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Abstract— Few-shot object detection (FSOD) aims to detect
novel targets with only a few instances of the associated samples.
Although combinations of distillation techniques and meta-
learning paradigms have been acknowledged as the primary
strategies for FSOD tasks, the existing distillation methods
exhibit inherent biases and sensitivity to novel class variability.
A critical hurdle for FSOD distillation is the difficulty in ensuring
appropriate knowledge learned from the teacher model during
the fine-tuning stage. Furthermore, coarse distillation procedures
risk misalignment between the learned and actual distributions.
This misalignment could potentially negate the benefits of positive
cases and impede the detector’s evolution. To address these defi-
ciencies, we propose a novel self-distillation paradigm exclusively
for the fine-tuning stage (SD-FSOD). Our methods integrate
a Distribution Prototype Extractor (DPE) and Self-Distillation
Memory (SDM), promoting feature distribution consistency dur-
ing distillation. In detail, the DPE module reliably initializes
the weights of the detector, ensuring a robust class distribution
for the distillation process. Meanwhile, the SDM module utilizes
decoupling techniques to divide the distillation tasks into two sub-
task branches, allowing the student model to independently learn
and share precise features through isolated distillation processes.
The synergistic integration of feature calibration techniques and
the continuous self-distillation paradigm distinctly enhances the
fine-tuning process, which shows the superiority of the FSOD
self-distillation methodologies. The extensive experiments on
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the PASCAL VOC and MS COCO datasets demonstrate that
our proposed approach produces significant improvements and
achieves state-of-the-art (SOTA) performance.

Index Terms— Few-shot object detection, self-distillation, dis-
tribution prototype, decoupled sub-tasks.

I. INTRODUCTION

DEEP learning has made tremendous progress in the field
of object detection [2], [44], which can be applied

in autonomous vehicles, surveillance systems, and security,
identifying and tracking objects of interest. However, one
major criticism is the heavy reliance on large-scale anno-
tated datasets, which are both resource- and time-intensive
to acquire. Obtaining a sufficient amount of labeled data
can often be challenging [31], and the lack of labeled data
presents a substantial obstacle in real-world scenarios such as
medical image analysis, deep-sea exploration, and rare object
recognition. Few-shot object detection (FSOD), which aims
to train an object detector that can generalize effectively with
just a few numbers of annotated samples, has emerged as a
solution to these problems.

Fine-tuning pre-trained models are the dominant approaches
for few-shot object detection (FSOD). This process involves
taking the detector pre-trained on a large dataset of base
classes and then making minor adjustments to the model
to adapt it to novel classes with limited data. Despite only
incremental changes, fine-tuning has achieved impressive per-
formance gains for FSOD by transferring knowledge from
the base classes [6], [33], [39]. Building upon the fine-
tuning approaches, several techniques have been developed,
such as the fine-tuning of feature attention mechanisms,
student-teacher distillation, and data augmentation strategies.
Moreover, distillation-based approaches have gained promi-
nence as highly effective and straightforward strategies to
enhance FSOD detector performance. Additionally, distillation
techniques provide an effective remedy for the challenges
of knowledge retention and catastrophic forgetting that often
plague fine-tuning methods [25], [36].

In general, the previous distillation-based strategies compare
teacher-created class prototypes with student predictions for
the same image in order to maximize the students’ weights
using a distillation loss [52]. For example, knowledge distilla-
tion is used to train teacher networks to produce prototypes of
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Fig. 1. FSOD performance (mAP) on MS COCO novel sets for K-Shot
numbers. Our proposed SD-FSOD significantly outperforms previous SOTA
methods.

classes. Alternatively, with the help of the student network, the
model uses fine-tuned convex optimization to learn the class
features of the labels. In essence, the effectiveness of these
FSOD distillation methods is dependent on the student model’s
capacity to extract critical features and construct a sufficiently
robust feature distribution, even when only a limited number
of samples are available.

Although the previous approaches have brought about fur-
ther improvements, the distillation mode has an assortment
of persistent issues: a) Acquiring the optimal distribution
for the teacher model during the fine-tuning process still
poses significant challenges [38]. b) Knowledge distillation
may cause biases in confidence and precision, leading to
ambiguous category heterogeneity [15]. c) The crude distil-
lation approaches tend to ignore classification and orientation
tasks that have different learning preferences [43], resulting in
biased feature weights and suboptimal performance.

Specifically, previous research indicates that the distillation-
based strategies for FSOD models are feasible and perform
better than conventional fine-tuning schemes [32], [37].
As shown in Figure 1, DCNet [14] and CD-FSOD [45]
apply the overall distillation scheme to bring considerable
improvement to the fine-tuning paradigm model, verifying the
important contribution of the distillation mode to few-shot
scenarios. However, these two approaches primarily concen-
trate on searching a robust teacher model, which in practice
remains a challenging and critical task in FSOD applications.
A robust teacher model is not only difficult to identify, but
the misalignment in its transfer process cannot be guaranteed.
Knowledge self-distillation has emerged as an effective solu-
tion to the problem of feature bias [24]. To further mitigate
the uncertainty caused by the quality of the teacher model,
we propose a novel self-distillation paradigm that considers
class prototype support and distillation hobbies, addressing
the difficulty of finding a suitable role model to learn from.
We analyze that establishing a strong prototype distribution is
fundamental to the successful process of distillation. Addi-
tionally, we devise specialized classification and regression

Fig. 2. Comparative illustration of the FSOD distillation process. (a) Original
FSOD distillation methods rely solely on support information to pre-deter-
mine the teacher modelpotentially resulting in ambiguous class distribution
boundaries. (b) Our FSOD self-distillation paradigm dynamically refines
itself with newly acquired knowledge based on the strong support of class
prototypes. Additionally, our method incorporates distillation decoupling to
mitigate distribution bias.

tasks based on decoupling technology to fully take advantage
of self-distillation. This method adeptly resolves solve the
distillation conflict between translation-invariant features of
class-agnostic RPN and migration-covariant features of class-
related RCNN. The experimental results demonstrate that our
decoupling self-distillation approach with the support of class
prototype distribution outperforms the prior state-of-the-art
methods.

