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A Diffusion Model Translator for Efficient
Image-to-Image Translation

Mengfei Xia , Yu Zhou, Ran Yi , Yong-Jin Liu , Senior Member, IEEE, and Wenping Wang , Fellow, IEEE

Abstract—Applying diffusion models to image-to-image trans-
lation (I2I) has recently received increasing attention due to its
practical applications. Previous attempts inject information from
the source image into each denoising step for an iterative refine-
ment, thus resulting in a time-consuming implementation. We
propose an efficient method that equips a diffusion model with
a lightweight translator, dubbed a Diffusion Model Translator
(DMT), to accomplish I2I. Specifically, we first offer theoretical
justification that in employing the pioneering DDPM work for
the I2I task, it is both feasible and sufficient to transfer the dis-
tribution from one domain to another only at some intermediate
step. We further observe that the translation performance highly
depends on the chosen timestep for domain transfer, and therefore
propose a practical strategy to automatically select an appropriate
timestep for a given task. We evaluate our approach on a range
of I2I applications, including image stylization, image colorization,
segmentation to image, and sketch to image, to validate its efficacy
and general utility. The comparisons show that our DMT surpasses
existing methods in both quality and efficiency. Code is available
at https://github.com/THU-LYJ-Lab/dmt.

Index Terms—Diffusion models, image translation, deep
learning, generative models.

I. INTRODUCTION

A DIFFUSION probabilistic model [1], [2], [3], [4], also
known as a diffusion model, is a generative model that

consists of 1) a forward diffusion process that gradually adds
noise to a data distribution until it becomes a simple latent distri-
bution (e.g., Gaussian), and 2) a reverse process that begins with
a random sample in the latent distribution and employs a learned
network to revert the diffusion process, thereby generating a
data point in the original distribution. Among all the variants of
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the diffusion model, the denoising diffusion probabilistic model
(DDPM) [2] offers the advantage of a simple training procedure
by exploring an explicit connection between the diffusion model
and denoising score matching. Recent studies have demonstrated
the compelling performance of DDPM in high-fidelity image
synthesis [2], [5], [6].

Despite its rapid development, there are relatively few studies
on applying the diffusion model to conditional generation, which
is a key requirement for many real-world applications, such as
the well-known image-to-image (I2I) task [7] that translate a
source image of one style into another target image of a different
style. Unlike unconditional generation, conditional generation
necessitates constraining synthesized result with an input sample
in the source domain as the content guidance. Therefore, to
handle an I2I task using DDPM, existing methods [8], [9], [10],
[11], [12] inject the information from an input source sample into
every single denoising step in the reverse process (see Fig. 1(a)).
In this way, each denoising step explicitly relies on its previous
step, making it inefficient to learn the step-wise injection.

In this work, we investigate a more efficient approach to
applying DDPM to I2I tasks by endowing a pre-trained DDPM
with a translator, which we name Diffusion Model Translator
(DMT). First, we provide a theoretical proof that given two
diffusion processes on two different image domains involved in
an I2I task, it is feasible to accomplish the I2I task by shifting a
distribution from one process to another at a particular timestep
with appropriate reparameterization. Based on this theoretical
justification, we develop a new efficient DDPM pipeline, as il-
lustrated in Fig. 1(b). Assuming that a DDPM has been prepared
for one image domain y0, we use it to decode the latent that is
shifted from another domainx0. To accomplish the domain shift,
we apply the same forward diffusion process ontox0 and y0 until
a pre-defined timestep t, and then employ a neural network to
translate xt to yt as a typical I2I problem.

There are two major advantages to our approach. First, the
training of DMT is independent of DDPM and can be executed
very efficiently. Second, DMT can benefit from using all the
previous techniques in the I2I field (e.g., such as Pix2Pix [7],
TSIT [13], SPADE [14], and SEAN [15]), for a better per-
formance. Furthermore, regarding the choice of the timestep
t to perform domain transfer, we propose a practical strategy
to automatically select an appropriate timestep for a given data
distribution.

To empirically validate the efficacy of our method, we con-
ducted evaluation on four I2I tasks: image stylization, image
colorization, segmentation to image, and sketch to image. Both
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Fig. 1. Conceptual comparison between (a) existing methods [9], [10], [11] and (b) our DMT. {xt}Tt=0 represent different states of the input from the source
domain, while yT → y0 stands for the denoising process of DDPM. Here, T denotes the total number of noise-adding steps in the diffusion process. Instead of
using the information ft(x) from the source domain (which can be the original or noisy image) for an iterative refinement at each denoising step t, t = 0, 1, . . . , T ,
DMT accomplishes the I2I task efficiently by learning an efficient translation module at just one preset timestep and fully reusing the pre-trained DDPM. How to
select an appropriate translation timestep is discussed in Section III-D.

qualitative and quantitative results demonstrate the superiority
of our method over existing diffusion-based alternatives as well
as the GAN-based counterparts of DMT.

