recognition accuracy
significantly decreases on the CDEED, SEED-IV, and SEED-
V datasets, which include a larger number of emotion
categories, specifically 8, 4, and 5, respectively. Besides, we
do not evaluate our method on the SEED dataset, but on
the advanced dataset versions, i.e. SEED-IV and SEED-V.
Similarly, our method performs much better than DGCNN
on the SEED-V dataset. To a large extent, this is due to
the fact that SEED-V contains more emotion categories than
SEED-IV, and the emotion recognition task on SEED-V is
more challenging. (4) Compared with using 5-channel EEG
signals, most of the methods in Table 3 have obviously
better results with 18-channel signals, indicating that the
number of channels plays an important role in emotion
recognition. (5) Apart from our approach, the DGCNN has
gained a relatively high recognition precision. We have
further applied the paired t-test to find whether there are
significant differences between the results of the DGCNN
and our method. The recognition results of the 13 subjects
in the KangII dataset are used. We set the significant level
as 0.05. The p-value is 0.000002, which indicates there is a
significant difference between the two results.

4.4.2 Comparison with Transfer Learning Methods

We further compare our proposed EEG emotion recognition
network with four representative transfer learning frame-
works that are widely used in the field of EEG signal
analysis. Since we focus on exploiting fewer-channel EEG
emotion recognition with the help of full-channel EEG sig-
nals collected by different devices, we compare our CD-
EmotionNet with these transfer learning baseline models
on the CDEED dataset. (1) Pretrain & Fine-tuning [68]: the
most general strategy of transfer learning that first trains
a model with source domain data and then fine-tunes the
model with the target data. In our case, we first use all the
full-channel and few-channel paired EEG signals in BRK-
KangII to pre-train the base emotion model, then fine-tune
and test the model with the 5-channel data in KangII sub-
dataset. (2) MMD Loss [69]: a domain adaptive network
which introduces the MMD measure to reduce the distri-
bution mismatch between source and target domains in the
latent space. (3) DANN [70]: a domain-adversarial neural
network that simultaneously learns the classifiers, feature
extractors, and domain discriminators. (4) SHOT [71]: an
unsupervised domain adaptation method that learns from
labeled tasks and performs unlabeled but similar tasks.

As shown in Table 4, our CD-EmotionNet model
achieves an eight-class emotion classification accuracy of
47.50%, which is 5% higher than the four other transfer
learning baseline methods. The results indicate that our
transfer learning strategy can capture invariant EEG emo-
tion features shared between full-channel and few-channel
EEG signals.
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TABLE 3
Comparison of EEG emotion recognition performance with existing state-of-the-art methods on the CDEED, SEED-IV, and SEED-V datasets. The

mean and standard deviation (%) of accuracies are shown.

Method

CDEED SEED-IV SEED-VBRK-KangII KangII
18-channel 5-channel 5-channel 62-channel 62-channel

ACC /STD (%) ACC /STD (%) ACC /STD (%) ACC /STD (%) ACC /STD (%)
SVM [66] 29.07 / 7.18 26.14 / 6.06 25.26 / 7.42 48.54 / 6.68 70.11 / 10.14

Random Forest [67] 46.43 / 13.34 31.53 / 6.41 35.73 / 9.23 57.58 / 13.19 57.85 / 13.87
EEGNet [15] 18.31 / 2.87 18.61 / 3.06 19.91 / 3.42 22.52 / 2.61 28.18 / 6.14

DBN [3] 14.99 / 3.60 14.98 / 4.31 13.81 / 4.26 25.83 / 11.64 22.65 / 2.49
DGCNN [39] 63.14 / 14.17 41.85 / 6.46 40.93 / 12.75 65.97 / 15.03 58.54 / 20.73
RGNN [22] 19.30 / 2.47 20.31 / 2.29 19.49 / 2.66 53.49 / 2.46 26.61 / 2.69

SpareDGCNN [19] 40.01 / 20.46 33.92 / 7.24 32.34 / 12.34 36.20 / 17.88 48.76 / 23.87
ACRNN [36] 23.10 / 3.14 24.71 / 4.21 24.87 / 4.22 35.09 / 10.51 39.05 / 8.15

SST-EmotionNet [37] 23.88 / 4.59 22.68 / 4.83 21.97 / 4.66 71.45 / 10.76 67.62 / 17.13
Our Method 64.47 / 10.17 45.67 / 5.12 47.50 / 8.92 83.10 / 11.87 82.67 / 16.51

TABLE 4
Comparison with representative transfer learning methods that are

widely used in the EEG analysis field. The mean and standard
deviation (%) of accuracies are shown.