To express our design motivations more concretely,
we demonstrate the differences between our distillation
paradigm (SD-FSOD) and previous approaches, as shown in
Figure 2. In contrast to the previous practices where the
student models acquire knowledge from the teacher models,
we apply the local self-distillation technique during the fine-
tuning phase. First, we introduce a powerful class prototype
construction technique designed to build a robust prototype
distribution. Such a unique approach enables dynamic cal-
ibration of query features during the distillation process,
preventing feature distribution bias resulting from over- or
under-distillation. Second, by integrating soft targets into self-
distillation subtasks, the detector heads utilize self-feedback
to optimally adapt to inter-class category heterogeneity and
facilitate the acquisition of intra-class feature consistency.
Our construction methods can not only prevent the problem
of fuzzy margins of feature distribution caused by wrong
distillation but also cultivate the self-reinforcing and self-
improving discriminative ability of features under the premise
of correctly identifying the model. Essentially, we aim to make
our model serve as its own teacher, fostering a process of self-
evolution in the fine-tuning stage.

We conduct extensive experiments to validate our detec-
tion model’s strong performance and robustness on both the
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PASCAL VOC and MS COCO datasets. Our technical contri-
butions can be summarized as follows:

• We investigate the limitations and potential of the distil-
lation model in the FSOD scenarios and devise a more
suitable self-distillation few-shot approach, SD-FSOD,
which applies distillation only in the fine-tuning stage.

• We propose a scattering approach to extract a robust class
prototype suitable for distillation, mitigating knowledge
feature bias and allowing the model to better accom-
modate inter-class heterogeneity and absorb intra-class
consistency in the distillation process.

• We decouple the distillation process into two subtasks,
categorical distillation and locational distillation, to avoid
interference and maintain a joint representation during
fine-tuning.

The remainder of this paper is organized as follows: In
Sec. II, we discuss the related work on few-shot object detec-
tion. In Sec. III, we present the overall framework and the
proposed method in detail. Sec. IV reports the experimental
and ablation results, and Sec. V concludes the paper.

II. RELATED WORK

Our work is related to several fields, including few-shot
learning, few-shot object detection, and knowledge self-
distillation memory in the visual field. We review these related
works in the following parts.

A. Few Shot Learning (FSL)

Due to its capacity to learn with little data, few-shot
learning [53] has attracted a lot of interest in the domain
transfer learning field. Three major paradigms can be used to
categorize few-shot learning tactics: data augmentation strate-
gies, meta-learning, and metric learning. a) Data enhancement
strategies [19], [20], including image transformation, syn-
thetic data generation, and pseudo-labeling, are employed to
augment the sample size and enhance the model’s general-
ization ability through image processing and the synthesis
of additional data. b) Meta-learning-based methods optimize
a particular model to acquire a learner that can adapt to
new tasks, also known as “learning to learn” [29], [30],
[34]. Meta-learning approaches primarily gauge the similarity
between support set images and the test image, leveraging that
category for model prediction. c) Metric learning strategies [5],
[7] are derived offshoots of meta-learning. By establishing
a distance metric to measure similarity between query and
support samples, these methods can accurately categorize data
even without large training datasets. Despite the effectiveness
of the above methods for classification tasks, their application
in complex few-shot object detection (FSOD) tasks presents
challenges such as object occlusion, distribution confusion,
and variable scales. Consequently, the development of effective
FSOD methods that can overcome these challenges is a
constantly evolving area of research [26].

B. Few Shot Object Detection (FSOD)

With only a limited number of annotated samples, few-
shot object detection (FSOD) endeavors to identify distinct

categories [3]. However, many FSOD methods struggle to
identify novel, arbitrary unseen categories, as they often rely
on artificially assigned pre-existing categories. Inspired by
meta-learning, early FSOD methods utilize meta-learners to
generalize feature weights to novel classes. For instance, Meta
R-CNN [47] and FSRW [17] use support images to aggregate
query features, leading to a variety of feature aggregation
and spatial augmentation techniques. Among these methods,
A-RPN [10] stands out because it makes use of attentional
RPN to exclude background boxes and features from particular
classes. The fine-tuning paradigm, which incorporates a two-
stage training process to improve the quality of information
transmission, is the leading strategy at the moment. TFA [39],
for example, only has to tweak the final layer to produce
passable results, and FSCE [33] makes use of supervised
contrastive loss to overcome problems with insufficient inter-
class matching. DeFRCN [27] introduces gradient decoupling
technology that utilizes fine-tuning techniques to optimize
classification and regression tasks in parallel. Additionally, cer-
tain semi-supervised learning approaches have demonstrated
efficacy in FSOD tasks. For instance, LVIS [19] implements
the enlargement of novel classes through pseudo-annotation.
VAE [46] mitigates variation in sample distribution by gener-
ating features with increased clip-related diversity. However,
simple methods for fine-tuning might run into issues including
model knowledge loss, trouble adjusting to novel weights,
and feature distribution shifts as new features are added.
Consequently, we suggest a reliable fine-tuning framework
dubbed the SD-FSOD (Dynamic Self-Distillation Framework)
to improve the model’s knowledge transfer ability.

