
1

Edge-Assisted Collaborative Perception Against
Jamming and Interference in Vehicular Networks
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Abstract—Collaborative perception of connected autonomous
vehicles (CAVs) that offload the sensing data, such as the feature
map extracted from light detection and ranging (LiDAR) point
clouds, to an edge device such as the roadside unit (RSU) to
detect traffic objects has severe performance degradation due to
the offloading latency and packet loss rate (PLR) under jamming
and interference. In this paper, we propose an edge-assisted rein-
forcement learning (RL)-based collaborative perception scheme
for CAVs to enhance the accuracy and speed against jamming
and interference in LiDAR-based object detection. Based on the
spatial confidence score of the feature map, the data size, the
channel gains, the received jamming power and interference level,
this scheme chooses the critical regions of the feature map, radio
channel and transmit power with the hierarchical structure to
enhance the learning efficiency. The risk level of the selected
policy evaluates the time asynchronization and information loss
of the shared feature map using the multi-level risk function
based on multiple thresholds of the offloading latency and PLR,
with assigning different penalties to mitigate the selection of high-
risk policies that degrade perception performance. The upper
performance bound in terms of the perception accuracy, latency
and utility is provided based on the Stackelberg equilibrium of
the game between the jammer and CAVs. Experimental results
based on the Robosense RS-LiDAR-16 sensors and the Raspberry
Pi to detect 10 vehicles in an 8.5×4×3.5 m3 area show the
performance gain with 22.4% higher perception accuracy and
41.3% less latency compared with the benchmark against a smart
jammer.

Index Terms—Edge-assisted collaborative perception, LiDAR,
vehicular networks, reinforcement learning, jamming.

I. INTRODUCTION

Edge-assisted collaborative perception enables connected
autonomous vehicles (CAVs) to exploit the computation re-
sources of roadside units (RSUs) to process the sensing
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data, such as point clouds captured periodically by the light
detection and ranging (LiDAR) sensors, to upgrade perception
capabilities such as overcoming sparse observation and limited
sensing range [1]–[3]. For example, CAVs equipped with
Velodyne HDL32E LiDAR sensor to capture point cloud
frames at 5-20 Hz, use the deep neural network (DNN) such
as PointPillar to extract feature maps from point clouds, and
offload the feature maps to the RSU that performs a data fusion
model to create a global view for improving the perception
range, such as detecting pedestrians or vehicles beyond the
line-of-sight distance [4], [5].

Jammers in vehicular networks cause performance degra-
dation and connection loss for the sensing data transmission
(i.e., feature map or point clouds offloading), which potentially
fails the vehicle control and leads to severe traffic accidents
and road fatality. In addition, further attacks such as man-in-
middle or denial of service can be launched by sending fake
or replayed messages such as manipulated feature maps to
the RSU or victim vehicles, which compromises the integrity,
availability and confidentiality of the sensing data exchange in
the collaborative perception system [6]–[8].

CAVs partition the sensing data based on the spatial con-
fidence scores of feature maps or the vehicle locations, and
only offload the important portions such as point clouds with
high resolution or feature maps with higher confidence scores
to balance the communication overhead and data quality [9]–
[11]. For example, CAVs exploit the detection head module in
[10] to divide the critical regions of feature maps based on the
spatial confidence scores of objects and only share the critical
regions among neighboring CAVs to improve the detection
accuracy with less bandwidth consumption.

Reinforcement learning (RL)-based collaborative perception
scheme in vehicular networks chooses the transmit power,
the collaborative CAVs, the radio channel and the region of
interest of the sensing data to improve the detection accuracy
for the objects beyond the line-of-sight distance of individual
sensing range [12]–[15]. For example, the seminal work in
[12] applies the branching dueling Q-network to choose the
region of interest of the sensing data and radio channels
for collaborative CAVs based on the estimated locations and
moving speeds of CAVs and the available network bandwidth
to enhance the sensing range and accuracy. However, the
severe channel fading, the interference and the jammers that
block the offloading links lead to long latency and high packet
loss rate (PLR) to degrade the perception performance.

In this paper, we propose an edge-assisted collaborative
perception scheme in vehicular networks for CAVs to im-
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prove the perception accuracy and speed against jamming and
interference in LiDAR-based object detection. Based on the
spatial confidence score and data size of the feature map,
the channel gains between the CAV and RSU, the jamming
signal strength and interference level to formulate the RL
state, this scheme chooses the critic regions of each feature
map, the radio channel and the transmit power to offload the
selected regions to the RSU that performs an attention-based
data fusion model to aggregate the received feature maps.
Since the future state observed by each CAV is independent
of the previous state if given the current state and policy, the
repeated policy optimization for collaborative perception can
be formulated as a Markov decision process (MDP), which is
addressed by RL to maximize the expected long-term utility
that formulated by a weighted sum of perception accuracy,
latency and PLR.