II. RELATED WORK

In a forward diffusion process, a Diffusion probabilistic model
(DPM) [1], [2] transforms a given data distribution into a simple
latent distribution, such as a Gaussian distribution. Due to its
strong capabilities, DPM has achieved great success in var-
ious fields, including speech synthesis [16], [17], video syn-
thesis [18], [19], image super-resolution [20], [21], conditional
generation [10], [12], and image-to-image translation [8], [9].
Denoising diffusion probabilistic model (DDPM) [2] assumes
the Markovian property of the forward diffusion process. For
a dataset of images, the forward diffusion process is realized
by corrupting each image x0 through the addition of standard
Gaussian noise to reduce it into a completely random noise
image. Formally, given the variance schedules αt ∈ [0, 1], t =
1, 2, . . . , T, βt = 1− αt, we can write the Markov chain as:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), (1)

q(xt|xt−1) ∼ N (xt;
√
αtxt−1, βtI), (2)

where xT ∼ N (xT ; 0, I) and I is the identity matrix.
When reversing this diffusion process, DDPM serves as a gen-

erator for data generation in the formpθ(x0) =
∫
pθ(x0:T )dx1:T

starting from xT :

pθ(x0:T ) = pθ(xT )

T∏
t=1

pθ(xt−1|xt), (3)

pθ(xt−1|xt) ∼ N (xt−1;μθ(xt, t),Σθ(xt, t)), (4)

so that any sample xT in the latent distribution will be mapped
back to x0 in the original data distribution. To achieve its reverse
process for image synthesis, DDPM parameterizes the mean
μθ(xt, t) by a time-dependent model εθ(xt, t) and optimizes
the following simplified objective function:

L = Eq(x0,t,ε)

[‖ε− εθ(
√
ᾱtx0 +

√
1− ᾱtε, t)‖2

]
. (5)

Faster DPM attempts to explore shorter trajectories rather
than the complete reverse process, while ensuring that the

synthesis performance is comparable to the original DPM. Some
existing methods seek the trajectories using the grid search [16].
However, this is only suitable for short reverse processes because
its time complexity grows exponentially. Other methods try to
find optimal trajectories by solving a least-cost-path problem
with a dynamic programming (DP) algorithm [22], [23]. Another
representative category of fast sampling methods uses high-
order differential equation (DE) solvers [24], [25], [26], [27],
[28]. Some GAN-based methods also consider larger sampling
step size. For instance, [29] demonstrates learning a multi-modal
distribution within a conditional GAN using a larger step size.

Image-to-image translation (I2I) aims to translate an input
image from a given source domain to another image in a given
target domain, with input-output paired training data [7]. To
this end, the conditional generative adversarial network (cGAN)
is designed to inject the information of the input image into
the generation decoder with the adversarial loss [30], [31]. The
cGAN-based algorithms has demonstrated high quality on many
I2I tasks [13], [14], [15], [32], [33], [34], [35], [36], [37], [38].
However, due to their training instability and the severe mode
collapse issue, it is hard for the cGAN-based methods to generate
diverse high-resolution images. Recently, DPM has been applied
to the I2I task. Palette [9] introduces the novel DPM framework
to the I2I task by injecting the input into each sampling step
for refinement. Some methods use pre-trained image synthe-
sis models for the I2I task [12]. Despite the high quality of
synthesized images, the generation process of these existing
methods is extremely time-consuming. Our work tackles this
issue by proposing a new DDPM method for the I2I task that
works efficiently, without the time-consuming requirement of
having to inject the input source information in every denoising
step. Although unpaired data are more accessible for translation
tasks, the advantages of paired image-to-image (I2I) tasks, such
as reduced data demands and enhanced synthesis quality, have
made them a significant research focus.

III. METHOD

A. Markov Process of Translation Mappings

For an I2I task, traditional DDPM methods directly approx-
imate the real distribution q(y0|x0) in which x0, y0 are paired
data from the source domain Dx and the target domain Dy ,
respectively. In contrast, we construct a translation module
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pθ(yt|xt), which bridges the input condition and the pre-trained
DDPM. Accordingly, we can approximate the q(y0|x0) using
the learned intermediate translation module. Specifically, given
a noise-adding schedule of the forward variance process βi ∈
[0, 1], t = 1, 2, . . . T , αi = 1− βi and ᾱt =

∏t
i=1 αt, we first

generalize the forward Markov process to the joint distribution
of (x1:t, y1:t) as below:

q(y1:t, x1:t|y0, x0) =

t∏
i=1

q(xi|xi−1)

t∏
j=1

q(yj |yj−1), (6)

q(xi|xi−1) ∼ N (xi;
√
αixi−1, βiI), (7)

q(xt|x0) ∼ N (xt;
√
ᾱtx0, (1− ᾱt)I), (8)

q(yj |yj−1) ∼ N (yj ;
√
αiyi−1, βiI), (9)

q(yt|y0) ∼ N (yt;
√
ᾱty0, (1− ᾱt)I). (10)