C. Self-Distillation Mechanisms (SDM)

For few-shot object detection (FSOD), the proportion of
each new sample in the feature weights is much larger than in
regular object detection tasks. Several studies have explored
the efficacy of distillation mechanisms in the context of
FSOD tasks. EKD [35] introduces a progressive approach to
knowledge distillation that enhances the efficacy of transfer-
ring knowledge from teacher models. Similarly, MFDC [43]
applies a knowledge distillation memory bank to learn and
extract feature commonalities between base classes and novel
classes, which culminates in exceptional performance metrics.
However, it is particularly difficult to find a suitable teacher
model when the sample is insufficient, and crude learning
methods can introduce bias in the distribution of features [45],
[52]. Researchers have proposed the self-distillation methods,
in which the student model acts as its own instructor to
overcome this problem. The self-distillation strategies can
hasten the transfer of knowledge while enhancing learning
capacity [32], [45]. By fully exploring the feature correlations
between base and novel classes, the self-distillation approaches
allow for a more accurate representation of the data distri-
bution, overcoming the limitations of the global distillation
mode. Inspired by these works, we propose a novel self-
distillation paradigm to accomplish soft knowledge distillation
through a potent class prototype during the FSOD’s fine-tuning
step.
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Fig. 3. The proposed framework of SD-FSOD. Compared to the standard Faster R-CNN, there are two additional components inserted into the framework:
the Distribution Prototype Extractor (DPE) module and the Self-Distillation Memory (SDM) module. DPE applies base feature to initialize the detector’s
weights to ensure a robust distribution of novel classes. SDM separates the self-distillation process into two subtasks, which allows the student model to
acquire and exchange precise features through independent distillation processes. (The blue line represents the distillation task of classification, and the green
line represents the distillation task of location regression.)

D. Prototype Distribution Calibration (PDC)

Prototype distribution calibration (PDC) has become
increasingly used in both semi-supervised and weakly super-
vised scenarios due to its outstanding ability to mine feature
correlations [49]. Building on this strength, SCM [54] adopts
a spatial calibration module to dynamically adjust semantic
relevance and spatial context strength, which demonstrates the
excellence of PDC in weakly supervised object localization.
By creating an image-specific prototype, SIPE [4] captures
complete regions and utilizes consistency loss to enhance
segmentation performance. It can be concluded that a robust
prototype distribution is crucial for the model’s performance.
However, FSOD models are extremely sensitive to the varia-
tions of novel classes during the fine-tuning stage, which can
lead to significant deviations in distribution. Fittingly, distri-
bution calibration technologies leverage feature correlations
to guide the formulation of novel class feature distributions,
consequently mitigating feature ambiguity. In line with this
trend, TEDC [51] employs a distribution calibration module
to reduce the deviation between the distributions of support
features and query features in the same class. Inspired by the
above excellent works, we cleverly integrate class prototype
distribution calibration technology within the self-distillation
paradigm for FSOD tasks. Our distribution prototype extractor
effectively counters the challenges associated with the quality
of the teacher model and fosters the model’s ability to identify
and filter the acquired knowledge in the subsequent distillation.

III. METHODOLOGY

The FSOD preliminary is covered in Sec. III-A. In
Sec. III-B, and we illustrate the overall framework, Self-
Distillation Paradigm via Distribution Calibration for Few-
Shot Object Detection (SD-FSOD). Then, we discuss the

Distribution Prototype Extractor (DPE) module and the Self-
Distillation Memory (SDM) module in Secs. III-C and III-D.

A. Preliminary

We implement the two-stage training approaches following
the standard FSOD setups [39], [47]. Let D = {(xi , yi )|xi ∈

X, yi ∈ Y } denotes the training set, where xi represents object
images and yi = {ci , bi } represents the corresponding label
consisting of class ci and bounding box bi . The classes are
composed of base classes Cbase with sufficient annotations and
novel classes Cnovel with only K (no more than 30) instances,
and the two datasets are mutually exclusive ( Cbase ∩Cnovel =

∅). In the first stage, we train a pre-trained detector using the
abundant data from the Cbase. In the second stage, we fine-tune
the detector by jointly adding the novel classes to optimize
a detector capable of detecting the novel classes. Finally,
we evaluate the performance of the few-shot detector on
Dtest ∼ {Cbase ∩ Cnovel}.

B. Framework

We choose Faster R-CNN [28] as the foundational detector
and further built our overall framework (SD-FSOD), as shown
in Figure 3. The training process is divided into two stages,
the base training stage and the fine-tuning stage. In the base
training stage, we adopt the training methodology as well as
the original RCNN model for object detection. During the fine-
tuning stage, we present the Distribution Prototype Extractor
(DPE) module during feature migration, which focuses on
building a robust class prototype using correlation information
between the base class features and the novel class features.
We then propose the Self-Distillation Memory (SDM) module
to devise two different self-distillation tasks for classification
and regression. The purpose of SDM is to perform a distri-
bution calibration by a self-supervised method, which is to
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Fig. 4. The detailed structure of the proposed DPE module. In the base training stage, a relatively stable base distribution is obtained. During the fine-tuning
stage, DPE extracts and calibrates scattered novel class features based on transferring feature knowledge and acquires a relatively robust novel distribution
through gradient scaling.

predict the distribution closer to the true distribution. The
framework provides a powerful and robust FSOD distillation
mode, and we will detail its structure in the following sections.