Method KangII of CDEED (13 subjects)
ACC / STD (%)

Pre-train & Fine-tune [68] 41.15 / 7.46
MMD Loss [69] 43.07 / 7.45

DANN [70] 42.17 / 10.79
SHOT [71] 42.82 / 8.71

Our Method 47.50 / 8.92

4.5 More Evaluations

4.5.1 Evaluation on Simulated Datasets

In order to investigate the performance of our CD-
EmotionNet with more few-channel EEG datasets, we mod-
ify the SEED-IV and SEED-V datasets by selecting partial
electrodes of them to simulate the cross-device experiments,
named Modified SEED-IV and Modified SEED-V respec-
tively. Specifically, the SEED-IV and SEED-V datasets con-
tain EEG signals of 62 channels 9, where we use the 62-
channel of as the full-channel signals and making the few-
channel signals by selecting 18 electrodes from 62 electrodes
according to the distribution of electrodes in different brain
regions. The 18 electrodes are Fp1/2, Fz, F3/4, F7/8, Cz,
C3/4, T7/8, Pz, P3/4, P7/8.
Modified SEED-IV. As described in Section 4.1.2, SEED-IV
contains EEG signals of 15 subjects. We simulate the cross-
device EEG emotion recognition task by splitting the 15
subjects into two groups consisting of 12 and 3 subjects.
Namely, the 12 subjects have paired 62-channel and 18-
channel EEG data, while the other 3 subjects only have 18-
channel EEG data.
Modified SEED-V. Similarly, we split the data of 16 subjects
in SEED-V into two groups consisting of 12 and 4 subjects.
Namely, 12 subjects in the Modified SEED-V dataset have
paired 62-channel and 18-channel EEG data, while the other
4 subjects only have 18-channel EEG data.

We evaluate the performance of our method
with/without transfer learning training on the Modified

9. https://bcmi.sjtu.edu.cn/home/seed/seed-iv.html

TABLE 5
Subject-dependent evaluation on simulated datasets. The mean and

standard deviation (%) of accuracies are shown.

Method
Modified SEED-IV

18-channel
Modified SEED-V

18-channel
ACC / STD (%) ACC / STD (%)

without transfer learning 82.04 / 13.57 73.87 / 16.12
with transfer learning 89.41 / 6.64 78.21/ 9.74

SEED-IV and Modified SEED-V datasets. The experiments
are conducted in a subject-dependent setting, where
experiments without/with transfer learning are conducted:
(1) without transfer learning: there are 24 trials (16 for
training and 8 for testing) in each session of Modified
SEED-IV, and 15 trials (10 training and 5 for testing) in
modified SEED-V. Accuracies are reported by averaging
the recognition results of the corresponding subjects in
each dataset. (2) with transfer learning: the full-channel
(62-electrode) and few-channel (18-electrode) paired data
of 12 subjects are used to train the meta-model in Figure 3,
and the few-channel of the other 3 subjects are used in the
fine-tuning and testing stages. The results are shown in
Table 5. We observe that the recognition accuracies of our
full method are about 7.4% and 4.4% higher than those
not using our transfer learning strategy on the modified
SEED-IV and modified SEED-V datasets, respectively. The
transfer learning strategy is effective in enhancing the
performance of few-channel EEG emotion recognition.

4.5.2 Subject-Independent Evaluation
We also evaluate our CD-EmotionNet with subject-
independent evaluation on our proposed CDEED dataset
and the two simulated datasets, i.e., modified SEED-IV
and modified SEED-V. Similar to the subject-dependent
setting, we conduct experiments without/with our transfer
learning training: (1) without transfer learning: For our pro-
posed CDEED/SEED-IV/SEED-V datasets, the EEG data
of 25/12/12 subjects are used for training, and data of
the other 13/3/4 subjects are used for testing. For the
SEED-IV dataset, the experiments are carried out within
each session, and the results are reported by averaging the
recognition result of each session. (2) with transfer learning:
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TABLE 6
Subject-independent evaluation on KangII and simulated datasets. The

mean and standard deviation (%) of accuracies are shown.

Method KangII Modified SEED-IV
18-channel

Modified SEED-V
18-channel

ACC / STD (%) ACC / STD (%) ACC / STD (%)
without transfer learning 19.00 / 4.02 43.56 / 4.05 34.41 / 3.60

with transfer learning 24.99 / 5.95 45.65 / 3.70 40.62 / 7.40

TABLE 7
Cross-device cross-electrode evaluation on KangII and simulated
datasets. The mean and standard deviation (%) of accuracies are

shown.