The risk of time-asynchronization and information loss of
the shared feature map is evaluated using the multi-level risk
function based on multiple thresholds of the offloading latency
and PLR, with assigning different penalties to mitigate the
selection of high-risk policies that degrade perception perfor-
mance during the RL learning process. The policy selection for
collaborative perception is decomposed into three sub-policies
based on the hierarchical RL structure with three decision
layers for reducing the sample complexity of the action space
to enhance the learning efficiency, in which each layer consists
of a Q-table that evaluates the long-term utility and an E-table
that evaluates the long-term risk to jointly formulate the policy
distribution.

As the state space increases with the number of radio
channels and spatial regions of the feature map, a deep RL
version is also designed to extract the state features for the
find-grained feature maps in large-scale vehicular networks.
More specifically, neural networks are exploited to estimate
the long-term rewards and risk levels for the policy selection,
as well as to address the quantization error of the spatial
confidence scores, the channel gains and the jamming and
interference power for faster learning speed and higher per-
ception performance.

The performance upper bound of collaborative perception
is provided based on the Stackelberg equilibrium (SE) of
the game between CAVs and jammer, in which CAVs as
the leader choose regions of the feature map, radio channel
and transmit power to enhance the perception accuracy and
speed and the jammer as the follower determines the jamming
channel and power to degrade the perception performance
with less jamming energy consumption. The results show
that the perception accuracy increases with the number of
feature map regions if the channel gains between the RSU
and CAVs exceed the lower bound depending on the jamming
power and minimum signal-to-interference-plus-noise (SINR),
which indicates that the selection of feature map regions fine-
tunes the perception performance, bandwidth consumption and
computational complexity.

Simulations are performed based on the feature fusion
model in [16] and the V2X-Sim dataset in [17] show that
our proposed schemes improve the perception accuracy and
speed in the LiDAR-based object detection compared with

the benchmark in [12]. In addition, we further conduct the
experiments based on five CAVs equipped with Robosense
RS-LiDAR-16 and Raspberry Pi-4B and an edge server with
Intel i9-13900 CPU, NVIDIA GeForce RTX 3090 GPU to
collaboratively detect vehicles, and provide a graphic user
interface (GUI) to show the captured point cloud frames and
detection results. A smart jammer equipped with a universal
software radio peripheral (USRP) applies Q-learning to choose
the jamming power up to 30 mW based on the estimated
legitimate signal strength. Experimental results show that our
proposed schemes outperform 22.4% perception accuracy and
41.3% less latency compared with the benchmark.

The main contributions are summarized as follows:
1) We propose the RL-based collaborative perception

scheme to enhance the perception accuracy and speed for
CAVs, with the hierarchical structure to reduce the sample
complexity of the action space and the safe exploration
to avoid the risky collaborative perception policies.

2) We provide the upper performance bound in terms of the
perception accuracy, latency and utility based on the SE
of the game between N CAVs and a jammer.

3) Experiments based on the Raspberry Pi and Robosense
RS-LiDAR-16 sensors verify the performance gain of our
proposed schemes compared with the benchmark.

This paper is organized as follows: we begin with a
comprehensive review of previous literature in Section II,
followed by an introduction of the system model in Section
III. In Sections IV and V, we present the RL-based policy
selection for collaborative perception. The upper bound of the
perception performance is provided in Section VI, followed
by the simulation and experimental results in Sections VII and
VIII. Finally, the conclusion is summarized in Section IX.

II. RELATED WORK

Cooperative perception in vehicular networks enables au-
tonomous vehicles to overcome the physical limitations of
onboard sensors such as line-of-sight sensing range by sharing
the perceived information with nearby vehicles [18]–[23].
For instance, the collaborative perception scheme based on
vehicle-to-vehicle (V2V) communications in [18] designs a
spatial graph neural network to fuse the intermediate features
received from neighboring vehicles to improve the motion
forecasting performance and meet bandwidth requirements.
In addition, an infrastructure-assisted object detection scheme
proposed in [20] exploits the tracked motion trajectories of
moving vehicles and pedestrians to align the multi-perspective
representations of objects and mitigate the impact of asyn-
chronous data frames in edge-assisted perception system.