The corresponding DDPM trained on the target domain pro-
vides a reverse Markov process to approximate q(y0) from a
sample yT drawn from the standard Gaussian distribution, i.e.,
yT ∼ N (yT ; 0, I). Note that during the denoising process, yi is
only determined by yi+1 and irrelevant to x0:t for i ∈ [0, t− 1].
We choose to construct the translation mapping at some specified
step1 of the diffusion forward process using pθ(yt|xt), which
induces the following Markov process:

pθ(y0:t, x1:t|x0) = pθ(yt|xt)

t∏
i=1

q(xi|xi−1)

t∏
j=1

q(yj−1|yj),

(11)

where q(yj−1|yj) is the denoising process of the pre-trained
DDPM.

B. Translation Mappings of DDPM

Let pθ(y0|x0) =
∫
pθ(y0:t, x1:t|x0)dy1:tdx1:t represent the

sampling distribution of q(y0|x0), where pθ(yt|xt) serves to
bridge the two domains. By making use of the variational lower
bound to optimize the negative log-likelihood, we have the
following lemma:

Lemma 1: The negative log-likelihood of− log pθ(y0|x0)has
the following upper bound,

− log pθ(y0|x0) � Eq

[
log

q(y1:t, x1:t|y0, x0)

pθ(y0:t, x1:t|x0)

]
, (12)

where q = q(y1:t, x1:t|y0, x0).
In other words, the translation mapping can be learned by

optimizing the variational lower bound:

LCE = �Eq(y0|x0) [log pθ(y0|x0)] (13)

� Eq(y0:t,x1:t|x0)

[
log

q(y1:t, x1:t|y0, x0)

pθ(y0:t, x1:t|x0)

]
:= LV LB .

(14)

First, we claim that the optimal pθ(yt|xt) follows a Gaussian
distribution up to a non-negative constant of (13).

1The selection of this specified step is discussed in Section IV.

Theorem 1 (Closed-Form Expression): The loss function in
(13) has a closed-form representation. The training is equivalent
to optimizing a KL-divergence up to a non-negative constant,
i.e.,

LV LB = Eq(y0,xt|x0) [DKL(q(yt|y0)‖pθ(yt|xt))] + C. (15)

For the given closed-form expression in (15), the optimal
pθ(yt|xt) follows a Gaussian distribution and its mean μθ has
an analytic form, as summarized in the Theorem 2 below:

Theorem 2 (Optimal Solution to (15)): The optimal pθ(yt|xt)
follows a Gaussian distribution with its mean being

μθ(xt) =
√
ᾱty0. (16)

Detailed proofs of the above lemma and theorems are pro-
vided in Appendix B, available online.

C. Reparameterization of μθ

Given the DDPM trained on the target domain, we first apply
the same diffusion forward process on both x0 and y0 as a shared
encoder to represent the mean μθ(xt):

xt =
√
ᾱtx0 +

√
1− ᾱtzt, yt =

√
ᾱty0 +

√
1− ᾱtzt.

(17)

Theorem 2 reveals that μθ needs to approximate the expres-
sion

√
ᾱty0 with xt as the only available input. Then, we apply

the following parameterization,

μθ(xt) = fθ(xt)−
√
1− ᾱtz(xt), (18)

where fθ is a trainable function and z(xt) = zt, which is set to
the shared noise component of x0 and y0. The KL-divergence in
(15) is optimized by minimizing the difference between the two
means together with the variance Σθ of pθ(yt|xt). Noting that
Σθ = (1− ᾱt)I , the objective function then has the following
form,

Lt = Eq

[
1

2(1− ᾱt)
‖fθ(xt)− yt‖2

]
. (19)

Equation (18) implies that inferring yt ∼ pθ(yt|xt) is to com-
pute fθ(xt)−

√
1− ᾱtzt +

√
1− ᾱtz, where z ∼ N (0, I).

D. Determining an Appropriate Timestep for Translation

Recall that we encode the same forward diffusion process
onto both x0 and y0 using a shared encoder (ref. to (17)), where
zt is independent of x0 and y0. As t tends to T , xt and yt will
converge to the same Gaussian noise simultaneously, since
xt, yt → zT ∼ N (0, I). Hence, as t increases, the distance
between (xt, yt) will decrease and the distance between
(x0, xt) will increase. In other words, the training of DMT
faces a trade-off between the gap between the two potential
domains and the strength of the condition signal. The larger
timestep t makes it easier for the DMT to learn the translation
mapping, while the strength of inference information will be
weakened since the injected noise corrupts the origin signal.