C. Distribution Prototype Extractor (DPE)

The existing FSOD methods may struggle to ensure an
optimal feature prototype distribution that capturing the dis-
tinctive characteristics of object classes with minimal training
data remains a challenge. Class imbalance can affect the
feature distribution, leading to biases and inaccuracies in the
representation of different object classes [32], [45]. To mitigate
the boundary ambiguity caused by class imbalance, we con-
sider constructing feature distributions by class prototype
calibration techniques. The distribution of feature prototypes
plays a crucial role in capturing the discriminative char-
acteristics of object classes. We propose the Distribution
Prototype Extractor (DPE), whose primary purpose is to align
the target distribution with its standard distribution and so
provide a reliable feature representation for later usage. When
encountering new objects, the model can leverage the learned
feature prototypes to make accurate predictions based on their
similarity to the prototypes, even without extensive training
data for these novel classes.

As shown in Figure 4, the base class distribution is obtained
through the base training stage. Then the DPE component is
embedded in the RoI feature extractor to fine-tune training.
Then, the feature extractor extracts the key feature points
through the multidimensional Gaussian distribution and uses
the mean and covariance of the features to fit a stable novel-
class feature prototype, i.e. normalized prototype. Such a
prototype can provide a good prerequisite for subsequent
distillation knowledge acquisition, which can efficiently apply
Gaussian offsets to sharpen the model’s predicted values.
In the following part, we describe these two components in
detail.

1) RoI Feature Extraction: This component computes the
class distribution from the received proposals, which is rep-

resented by the Gaussian distribution �i = {(µi , σi )}, where
µi and σi denote the mean and covariance of the class distri-
bution, respectively. After the base training stage, a feature
representation �b = {(µb, σb)} is obtained with specific
formulas for the mean µb and covariance σb, as follows:

µb =
1

Nn

∑
i∈Nb

x s
i , (1)

σb =
1

Nn − 1

∑
i∈Nb

(
x s

i − µb
)(

x s
i − µb

)T
, (2)

where Nn is the total number of classes, Nb is the particular
base class, and x s

i is the feature vector of the class. s is the
training iteration steps.

2) Normalized Prototype: In the fine-tuning stage, we apply
the normalization strategies to scale novel classes the elements
in the feature tensor by adding an alignment compensation
factor λ. The factor can reduce the differences in distribution
to ensure that the base distribution does not mislead the
construction of the novel distribution. The essence of the factor
is to adjust the process of distribution construction by means
of gradient scaling, which improves the stability of the model’s
performance. The construction process is as follows:

µ = λ × µb + (1 − λ) × x s
i , (3)

where µ is the mean of the distribution prototype. We ana-
lyze the value range of λ into three situations. When λ<0,
it adversely affects the optimization trajectory for RoI, which
is equivalent to the disappearance of the adversarial strategy
during the feature migration process. When λ>1, the migration
effect is overemphasized, and not considering the novel feature
knowledge is not enough. Therefore, we initialize to a range
interval: (0, 1]. We empirically set λ to 0.33 to normalize
the scale of the distribution by default. The few feature
factors that are most similar to the base class are used to
determine the center of the novel class feature distribution
after the normalized feature distribution has been obtained.
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Fig. 5. The detailed structure of the proposed SDM module. GDL utilizes affine transformation strategies to modulate the decoupling degree between
modules. In the process, the self-distillation task is decoupled into relatively independent subtasks on the FC layer. The output loss of the classification task
and regression task will be calibrated and fused by the offline PCB. (The blue line is the distilling task of classification, and the green line is the distilling
task of location regression.)

Through gradient computation, the building process of the
novel distribution �n is demonstrated below:

µn = xi +
1
N

|Fmins |∑
i∈n

µ, (4)

σn =
1
k

|Fmins |∑
i∈n

µn + C, (5)

where µn and σn denote the mean and covariance of the
novel distribution, respectively. Furthermore, we focus on
refining the feature commonality between the base classes
and the novel classes during the fine-tuning stage. To mitigate
the common interference between base classes, we compress
the similarity covariance σb of the region proposals from one
base class to another base classes, and σb is normalized as a
small constant value C . C ∈ {λσb/Cgt }. Cgt is the groundtruth
distribution, which can preserve and refine the commonality
between effective base classes without disturbing novel dis-
tribution. Additionally, this compression method concentrates
on extracting common features between base and novel classes
without adding extra computational load. xi is the normalized
feature vector, and k is the number of feature points that are
closest to the center of the distribution. |Fmins | are the feature
factors that are most similar to the base class.

We primarily use a measure of the difference between adja-
cent distributions to gauge whether the distributions of data
samples are similar. In object detection, differences in feature
distributions may cause a model to perform poorly in different
domains. Our distribution calculation allows the model to
better learn the distribution of features, which in turn improves
the generalization performance over differently distributed
data. Our approach combines the benefits of preadaptation
and category balancing to reduce the impact of distribution
differences and encourage the model to learn consistent feature
representations across samples. DPE effectively eliminates the
confusing feature margin by intelligently leveraging center dis-
tances while ensuring the strong location of the feature center
during the fitting of the novel class distribution, outputting a
robust feature representation.

D. Self-Distillation Memory (SDM)

Distillation methods enhance the generalization capability
of the student model to novel classes by leveraging the
knowledge learned from a diverse set of base classes. In par-
ticular, the approaches help in improving the model’s ability
to recognize and classify objects from unseen classes during
inference. However, dealing with intra-class variability, where
objects within the same class may exhibit diverse appearances,
remains a challenge in self-distillation. When the detectors are
jointly optimized, RCNN demands translation-invariant fea-
tures for box classifier whereas translation-covariant features
for box regressor [27]. The previous models are still hard to
capture and distill the essential characteristics of each class
while accommodating the variations within the class [45].
Therefore, to solve this problem, we propose a Self-Distillation
Memory (SDM) module that can adequately accommodate the
changes in characteristics during the fine-tuning stage.