Vehicular communications for collaborative perception have
been studied to improve the communication efficiency in
perceptual information sharing for enhancing the detection
accuracy and robustness in road safety or autonomous driv-
ing applications [24]–[28]. In [24], the message generation
rule and transmission frequency for vehicular collaborative
perception are designed to reduce the communication load
and overhead of sensing data sharing, and thus improving
perception reliability. The lossy communication-aware feature
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fusion model is proposed in [26] to address the negative effects
of V2V communications such as packet loss in feature sharing,
which designs an inter-vehicle attention module to capture the
uncertainties among collaborative vehicles caused by latency
to improve the accuracy.

The performance of collaborative perception depends on
the bandwidth, channel gains and interference of the com-
munication links for sensing data exchanging, which results
in network congestion and high latency to decrease the per-
ception performance [25], [29], [30]. For example, a three
handshake-based collaborative perception scheme is proposed
in [29] to enable the target robot to determine the most
valuable collaborative robots based on the compressed request
messages, and thus improving the perception capabilities and
reducing bandwidth requirements. To reduce the transmission
data volume, the vehicle detection results are integrated into
the bird-eyes-view of point clouds, which is shared among
nearby vehicles to improve accuracy with less communication
overhead [30].

RL-based mobile edge computing against jamming as pre-
sented in [31]–[33] chooses the computational nodes, the
offloading rate, the radio channel and the transmit power based
on the channel gains, bandwidth and service requirements to
enhance the offloading performance. For example, in [31], the
actor-critic algorithm is applied to choose the offloading rate,
the edge nodes and the transmit power based on the channel
gains, the received signal strength indicator (RSSI) and SINR
to reduce the offloading latency and energy consumption.
However, these schemes have performance degradation in
LiDAR-based object detection due to the lack of perception
features such as the data quality (i.e., confidence scores of the
feature maps or point density of the point clouds).

Furthermore, our previous work in [14] proposes an RL-
based sub-frame selection and power control scheme for
each CAV to broadcast feature maps to improve perception
accuracy in LiDAR-based object detection. Compared with the
previous work, this paper proposes the RL-based collaborative
perception schemes to choose the regions of feature map, radio
channels and transmit power against jamming and interference.
The deep RL version is also proposed to address the state
quantization errors of the spatial confidence scores and channel
gains, which further improves the perception accuracy and
speed. The performance upper bound is also provided based
on the SE of the game between N CAVs and the jammer.
Experiments based on 5 CAVs equipped with LiDAR sensors
and Raspberry Pi to offload feature maps to an edge server
are conducted to show the efficacy of our proposed schemes
against a smart jammer.

III. SYSTEM MODEL

A. Task model

As shown in Fig. 1, both the RSU and N CAVs denoted
by N = {1, 2, · · · , N} equipped with LiDAR sensors capture
point clouds for collaboratively detecting traffic objects such as
pedestrians and vehicles, in which the RSU performs the object
detection based on the received feature maps and provides
perception results to CAVs for improving traffic efficiency
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BEV map
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Fig. 1. Overview of collaborative perception in vehicular
networks, in which the RSU aggregates feature maps via a self-
attention-based feature fusion mechanism to enhance accuracy.

and road safety. At time slot k, RSU transforms the point
clouds into a bird’s-eye-view (BEV) map via the voxelization
operation that quantizes the point clouds into regular cells, and
further exploits the anchor-based PointPillar backbone network
to extract feature map F (k) ∈ RH×W×C from the BEV map,
where H , W and C denote the height, width and the number
of feature channels [4], [5].

The spatial confidence map C(k) ∈ RH×W is generated
based on the detection head module in [10] that indicates the
confidence for correctly detecting objects at each spatial region
of the feature map F (k), which in turn is used to calculate
request map R(k) = 1−C(k) to represent the uncertainty for
detecting objects based on the individual observations, i.e., the
region with a higher value in the request map represents the
lower probability to accurately detect the object. RSU located
at lR broadcasts the request map R(k) to neighboring CAVs
as the basis for evaluating the importance of feature maps.

CAV i ∈ N extracts the feature map F (k)
i and divides

the feature map into M regions denoted by M each with
ϖ

(k)
i,m-bits based on the confidence score thresholds [10] or

feature selective module [11]. For example, CAV i uses
the anchor-based PointPillar backbone network to extract a
feature map with the dimension of 64×64×256 that each
element is denoted by a float32 data type, which yields an
approximate 1-MB data for each region if the feature map is
equally divided into four regions. According to [10], the spatial
confidence score for each region of the feature map denoted by
o
(k)
i =

[
o
(k)
i,m

]
1≤m≤M

that indicates the importance level for

the collaborative object detection is evaluated by the element-
wise dot-product of the m-th region of the request map R(k)

m

and the spatial confidence map C(k)
i,m.