To address this trade-off issue, we provide a theoretical anal-
ysis below. Recall that our proposed diffusion-model-based I2I
system consists of three sub-systems: 1) the forward diffusion

Authorized licensed use limited to: Tsinghua University. Downloaded on December 13,2024 at 09:51:28 UTC from IEEE Xplore.  Restrictions apply. 



XIA et al.: DIFFUSION MODEL TRANSLATOR FOR EFFICIENT IMAGE-TO-IMAGE TRANSLATION 10275

Fig. 2. Qualitative results of our proposed DMT on four I2I tasks: image stylization, image colorization, segmentation to image, and sketch to image. Here we
equip a pre-trained DDPM with an efficient translation module. Our approach makes adequate use of the content information from the input condition as well as
the domain knowledge contained in the learned denoising process.

process fromx0 toxt, 2) DMT fromxt to yt, and 3) the denoising
process via pre-trained diffusion model from yt to y0. Our
analysis is based on the following observation: the complexity
C of the whole system S is determined by the maximal one
among the complexities of three sub-systems (S1, S2, S3), i.e.,
C(S) = max{C(S1), C(S2), C(S3)}. Given a timestep t, let
C(S1) = f(t), C(S2) = g(t), C(S3) = h(t), where f(t), g(t)
and h(t) are complexity curves of diffusing x0 to xt, translating
xt to yt, and denoising yt to y0 w.r.t. the timestep t, respectively.
First, we assume2 f(t) ≈ h(t). Then C(S) = max{f(t), g(t)}.
Second, we assume3 that f(t) and g(t) are monotone curves.
Then we have the conclusion thatC(S) takes the minimum value
at the intersection point of two monotone curves f(t) and g(t).

Accordingly, we propose a simple and effective strategy to
determine an appropriate timestep tbefore training. We calculate
the L1, L2, Peak Signal-to-Noise Ratio (PSNR), Learned Per-
ceptual Image Patch Similarity (LPIPS) [39], Fréchet Inception
Distance (FID) [40], and Structure Similarity Index Measure
(SSIM) [41] between (xt, yt) and between (x0, xt), among
which SSIM achieves the timestep with the best performance.
The results shown in Fig. 3 are consistent with our aforemen-
tioned findings: the distance between (xt, yt) drops rapidly,

2This assumption is reasonable because the diffusion and denoising processes
are reciprocal at the same time step, although in different domains.

3This assumption is reasonable because the larger the time step, the greater
the complexity of forward diffusion and the lower the complexity of DMT.

while the distance between (x0, xt) grows monotonically as the
timestep t grows. Note that the intersection point of the two
curves offers a good approximation for the minimum of system
complexity. This observation provides us with a pre-selecting
strategy that chooses the timestep t of this intersection point as
an appropriate timestep t for domain transfer. We demonstrate
in Section IV-D the performance of using the timestep t thus
chosen by this pre-selecting method.

To summarize, we train the DMT module in the same way as
a simple I2I task. First, we gradually apply the same diffusion
forward process onto both the input condition and the desired
output until a pre-selected timestep. Then, we train the function
approximator fθ using a reparameterization strategy to reformu-
late the objective function. We theoretically prove the feasibility
of the simple DMT module and show that the approximator fθ
resembles the reverse process mean function approximator in
DDPM [2]. We verify the efficiency of the DMT in Section IV
with comprehensive experiments on a wide range of datasets,
and provide the algorithms and the pseudo-codes in Appendix
A, available online.

E. Further Discussion of DMT

Recall that we introduce the shared encoder by diffusing both
x0 and y0 with the identical timestep t. To address the trade-
off between the strength of content information and domain
gap, we propose a strategy to automatically preset an adequate
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Fig. 3. Analysis on the preset timestep, t. Our DMT needs a pre-defined timestep to learn and perform the distribution shift. We plot the distance between (xt, yt)
and (x0, xt) at different timesteps, which are shown in red and blue curves, respectively. When t increases, d(xt, yt) decreases so that the distribution is easier to
shift from xt to yt, while d(x0, xt) increases so that the input condition signal is becoming less relevant because xt is drifting away from the input x0. Considering
such a trade-off, we select the intersection as the practical choice of the timestep for DMT learning.