As shown in Figure 5, we adopt gradient decoupled layers
(GDL) component and offline prototypical calibration block
(PCB) component, which enhance feature representation and
eliminate false positives for high scores, respectively [27].
At the same time, we also built our self-distillation architecture
to prevent any implicit interference with the evolutionary
process. Firstly, we apply the FC layer to extract the RoI
feature matrix for mapping and distribute the feature vectors
for knowledge self-distillation. Then, we use decoupling tech-
niques, splitting the detection into two simultaneous subtasks
and integrating innovative design elements. With the architec-
ture, it is ensured that such interference does not affect the final
loss joint output. Finally, we utilize an offline PCB module
to fuse the distillation losses for classification and location
calibration. The fusion technique is applied exclusively during
the inference stage without any further training and can greatly
improve the performance of few-shot detectors.

More specifically, such an approach can simultaneously
compute the similarity in the pre-learned space instead of
relying on the teacher model to make predictions for the
categories. Therefore, the obtained region proposals can be
used to calculate the similarity and serve as soft labels in the
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process of self-distillation to supervise the detector learning
of the fine-tuning backbone task. It is worth noting that,
unlike the previous practice of extensively distilling the entire
framework, we only set up local self-distillation in the fine-
tuning stage. In the following part, we illustrate the details of
self-Distillation Memory (SDM) in four steps.

1) Feature Activation: The average feature after pooling
random input is obtained from DPE as a memory sample,
and its distribution �d is expressed as:

�d =
{
�p

∣∣�p ∼ N (µd , σd)
}
, (6)

where �p is the feature distribution after RoI Align pooling.
More specifically, the newly selected query samples Vq are
calibrated and estimated using the support samples Vs accu-
mulated in the memory bank. The covariance σd is obtained
by cosine distance, which can be specifically expressed as:

σd =
1
|k|

∑
i∈I

V T
s Vq∥∥V T

s
∥∥ ∥∥Vq

∥∥ , (7)

where k is the number of random input samples. As the
detector processes both query and support features, meta-
feature categories and localization information for new objects
will be reactivated.

2) Distillation Decoupling: These activation features are
then used to perform distillation evolution. However, there are
differences in the feature learning of the detector for the clas-
sification task and the localization task during the distillation
learning process. Therefore, we decouple the self-distillation
task into two adaptive branch sub-tasks. The classification and
localization tasks are explicitly decomposed by using the fully
connected FC layer. The two terminal tasks of the distillation
process are decoupled into two independent learning spaces.
We mainly aim to solve the problem that different tasks have
different learning preferences for features of commonality in
the distillation process. Therefore, its decomposition process
is as follows: {

Rcls.
i , Rreg.

i

}n

i=1
= F (0(D(Q)) , (8)

where Rcls.
i and Rreg.

i represent two decoupled sub-tasks, F is
the FC layer, 0 is the RoI Align pooling, and D(Q) represents
the distillation task during the query process.

In the fine-tuning stage, self-calibration is performed
alongside feature learning, and a dynamic displacement com-
pensation process is performed to maximize the potential of
the distilled model. The process is expressed as:

Lsdm =
1∣∣N�d

∣∣ ∑
v∈�d

L f ine−tuning( f (Ri )), (9)

where distribution representation is denoted by the losses
Lsdm , and L f ine−tuning is the losses durling fine-tuning stage.
N�d is the number of the distribution, v is the feature vectors
of the distribution and f (Ri ) is the distillation subtask.

3) Self-Distillation Calibration: For the distillation end of
the classification task, a cascade detector is used to process
the target features step by step. At the same time, the dis-
tillation scheme combined with the bionic layer GDL and
PCB connectivity enables the model to obtain learning features

at a deeper level, avoiding the gradient disappearance and
gradient explosion problems and helping to mine difficult
sample features. Finally, the cross-entropy loss Lcross−entropy
calculation is used as follows:

Lsdm−cls =
1∣∣N�d

∣∣ ∑
v∈�d

Lcross−entr y

× (−
1
Ni

∑
i∈I

log(
esi · eqi

/
τ∑

i∈I
(esi · eqi )

)), (10)

where Lsdm−cls is the loss of the classification distillation. Ni
is the input of different cascades, and esi and eqi are feature
vectors of the support set and of the query set, respectively.

For the distillation end of the regression task, a nonlinear
mapping is used to initialize and normalize the positioning,
and the class information is re-aggregated to form a bounding
box representation of the class. In other words, the backbone
positioning task is used as the main output, and the positioning
information learned by distillation is used as an offset to
minimize the gap between the predicted positioning value and
the real position value, which is optimized by Smooth-L1 loss,
as follows:

Lsdm−reg =
1∣∣N�d

∣∣ ∑
v∈�d

D(Q)(
∑

i∈{x,y,w,h}

SmoothL1(gi − pi )),

(11)

where Lsdm−reg is the loss of distillation of the classification.
gi is the truth ground, pi is the predition value. {x, y, w, h}

is the location of the precision.
4) Loss Function: Totally, the classification and bounding

box regression losses of the RPN and the RCNN are included
in the loss function, along with the losses incurred during self-
distillation. The loss function L total is jointly optimized as
follows:

L total = L R P N + Lcls + Lreg + λ(Lsdm−cls + Lsdm−reg),

(12)

where L R P N is the loss of RPN, λ represents the loss factor for
the corresponding task, which is used to scale the distillation
loss to fit the detection terminal task.

IV. EXPERIMENTS

We introduce the experimental benchmarks in Sec. I. Then,
in Sec. II, we provide a description of our implementation and
analysis of the PASCAL VOC datasets and COCO datasets.
Finally, in Sec. III, we present the qualitative findings of our
ablation studies on PASCAL VOC datasets.