RSU exploits a channel-wise self-attention mechanism as
presented in [16] to aggregate the extracted feature map F (k)

and the received feature maps F̂ (k)
i based on the trainable

collaboration attention weights W (k)
i and W (k) given by

H(k) =

N∑
i=1

W
(k)
i ⊙ F̂ (k)

i + F (k) ⊙W (k), (1)
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where ⊙ represents the element-wise dot-product operation.
Finally, the detection head module up-samples the updated
feature map H(k), and classifies the foreground-background
categories and regresses the bounding boxes to generate per-
ception results z(k) that consists of location, orientation, size
and confidence score of detected objects. The perception tasks
consist of the bounding box detection that detects the existence
of objects at the specific regions and the object classification
that estimates the probabilities of each class for the detected
objects [34]. According to [35], the perception accuracy can be
represented by the averaged confidence scores of the objects,
which are obtained by the calibrated detection DNN model
via the train-time auxiliary loss formulation to indicate the
probability of the presence of the objects.

B. Communication Model

CAV i ∈ N located at l(k)i chooses the region of the
feature map x(k)

i = [x
(k)
i,m]m∈M ∈ {0, 1}M , the uplink radio

channel a(k)i out of the F channels each with B hertz and the
transmit power p(k)i up to PV mW with L1 levels for offloading
the selected regions of the feature map against jamming and
interference. The RSU performs the feature fusion model given
by Eq. (1) to obtain detection results z(k), and further evaluates
perception accuracy ρ(k), offloading latency τ (k)i and PLR b

(k)
i ,

which are sent back to CAVs.
In addition, the offloading latency of the feature maps

from CAV i is evaluated based on the labeled timestamps on
each transmitted packet, thus, the perception latency t(k) is
evaluated based on the offloading and inference latency τ̂ (k)

given by t(k) = maxi∈N τ
(k)
i + τ̂ (k), where the inference la-

tency depends on the computational complexity of the feature
fusion model and the computational capability of the edge
device. The packet loss rate is evaluated based on the ratio of
received packets in each time slot, in which the SINR of each
packet usually should be greater than a predefined threshold γ0
corresponding to modulation modes for successfully decoding.

According to [36], the channel gain h(k)i between the RSU
and CAV i depends on the reference path-loss h0, the path-loss
exponent α, the communication distance d(k)i and the shadow
fading Xσ that modeled by a zero mean normal distribution
with a standard deviation of σ given by

h
(k)
i = h0

(
d
(k)
i

)α
Xσ (2)

C. Jamming and Interference Model

Jamming attacks in vehicular networks lead to the perfor-
mance degradation and connection loss for the CAVs’ trans-
mission, in which the jamming policy can be chosen randomly
(e.g., random jammer) or based on the features of the vehicular
links (e.g., reactive jammer) [6]. In the collaborative perception
system, the jammer located at l(k)J tracks the communication
links of the feature map offloading, and estimates the RSSI of
each link ψ(k) = [ψ

(k)
l ]1≤l≤F via energy detection technique.

As an advanced type of reactive jamming in [8], the RL-
based smart jammer applies the Q-learning algorithm to select
the jamming power y(k)1 ∈ {jPJ/L2|0 ≤ j ≤ L2}, the center

frequency y(k)2 ∈
[
f, f̄

]
and the bandwidth y(k)3 ∈ (0, B̂] based

on the estimated RSSI ψ(k) to formulate the RL state, where
PJ, L2, f , f̄ and B̂ refer to the maximum and quantization
level of the jamming power, the frequency range and maximum
bandwidth of the jammer, respectively. The jamming utility uJ
aims at decreasing the SINR γ

(k)
i of each offloading link with

less energy cost given by

u
(k)
J = −

N∑
i=1

γ
(k)
i − cJy(k)1 , (3)

where cJ weighs the importance of energy consumption. The
channel gain between the jammer and RSU is denoted by g(k).