Fig. 4. Conceptual comparison for (a) multi-step DMT and (b) asymmetric DMT. {xt}Tt=0 represent different states of the input from the source domain, while
yT → y0 stands for the denoising process of DDPM. Here, T denotes the total number of noise-adding steps in the diffusion process. Multi-step DMT combines
the translation results of DMT at two different timesteps with an auxiliary fusion UNet and denoise to achieve the final output, while asymmetric DMT applies
translation at different timestep pair (s, t). More discussions are addressed in Section III-E and Supplementary Material, available online.

timestep t∗ to achieve equilibrium between the distances of
(x0, xt) and (xt, yt). Therefore, one could reasonably consider
to use 1) multi-step translation results from DMT to facilitate
the denoising precess, or 2) diffusion processes with distinct
timesteps for the source and target domains, as a strategy to
mitigate trade-offs and achieve improved performance. In this
subsection, we discuss these two interesting alternatives, by
fusing the DMT results at multiple timesteps (e.g., t and t/2)
(i.e., Fig. 4(a)), together with using the asymmetric timestep
pair (s, t) (i.e., Fig. 4(b)), where x0 and y0 are diffused at
timesteps s and t, s 	= t respectively. Given the results analyzed
in this section, we conclude that the former multi-step method
significantly increases training time cost while degrading the
FID performance, and that the latter more complicated pipeline
practically coincides with our proposed DMT method, since the
optimal timestep pair (s, t) appears to be the same.

To implement the multi-step DMT, due to the use of the
vanilla DDPM, which is only capable of inputting a 3-channel
input intermediate noisy image, we train an auxiliary UNet
model to fuse the yt/2 transformed from xt/2 together with
the y′t/2 denoised from the yt. However, we argue that the
additional UNet significantly increases the training cost, while
degrading the FID performance, due to additional error from
the UNet. Detailed experimental setups and quantitative com-
parison are provided in Supplementary Material, available
online.

As for the asymmetric setting, we define the disjoint distri-
bution of the forward Markov process of (x1:s, y1:t) as below:

q(y1:t, x1:s|y0, x0) =
s∏

i=1

q(xi|xi−1)
t∏

j=1

q(yj |yj−1), (20)

pθ(y0:t, x1:s|x0) = pθ(yt|xs)

s∏
i=1

q(xi|xi−1)

t∏
j=1

q(yj−1|yj).

(21)

We first claim the feasibility of this pipeline, whose proofs are
addressed in Supplementary Material, available online. Similar
to Lemma 1, Theorems 1 and 2, we have

Lemma 2: The negative log-likelihood of− log pθ(y0|x0)has
the following upper bound,

− log pθ(y0|x0) � Eq

[
log

q(y1:t, x1:s|y0, x0)

pθ(y0:t, x1:s|x0)

]
, (22)

where q = q(y1:t, x1:s|y0, x0).
We accordingly define the LV LB as below:

LCE = �Eq(y0|x0) [log pθ(y0|x0)] (23)

� Eq(y0:t,x1:s|x0)

[
log

q(y1:t, x1:s|y0, x0)

pθ(y0:t, x1:s|x0)

]
:= LV LB .

(24)
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Then we have the re-claimed Theorem 1:
Theorem 3 (Closed-Form Expression): The loss function in

(23) has a closed-form representation. The training is equivalent
to optimizing a KL-divergence up to a non-negative constant,
i.e.,

LV LB = Eq(y0,xs|x0) [DKL(q(yt|y0)‖pθ(yt|xs))] + C. (25)

For the given closed-form expression in (25), the optimal
pθ(yt|xs) follows a Gaussian distribution and its mean μθ has
an analytic form, as summarized in the Theorem 2 above.

Theorem 4 (Optimal Solution to (25)): The optimal pθ(yt|xs)
follows a Gaussian distribution with its mean being

μθ(xs) =
√
ᾱty0. (26)

By applying the diffusion forward process on both x0 and
y0 with identical random noise at asymmetric timestep s and t,
respectively, we have the following:

xs =
√
ᾱsx0 +

√
1− ᾱsz, yt =

√
ᾱty0 +

√
1− ᾱtz. (27)

Theorem 4 reveals that μθ needs to approximate the expression√
ᾱty0 with xs as the only available input. Then we apply the

following parameterization,

μθ(xs) = fθ(xs)−
√
1− ᾱtz, (28)

where fθ is a trainable function. The KL-divergence in (25) is
optimized by minimizing the difference between the two means
together with the variance Σθ of pθ(yt|xs). Formally, we have
the simplified objective:

Ls,t = Eq

[
1

2(1− ᾱt)
‖fθ(xs)− yt‖2

]
. (29)

To determine an adequate timestep pair (s, t) for the asym-
metric diffusion process, similar to the theoretical analysis about
original DMT, the complexity of our I2I system is character-
ized by C(S) = max{C(S1), C(S2), C(S3)}. For I2I with the
asymmetric DMT, the three sub-systems are 1) the forward
diffusion process from x0 to xs with the complexity f(s),
2) DMT from xs to yt with the complexity g(s, t), and 3) the
denoising process via pre-trained diffusion model from yt to y0
with the complexityh(t). f(s) andh(t) are monotone w.r.t. s and
t, respectively; but g(s, t) does not have to be monotone. If s 	= t,
the diffusion process from x0 to xs and denoising process from
yt to y0 are no longer reciprocal, so we need to consider both
f(s) and h(t). Then the complexity of C(S) can be represented
as C(S) = C(s, t) = max{f(s), g(s, t), h(t)}. Our target is to
search the timestep pair (s, t) minimizing mins,t C(s, t). We
have

max
i=1,2,3

di = max {max{d1, d2}, d3} (30)