A. Datasets and Setups

1) Datasets: We follow the standard data settings and
evaluation protocols from previous works by TFA and conduct
extensive tests on our framework using the Pascal VOC
2007 [9], VOC 2012 [8], and MS COCO datasets [22] to assess
its performance on the FSOD task. For PASCAL VOC, we set
up three different splits [39], dividing its 20 categories into
15 base classes with rich annotations and 5 novel classes with
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TABLE I
EXPERIMENTAL FSOD RESULTS ON THE PASCAL VOC DATASET. WE EVALUATE SD-FSOD PERFORMANCE (NAP50) ON THREE DIFFERENT SPLITS.

RED/BLUE INDICATE SOTA/THE SECOND BEST. THE RESULTS ARE AVERAGED OVER MULTIPLE RUNS

only K instances (K = 1, 2, 3, 5, 10). We report the average
precision at IoU = 0.5 of novel classes (nAP) and part of base
classes (bAP) on the VOC 2007 test set. Regarding the MS
COCO dataset [39], which consists of 80 categories, the same
20 categories as in VOC are used as novel classes, and the
remaining 60 categories are also used as novel classes. For
MS COCO, we have K = {10, 30} settings and report the
average precision at IoU = 0.5:0.95 of novel classes (AP) and
(AP75).

2) Setups: To establish our framework, we employ
DeFRCN as the baseline and incorporated Faster R-CNN
as the base detector and ResNet-FPN as the backbone.
We design the model using the PyTorch framework, with
model hyperparameters from the detectron2 library set as the
default parameters. In the experiment, the SGD optimizer
with momentum is set to 0.9, and the batch size is set to
8. In addition, We set the initial learning rate to 0.01 for base
training and 0.005 for fine-tuning, with a weight decay of 1e-4.
All experiments are conducted using two RTX 3090 GPUs.

B. Performance

1) Results on PASCAL VOC: To illustrate the effectiveness
of our method, we evaluate our proposed method and com-
pared it with the state-of-the-art (SOTA) methods, as shown
in Table I. Our method outperforms the other methods signif-
icantly, achieving better results than the other methods. First,
in the 10-shot setting, AP50 is improved by 1.9% on average,
and all three split sets achieve the best detection results,
reflecting the stable gains of our method. Then, our method is
also excellent for the detection of very low shots. For example,
in the 1-shot and 2-shot settings, our detection results exceed
0.8% and 1.4% of the previous best results, respectively.

Finally, the three split sets improved by 4.4%, 3.7% and
5.0%, respectively. Our method achieves performance nearly
equivalent to that of Norm-VAE. While Norm-VAE primarily
focuses on modulating the output generation model according
to various attributes, our SD-FSOD is more concerned with
how to fully explore the potential relationships of existing
features. To a certain extent, MFDC outperforms some semi-
supervised methods with variational aggregation or generative
paradigms. This superior performance can be attributed to
MFDC’s capability to continuously refresh the feature distri-
bution via a distilled memory bank. In contrast, the advantage
of our SD-FSOD lies in its semi-supervised adaptability.
We utilize a simpler self-query technique to formulate a
self-distillation distribution rather than deliberately selecting
fixed novel data as the original novel distribution. The all-
around substantial performance improvement also shows that
the variance of the model in few-shot detection is more stable
and robust.

In addition, in order to comprehensively demonstrate the
performance of SD-FSOD, we list the average detection per-
formance of several base classes and all novel classes in Split
1 in Table II. We report the detection value nAP50 of the novel
classes and list the detection mean value and the detection
value mAP50 of the above classes. On the one hand, the
results show that both the detection of the novel class and
the base class has achieved excellent results, which implies
that our framework has no specific type preferences and is
more conducive to the promotion of FSOD scenarios. On the
other hand, from the 3-shot and 10-shot results, it can be seen
that our model leaves enough room for optimization for the
learning of new classes, thus acquiring feature representations
in a more comprehensive way.
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TABLE II
COMPARATIVE PERFORMANCE ANALYSIS OF BASE CLASSES AND NOVEL CLASSES. AP50 (%) OF THE 3/10 SHOTS ON THE PASCAL VOC DATASET.

OUR METHOD DEMONSTRATES CONSISTENT IMPROVEMENTS OVER NEARLY ALL ESTABLISHED BASELINES

TABLE III
FEW-SHOT OBJECT DETECTION PERFORMANCE ON NOVEL CLASSES ON

THE MS COCO 10/30-SHOT TASKS. WE REPORT NAP/NAP75 (%)
PERFORMANCE ON THE 20 NOVEL CLASSES OF MS COCO IN THE

FSOD SETTING. THE BEST IS IN BOLD

2) Results on MS COCO: Compared to the VOC dataset,
MS COCO’s category information is more complex, and
the detection circumstances are more difficult. As a result,
we report the detection results of nAP and nAP75 and set
the detection model’s performance in 10-shot and 30-shot
scenarios, respectively. As can be seen in Table III, our
suggested strategy outperforms current FSOD techniques, pro-
duces results that are competitive, and yields a significant
improvement, which proves that our model performs well
in more complex and difficult detection scenarios. Among
them, nAP75 is widely regarded as a more difficult evaluation
index that is used to assess the model’s performance and
generalizability while dealing with a small number of samples.
Our method outperforms the best method by about 3.4% and
1.0% in the 10-shot and 30-shot settings, respectively.