Method KangII Modified SEED-IV
18-channel

Modified SEED-V
18-channel

ACC / STD (%) ACC / STD (%) ACC / STD (%)
without transfer learning 41.15 / 8.64 82.04 / 13.57 73.87 / 16.12

with transfer learning 45.89 / 7.21 84.29 / 11.39 76.38 / 12.78

the full-channel and few-channel paired data (25, 12 and
12 subjects for CDEED, modified SEED-IV and modified
SEED-V respectively) are used to train the meta-model in
Figure 3, and the few-channel of the other subjects (13, 3
and 4 subjects for CDEED, modified SEED-IV and modified
SEED-V respectively) are used for testing. There are no
fine-tuning operations in this setting. The experiment with
transfer learning under the subject-independent setting is a
more challenging task, which involves cross-device and cross-
subject at the same time. The results are presented in Table 6,
showing that our proposed transfer learning strategy is able
to optimize the network performance.

4.5.3 Cross-device Cross-electrode Evaluation

We also evaluate our CD-EmotionNet with cross-device
cross-electrode evaluation on the three datasets, i.e., the
CDEED dataset, the modified SEED-IV, and modified SEED-
V datasets. In the cross-device cross-electrode setting, the
meta-model training stage in Figure 3 was conducted using
data from all electrodes in the few-channel EEG, as well
as the remaining electrodes from the full-channel EEG that
were not included in the few-channel EEG. On the other
hand, the fine-tuning and testing stage was performed only
with the few-channel EEG data. In other words, for the
CDEED dataset, we utilized the 5-channel signals from
the SleepUp2.0 Naolubrain EEG device (i.e., Fp1/2, F7/8,
and O1), as well as the 13-channel signals from Wearable
Sensing’s wireless DSI-24 (i.e., Fz, F3/4, Cz, C3/4, T3/4,
A1/2, Pz, P3/4, T5/6, and O2), to train the meta-model.
Subsequently, testing was conducted using the 5-channel
EEG data from the 5 electrodes in the testing dataset. The
data setting of cross-device cross-electrode evaluation for
the modified SEED-IV and modified SEED-V datasets fol-
lows a similar approach. We conduct the cross-device cross-
electrode experiments under the subject-dependent setting.
The experiment extends the application of our proposed
transfer learning strategy to extract emotion-related EEG
features that remain invariant not only across devices but
also across electrodes. The results are shown in Table 7,
demonstrating the capability of our proposed transfer learn-
ing strategy to acquire cross-device and cross-electrode EEG
emotion features.

4.5.4 Application Scenarios

We further set our CD-EmotionNet method to solve the
other cross-device EEG analysis task, i.e., depression de-
tection with few-channel EEG. MODMA [56] is a mental-
disorder dataset that contains 128-electrode of 53 subjects
and 3-electrode EEG signals of 55 subjects. We use the
3-electrode EEG data offered by the authors [56], which
has been filtered by a finite impulse response (FIR) fil-
ter of [1 Hz-45 Hz] and an adaptive noise canceller to re-
move eyeblink artifacts. We conduct subject-independent
experiments using PSD features extracted from five fre-
quency bands. Depression detection is performed as a bi-
nary classification task. Compared to the method in [72]
with reported highest accuracy 72.25%, the classification
accuracy is 75.96% and 80.08% using our model without
and with transfer learning training, demonstrating that our
proposed CD-EmotionNet method can be generalized to
other applications. The full investigation of comprehensive
comparisons in this application will be conducted in future
work.

5 CONCLUSION

In this paper, we propose a transfer learning framework
(CD-EmotionNet) to enhance the emotion recognition of
few-channel EEG signals with the help of full-channel EEG:
(1) We propose a base emotion model that integrates GCNs
and the feature aggregation mechanism to extract efficient
EEG emotion features. The model is first trained with full-
channel and few-channel EEG data from existing subjects
and then fine-tuned on few-channel EEG data from new
subjects to capture individual characteristics. (2) We build a
new CDEED dataset with 18-channel and 5-channel paired
data to evaluate the proposed framework. The dataset con-
tains EEG recordings from 38 subjects under emotional
video stimuli. 25 subjects have paired 18-channel and 5-
channel EEG, which are used for training the base model.
13 new subjects have only 5-channel EEG, which are used
for model fine-tuning and testing. (3) Experiments on our
proposed CDEED dataset and three existing datasets show
that our method achieves state-of-the-art performance on
the few-channel EEG emotion recognition task.

Our method is able to process EEG signals collected
by portable and compact EEG devices, so as to promote
the everyday application of EEG signals. We also show
a specific application of our transfer learning method to
tackle depression detection with 3-channel EEG signals,
showing that our proposed method can be generalized to
more mental disorder detection tasks. Future work includes
exploring the relationship of the electrodes between full-
channel and few-channel EEG devices and utilizing it to
further enhance the emotion recognition performance across
different EEG devices.
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