= max

{
d1 + d2

2
+

|d1 − d2|
2

, d3

}
(31)

� max

{
d1 + d2

2
, d3

}
(32)

TABLE I
ABLATION STUDY ON THE PRESET TIMESTEP PAIR (s, t) IN OUR PROPOSED

DMT ON THE TWO I2I TASKS UNDER DIFFERENT λ DEFINED IN (34)

� 1

3

(
2 · d1 + d2

2
+ d3

)
=

1

3
(d1 + d2 + d3) ,

(33)

where the equality holds if and only if |d1 − d2| = 0
and d1+d2

2 = d3, i.e., d1 = d2 = d3. That means C(s, t) =
max{f(s), g(s, t), h(t)} reaches its minimum when s = t.
In practice, we add the regularity term SSIM(x0, xs) +
SSIM(xs, yt) + SSIM(y0, yt) to help search the global mini-
mum. Formally, we calculate the weighted sum of SSIM dis-
tances defined below, in which the smaller the result the better
the performance.

dist(s, t) = |SSIM(x0, xs)− SSIM(xs, yt)|
+ |SSIM(xs, yt)− SSIM(y0, yt)|
+ |SSIM(x0, xs)− SSIM(y0, yt)|
+ λSSIM(x0, xs)

+ λSSIM(xs, yt)

+ λSSIM(y0, yt)). (34)

By setting the weight λ = 0.5, we acquire an appropriate
timestep pair as in Table I. Notably, the preset timestep pair (s, t)
of this generalized pipeline coincide with the original pipeline
theoretically and empirically, i.e., the asymmetric timestep pair
appears to be identical.

IV. EXPERIMENTS

In this section, we evaluate the proposed DMT on four dif-
ferent I2I tasks: image stylization, colorization, segmentation
to image, and sketch to image. We first show that the DMT
is capable of mapping translation between the two domains
of an I2I task in Section IV-B. Then, we compare the DMT
with several representative methods to demonstrate its superior
efficiency and performance in Section IV-C. Finally, we provide
an ablation study on the effect of the timestep t for training in
Section IV-D.

A. Experimental Setups

Datasets and Tasks: We train the I2I task on four datasets: our
handcrafted Portrait dataset using CelebA-HQ by QMUPD [42],
AFHQ [43], CelebA-HQ [44], and Edges2handbags [45], [46].
All the images are resized to 256× 256 resolution. Our Por-
trait dataset consists of 27,000 images for training and 3,000
images for inference; all these images are generated from the
CelebA-HQ dataset using a pretrained QMUPD model. The
AFHQ dataset consists of 14,630 images for training and 1,500
images for inference, encompassing a variety of cats, dogs, and
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wild animal images. For the CelebA-HQ dataset, we randomly
choose 27,000 images together with their segmentation masks
as the paired training data, while the remaining 3,000 images are
used as test data. As for Edges2handbags, we use all 138,567
images as training data and the 200-image test data for inference.

Evaluation Metrics: We use Fréchet Inception Distance
(FID) [40], Structure Similarity Index Measure (SSIM) [41],
LPIPS [39], L1 and L2 metrics to evaluate the fidelity of the
generated images and how well the content information is kept
after the translation. Besides, we compare all the methods in a
user study, where users were asked to score the image quality
from 1 to 5. We also compare the training and inference ef-
ficiency of all the methods by comparing the number of total
training epochs, training speed for 1,000 images, and inference
time for generating an image.

Baselines: We compare our proposed DMT algorithm with
five representative I2I algorithms: Pix2Pix [7], TSIT [13],
SPADE [14], QMUPD [42], and Palette [9]. The alternatives can
be divided into two categories: GAN-based and DDPM-based
algorithms. Pix2Pix is a classic cGAN-based method involv-
ing L1 and adversarial loss. TSIT is a GAN-based versatile
framework using specially designed normalization layers and
coarse-to-fine feature transformation. SPADE is a GAN-based
specially-designed framework for semantic image synthesis
with spatially-adaptive normalization. QMUPD is also GAN-
based, which is specially designed for portrait stylization by
unpaired training. We train the model with paired data for fair
comparison. Palette introduces the DDPM [2] framework into
the I2I task and injects the input constraint to each step of the
denoising process.