C. Ablation Study

To verify the effectiveness of the proposed module, we con-
duct the ablation experiments and analyzed the experimental
results. In this part, we apply the comprehensive ablation
studies to split 1 of PASCAL VOC. The experiments are

TABLE IV
ABLATION EXPERIMENTS ON DPE ON PASCAL VOC SPLIT 1. THE

DPE MODULE IS EMBEDDED DURING THE BASE TRAINING STAGE
AND FINE-TUNING STAGE, RESPECTIVELY. WE FURTHER DEMON-

STRATE THE EFFICACY OF DPE IN VARIOUS K-SHOT SCENAR-
IOS. THE RESULTS ARE AVERAGES OF MULTIPLE RUNS

conducted over 10 random runs, and the results verify the
reasonability of SD-FSOD.

1) Ablation for DPE: To further explore the performance
of DPE, we integrate the Distributed Prototype Extractor
(DPE) module in the base training stage and fine-tuning
stage, respectively. The effects of DPE on k-shot detection
are evaluated and detailed in Table IV. First, compared with
the baseline, the detection rate is improved no matter whether
the DPE component is added in the base training stage or the
fine-tuning stage. Notably, the improvement is more significant
in the fine-tuning stage than in the base training stage because
the created base distribution is stable enough after sufficient
training. Second, DPE concentrates more on how to filter,
extract, and calibrate knowledge from existing distributions
during the fine-tuning stage. Consequently, DPE’s utility is
primarily manifested in generating novel distributions from the
established base distributions. Among them, the improvement
in the extremely low shot scenarios is particularly obvious,
especially in 1 and 2-shot, which is increased by 6.8% and
5.8%, respectively. It demonstrates the ability of our module
to effectively by using critical features in a limited sample
for the prototype construction. Then, with the increase in the
number of samples, the feature distribution is more consol-
idated, and the improvement of the model by DPE is still
obvious. Finally, the detection rate increased by 1.3% in the
10-shot setting, demonstrating the DPE’s ability to remain
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Fig. 6. Comparisons of the number of positive samples in RCNN. We investigate the performance of RCNN in extracting positive proposal boxes without(w/o)
and with(w/) embedding the DPE module. DPE’s feature mining capabilities are demonstrated for both base and novel classes.

TABLE V
ABLATION EXPERIMENTS OF SDM ON PASCAL VOC SPLIT 1. WE COM-

PARE THE PERFORMANCE SEVERAL METHODOLOGIES: THE TRADI-
TIONAL FINE-TUNING TECHNIQUE, THE STANDARD DISTILLATION

PARADIGM, SDM ENSEMBLE SELF-DISTILLATION, AND SDM
DECOUPLING. THE RESULTS ARE AVERAGES

OF MULTIPLE RUNS

robust during scenarios with increased disturbances. In total,
the experimental results show that DPE provides a powerful
feature distribution prototype, which lays the foundation for
the subsequent model operation.

In order to test the adaptability of the DPE and RCNN
frameworks, we further conduct comparative experiments.
We adopt a set of query samples to input randomly for detect-
ing whether RCNN works with DPE, as shown in Figure 6.
On the one hand, the number of positive samples detected after
adding DPE has increased significantly, demonstrating that our
module addresses two frequent issues with RCNN in few-shot
detection and enhances the performance of RPN and RoI in
the RCNN framework. On the other hand, this way reduces the
false positives brought on by RPN’s classification of decision-
making as being too arbitrary when samples are sparse and
also aids RoI in providing efficient feature representation under
the assumption of prioritizing samples.

2) Ablation for SDM: To verify the performance of SDM,
we design an ablation experiment to compare the baseline, the
overall distillation scheme, the self-distillation mechanism, and
the role of decoupling subtasks. In this experiment, we mainly
report the nAP50 of various schemes as the detection standard,
and the results are shown in Table V. First, we demonstrate the
results of the baseline in No .1. Undoubtedly, compared with
No. 1 and No. 2, the ensemble distillation plan enhances the

Fig. 7. Ablation on SD-FSOD of m/n Average Precision. We assess the
synergistic effect of the DPE and SDM modules with a primary emphasis
on mAP and nAP metrics. The detection accuracy comparison of K-Shot
intuitively shows that our method far exceeds the baseline.

paradigm fine-tuning approach. Second, as shown in No. 3,
the improvement effect is very obvious, including a 4.8%
improvement in 1-shot settings, in which our fine-tuned self-
distillation framework is better suited to provide the correct
guidance for the model. Then, we explore the performance
of decoupling the SDM module into classification and regres-
sion subtasks, respectively. More specifically, we meticulously
conduct a detailed assessment of the decoupling performance
of each subtask. We mainly conduct comparative experiments
by freezing one of the distilling subtask scores. Comparative
experiments reveal that conducting either the classification or
the regression sub-distillation task independently contributes
to a modest enhancement in the model’s overall performance.
However, the model performance is not stable enough, espe-
cially for regression tasks that lack categorical information
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Fig. 8. Visualization of 1-shot object detection on the VOC dataset. We demonstrate the detection performance in different scenarios such as object occlusion,
varying scales, small targets, and foreground-background confusion, respectively. We display bounding boxes with scores greater than 0.4. The success cases
(blue boxes) and the failure cases (red boxes) are shown, respectively.

Fig. 9. Training speed comparison. We plot the change in nAP50 across
training iterations. We compare the model evolution capabilities of the classic
fine-tuning paradigm model at the same number of iteration steps.

feedback. Finally, we combine the loss scores from the two
sub-tasks to jointly evaluate the distillation performance. Fol-
lowing our modified self-distillation decoupling technique,
a thorough improvement and the best detection findings were
obtained, as shown in No. 6. Overall, the decoupling tech-
nology in SDM distillation significantly enhances the baseline
performance.