Implementation Details: We train the proposed DMT module
on the platform of PyTorch [47], in a Linux environment with
an NVIDIA Tesla A100 GPU. We set total timestep T = 1000
for all the experiments, the same setting as in [2]. We train the
reverse denoising process of the DDPM using a U-Net back-
bone together with the Transformer sinusoidal embedding [48],
[49], following [6]. The DDPM is frozen during the training
of the DMT module. To train the DMT module, we use the
Pix2Pix [7] and TSIT [13] model. We remove the discriminator
model and train only the generator block to ensure that the
translator fθ has approximately the same functional form as the
real mapping. Note that our DMT employs the DDPM denoising
process during sampling, which employs hundreds of iterative
function evaluations for denoising and can be time-consuming.
Therefore, we apply DDIM [4] for acceleration, which realizes
high-quality synthesis within 10 function evaluations (NFE =
10).

B. Qualitative Evaluation on Various Tasks

The process of inferring images with DMT consists of the
following three simple steps.

1) We apply the forward diffusion process to the input image
x0 until the pre-selected timestep t to obtain xt, which can
be written as xt =

√
ᾱtx0 +

√
1− ᾱtzt;

2) By obtaining the mean by the functional approximator fθ
according to (18), we infer the approximated yt by adding
another Gaussian noise;

Fig. 5. Qualitative comparison between DMT and SPADE [14] on
segmentation-to-image task. Our proposed DMT achieves better image quality
and content consisitency compared with SPADE.

Fig. 6. Qualitative comparison between DMT and QMUPD [42] on image
stylization task. Our proposed DMT achieves better image quality and content
consisitency compared with QMUPD.

TABLE II
QUANTITATIVE COMPARISON BETWEEN DMT AND SPADE [14] ON

SEGMENTATION-TO-IMAGE TASK

TABLE III
QUANTITATIVE COMPARISON BETWEEN DMT AND QMUPD [42] ON IMAGE

STYLIZATION TASK

3) Using yt as the intermediate result, sampling with the
given pre-trained DDPM by the reverse process achieves
the required output.

We conducted four experiments to evaluate our proposed
DMT on four datasets, i.e., our handcrafted Portrait dataset,
AFHQ [43], CelebA-HQ [44], and Edges2handbags [45], [46].
In training, we use 40 epochs for the sketch-to-image task, and 60
epochs for the other three tasks. As shown in Fig. 2, our method
is capable of learning the cross-domain translation mapping and
generates high-quality images. For example, in the stylization
task, the shared encoder is able to distinguish the two different
forward diffusion processes of the two domains. In the other
tasks, our method can still extract the input feature and generate
photo-realistic images with high diversity even with little input
condition information More results can be found in Appendix
C, available online.

C. Comparisons

We qualitatively and quantitatively compare our method
with the four classic I2I methods: Pix2Pix [7], TSIT [13],
SPADE [14], QMUPD [42], and the DDPM-based condi-
tional generation method Palette [9]. First, we compare with
SPADE [14]. It requires category-wise segmentation masks,
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Fig. 7. Qualitative results for ablation study of the preset timestep t in our proposed DMT on the four I2I tasks. We observe that a smaller t helps in better
retaining the content information from the input source, but suffers from a larger gap between the target domain and the source domain. The optimally selected
timestep (t∗) for each of the four I2I tasks is given in Table V.

TABLE IV
QUANTITATIVE COMPARISON BETWEEN PALETTE [9], PIX2PIX [7], TSIT [13], AND OUR PROPOSED DMT. FID, SSIM, AND LPIPS ARE USED TO EVALUATE THE

IMAGE QUALITY AND CONTENT PRESERVATION, RESPECTIVELY. BESIDES, WE INTRODUCE THE USER STUDY (SCORE) TO EVALUATE THE QUALITY OF THE

SYNTHESIZED IMAGES

limiting its application to most I2I tasks. Note that our pro-
posed DMT introduces the shared encoder by gradually adding
noise onto the original images, which corrupts the semantic
information from the category-wise segmentation masks. Hence,
we only compare with SPADE on segmentation-to-image task,
without applying the DMT on top of it.

The results are shown in Fig. 5 and Table II.
We also compare with the specially-designed stylization al-

gorithm QMUPD [42]. It introduces a quality metric guidance
for portrait generation using unpaired training data. We train
QMUPD with paired data for fair comparison, which reduces the
training difficulty and achieves a stronger baseline. The results,
presented in Fig. 6 and Table III, demonstrate that our approach
achieves performance that is on par with, or even surpasses,
existing standards.

Then, we compare with Palette [9] using the open source
implementation.4 As shown in Fig. 8, we observe that the results
of Palette fail to extract the segmentation feature of CelebA-HQ
and Edges2handbags dataset. Consequently, this leads to an
inability to accurately generate details in the background of

4https://github.com/Janspiry/Palette-Image-to-Image-Diffusion-Models

human images or replicate the horse pattern on the bags. As
a comparison, our proposed DMT can generate high-quality
images and preserve the semantic information of the input
condition, even when given little input semantic information.

Next, we compare with Pix2Pix [7]. We observe that our
method can generate images of much higher quality than
the Pix2Pix method. For instance, the generated images of
Pix2Pix suffer from severe artifacts over the facial region
in the CelebA-HQ datasets, while our method consistently
produces high-quality results. Moreover, the feature extraction
performance is significantly improved by the shared encoder
and the well-prepared DDPM model in our method.

We finally compare with TSIT [13]. Although TSIT intro-
duces a coarse-to-fine feature transformation block and hence
can synthesize high-quality images in most cases, it fails to
produce results with sufficient and satisfying semantics and
textures when given very little inference information (e.g., hair
and forehead region of segmentation). In contrast, the results
of DMT have clear boundaries at the forehead and hair region,
together with rich texture.

The quantitative results are reported in Table IV, showing
that our method has the best image fidelity (FID), the lowest
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Fig. 8. Qualitative comparison. Our DMT achieves on par or better results than the three baseline methods Pix2Pix [7], Palette [9], TSIT [13] on the four I2I
tasks, which are image stylization, image colorization, segmentation to image, and sketch to image. Significant differences are highlighted in red or blue boxes,
and brief textual explanations are provided besides the boxes. The comparison on efficiency can be found in Table IV.

perceptual loss (LPIPS), and comparable structural similarity
(SSIM). Regarding the training and inference speed, our method
uses the smallest number of training epochs and has the fastest
training speed for generating 1,000 images, because it only needs
to train one translation module. The DMT is also 40x ∼ 80x
faster than Palette [9] due to starting the sampling process at
an intermediate step (4x ∼ 8x faster) and the use of the fast
sampling algorithm DDIM (∼10x faster).

D. Ablation Study on the Timestep for Domain Translation

In the DMT algorithm, we first gradually add noise for both
x0 and y0 using a shared decoder until some preset timestep t.
Here, the timestep t plays a critical role in the performance of
the translator fθ as well as the quality of the generated images.
As discussed in Section III-D, we proposed a simple method
to determine an adequate timestep before training, denoted by
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TABLE V
ABLATION STUDY ON THE PRESET TIMESTEP t IN OUR PROPOSED DMT ON THE FOUR I2I TASKS

TABLE VI
ABLATION STUDY OF t NEAR t∗ ON AFHQ DATASET

TABLE VII
ABLATION STUDY OF t NEAR t∗ ON CELEBA-HQ DATASET

t = t∗, by pre-computing the distance between (x0, xt) and
between (xt, yt). In this section, we compare the generation
quality using different timesteps t and show that the timestep
t∗ selected using our method in Section III-D offers the optimal
performance.

In Fig. 7, we observe that: 1) As the translation timestep t
increases, the input condition provides weaker constraint to the
output generation. For instance, the face poses of the results
in row 1 and row 3 begin to change in an unwarranted way
when t > 400; 2) When the translation timestep t is small, the
translation mapping can hardly approximate the real distribution
(e.g., the hair texture of the segmentation to image task in row
3, column 3).

We also present quantitative comparison results in Table V,
from which we see the trade-off between the strength of the
input condition and the difficulty of learning the translation
mapping. Significantly, our method for selecting an appropriate
timestep achieves performance comparable to using the optimal
t shown in Table V. This confirms the effectiveness of our simple
selection strategy.

We conduct further ablation study on the performance of
timestep t near the preset timestep t∗, in order to demonstrate
the strong robustness of our strategy. As shown in Tables VI
and VII, despite the significant performance drop when using

different timesteps, our strategy is still able to search an adequate
timestep for DMT.

E. Limitations

Our DMT method has several limitations that are interesting
avenues for future research. First, our algorithm is based on
the assumption that both the forward and the reverse process
satisfy the Markovian property, but this assumption holds only
for the DDPM or its extension. Second, the DMT is designed
to train with paired data due to its reliance on using Pix2Pix [7]
or TSIT [13] module as the translation mapping fθ. Hence, our
method cannot be applied to unpaired training data and related
I2I tasks. Third, our DMT is not applicable to tasks whose
condition (source domain) and the target domain are almost
identical. We briefly explain this limitation next. Following (13),
when x0 equals y0, we have q(y0|x0) = δx0

(y0), which is the
Dirac distribution. Then, (13) becomes

LCE = log pθ(x0|x0) = 0, (35)

which is a constant independent of the model parameter θ.
Therefore, the model cannot be optimized.

V. CONCLUSION

In this paper, we propose an efficient diffusion model trans-
lator, which bridges a well-prepared DDPM and the input in-
ference. We provide theoretical proof to show the feasibility of
using this simple module to accomplish the popular I2I task. By
using our proposed practical method to pre-select an adequate
timestep and applying the forward diffusion process until this
timestep, we formulate the task as the learning process of a
translation mapping, without relying on any retraining of the
given DDPM. We conduct comprehensive experiments to show
the high efficiency and the outstanding performance of our
proposed algorithm.
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