3) Ablation for SD-FSOD: To test the joint effect of class
prototype extraction and self-distillation modality, we perform
further ablation experiments. We adopt mAP50 and nAP50 as
detection criteria, as shown in Figure 7. It is worth mentioning
that mAP50 refers to the mean average precision when the
recall rate is 50%, which mainly reflects the accuracy of
the algorithm when detecting half of the positive samples.
In general, a higher mAP50 means better performance of the
algorithm in the FSOD task. First, whether it is mAP50 or
nAP50, our method is much superior to the baseline, especially
for the detection of various k-shot settings. Then, our nAP50

is more stable and less impacted by the number of samples,
demonstrating the resilience and robustness of the model.
As a result, the experiment demonstrates that a powerful class
prototype is helpful in the construction of the distillation model
and may also be employed as a teacher by itself to direct
students’ learning, which leads to amazing results.

D. Transferability

As shown in Figure 9, we evaluate the growth rate of nAP50
with the number of training iterations in the same operating
mechanism to verify the transferability of our model. To ensure
a level playing field for comparing and evaluating the perfor-
mance, we eliminate potential biases introduced by variations
in hardware performance by maintaining consistent computing
equipment conditions and calculating the average value repeat-
edly. Furthermore, we employ the method of computing the
average value repeatedly, allowing us to record the model’s
mean nAP50 detection rate at each hundred iteration step.
First, the experiment shows that previous models are generally
stable after the number of iterations reaches 2500, instead of
our model almost entirely converging after 1500 iterations.
Additionally, our model converges substantially quicker than
previous SOTA methods for the same training iteration steps,
indicating that our method has a faster rate of transferability
and adaptation. Therefore, our method helps mitigate the
impact of random fluctuations and provides a more reliable
estimate of the model’s detection.

E. Visual Inspections and Qualitative Results

1) Qualitative Visualization: As shown in Figure 8, we uti-
lize visualization techniques to present the detection results
of both the baseline model and our SD-FSOD network. The
results clearly illustrate the notable improvements achieved by
our method, addressing several challenges that the baselines
have yet to overcome. First, through visual inspection of the
detection results of Figure 8. (a) and (d), we can clearly
observe the advantages of our SD-FSOD network over the
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Fig. 10. Visualization of the heat map on the VOC dataset. We visualize the performance of conventional distillation methods and our self-distillation
method in 1-shot scenarios. The results in each row demonstrate that our SD-FSOD has made significant improvements in solving the misalignment problem
in distillation.

baseline model, such as the detection of the object occlu-
sions and complex backgrounds. Second, it can be seen from
Figure 8. (b) and (c) that our method shows greater capability
in handling the detection tasks with multi-scale blending as
well as fine targets. Finally, as shown in Figure 8. (a) and (b),
our model improves the ability to reduce location bias, which
shows the potential of knowledge distillation and fine-tuning
processes in our SD-FSOD framework. In summary, our model
is able to cope well with a variety of complex scenarios and
has achieved excellent results.

2) Heat Map Visualization: To further validate the effec-
tiveness of SDM, we randomly select some samples of the
PASCAL VOC for testing in the 1-shot setting. And then we
visualize the heat map of the feature information obtained by
the detector, as shown in Figure 10. Specifically, we present
the detection results of baseline, original ensemble crude
distillation, and our self-distillation paradigm in four different
complex scenarios, respectively. First, it’s evident that the
baseline model struggles in scenarios with target overlap and
foreground confusion, showcasing limited capacity in captur-
ing effective feature information. While the crude distillation
method has enhanced feature extraction, the inferred results
indicate that it primarily expands the global feature search
capabilities. This approach may occasionally introduce more
pronounced biases, as illustrated in Figure 10. (c) and (d).
In contrast, our method demonstrates a superior ability to
mine more comprehensive feature information, focusing on
more regions and fine-grained features. The diverse results
obtained from these complex scenarios conclusively illustrate
our model’s robust local and global feature search proficiency.
Our method effectively addresses the misalignment issue in
distillation and mitigates the problem of distillation flooding

caused by limited sample. Thus, the SD-FSOD network has an
excellent ability to address the crucial challenges in few-shot
object detection.

V. CONCLUSION

In this paper, we address the critical issue of the distribu-
tional misalignment of class prototypes and the limitations of
distillation frameworks in few-shot object detection (FSOD).
Through comprehensive exploration of category relationships
in FSOD scenarios, we introduce a powerful class prototype
self-distillation network framework (SD-FSOD). Our proposed
approach boasts several key contributions. First, we design
the DPE module that generates a robust representation to
effectively construct feature distributions, mitigating the issue
of class prototype misplacement. Next, we utilize the SDM
module with decoupling strategies to enhance learning prefer-
ences in both classification and regression tasks. Our proposed
approach demonstrates the advancement of knowledge self-
distillation in FSOD tasks. It opens up new directions for
further study by fusing the class prototyping approach with
the self-distillation paradigm, motivating the model to self-
calibrate during the fine-tuning process. Experimental results
on the PASCAL VOC and MS COCO datasets demon-
strate the significant enhancements achieved by our proposed
method. While our method has shown promising results, it is
essential that it still requires further improvement, such as
model adaptation, dependence on prototypes, and distillation
efficiency issues. In conclusion, our approach significantly
contributes to the innovations of FSOD research. We encour-
age researchers to build upon our ideas to drive progress
and breakthroughs in FSOD research. Moreover, we advocate
for the extension of these methods to other tasks such as
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few-shot instance segmentation and fine-grained object detec-
tion, thereby advancing the field of few-shot object detection
on all fronts.
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