According to [37], the interference level of each offloading
link depends on the neighboring CAVs N−i, the transmit
power p(k)j and the interference factor ς(k)j and the channel
gains h(k)j given by

I
(k)
i =

∑
j∈N−i

ς
(k)
j p

(k)
j h

(k)
j , (4)

where the interference factor depends on the channel selection
of neighboring CAVs and the collision avoidance schemes of
vehicular communication protocols. For example, the dedi-
cated short-range communication protocol as presented in [38]
specifies the binary backoff-based collision avoidance scheme,
in which the interference factor depends on the number of
backoff stages and the size of backoff windows. Without
confusion, the superscript k will be omitted in the following.

D. Problem Formulation
For the collaborative perception system, the accuracy de-

pends on the data quality of feature maps received from CAVs
and the DNN models such as the feature fusion and inference
model for LiDAR-based object detection, in which the data
quality increases with the confidence scores of the feature
maps O = [oi]i∈N and decreases with the latency t according
to [10], [19]. Each feature map is divided into M regions each
with ϖm-bits, and thus the data size for a transmitted packet
is given by

∑M
m=1ϖmxi,m. According to [39], the inference

latency τ̂ depends on the computational loads, the CPU clock
rate ζ and the CPU cycles ψ for per-bit processing, as well
as the offloading latency τ = [τi]i∈N depending on the data
size of the selected regions and the data rate of each CAV.

CAVs optimize the selection of feature map regions χ =
[xi,m]i∈N ,m∈M, the transmit power p = [pi]i∈N and the radio
channel a = [ai]i∈N to maximize the object function for
collaborative perception that is modeled by the weighted sum
of the accuracy ρ, latency t and PLR bi given by

max
pi,ai,xi,m

ρ− ctt−
cb
N

N∑
i=1

I (γi < γ0) (5a)

s.t. ρ = F (O, τ , τ̂) (5b)

t = max
i∈N

∑M
m=1ϖmxi,m

B log (1 + γi)
+

N∑
i=1

M∑
m=1

ψϖmxi,m
ζ

(5c)

γi =
pihi∑

j∈N−i

ςjpjhj + κy1g +N0
(5d)
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Fig. 2. Illustration of RL-based collaborative perception in vehicular networks, in which CAV i exploits a hierarchical RL in
the learning module to choose the feature map regions, radio channel and transmit power against jamming and interference.

xi,m ∈ {0, 1},∀i ∈ N ,∀m ∈M (5e)
ai ∈ {1, · · · , F} (5f)
pi ∈ {lPV/L1|1 ≤ l ≤ L1} (5g)

where I(·) is the indicator function that takes value 1 if the
argument is true.

The implicit function F(·) in Eq. (5b) depends on the
DNN model for the LiDAR-based object detection with the
inputs of received feature maps, in which the accuracy in
turn is determined by the collaborative perception policies
among N CAVs. The latency t given by Eq. (5c) depends
on the maximum offloading latency and the inference latency,
which in turn is determined by the SINR γi of each packet
given by Eq. (5d) that decreases with interference level from
neighboring CAVs and the received jamming signal strength.
The binary parameter κ takes value 1 if the jammer chooses
the same radio channel as CAV i and 0 otherwise.

The optimal selection of the feature map, radio channel and
transmit power against jamming and interference for N CAVs
in Eq. (5) relies on the confidence score of feature maps, the
received jamming power, interference level and channel gains
of each offloading link, which are seldom accurately known
in time by each CAV in the practical collaborative percep-
tion system. The RL-based scheme enhances the perception
accuracy and speed via trial-and-error since the collaborative
perception can be modeled as an MDP, in which the future
state observed by each CAV is independent of the previous
state if given the current perception policy and state.

IV. RL-BASED COLLABORATIVE PERCEPTION AGAINST
JAMMING AND INTERFERENCE

The distributed RL-based collaborative perception scheme
(RLCP) is proposed for each CAV to enhance the perception
accuracy and speed of LiDAR-based object detection against
jamming and interference. Based on the spatial confidence
scores, the channel gains and the estimated jamming power
and interference level of each channel, this scheme chooses the
regions of feature maps, the radio channel and transmit power

with the hierarchical structure to reduce the sample complexity
of the action space. In addition, the risk level of the selected
policies is evaluated using the multi-level risk function based
on multiple thresholds of the offloading latency and packet loss
rate, with assigning different penalties to mitigate the selection
of high-risk policies that degrade perception performance.

As shown in Fig. 2, the collaborative perception system
consists of three modules for performing the perception, learn-
ing and communications, in which the RSU extracts feature
map F ∈ RH×W×C from captured LiDAR point clouds via
the anchor-based PointPillar backbone network, and further
calculates the request map R that indicates the uncertainty of
detecting an object at each spatial region. CAV i ∈ N extracts
and further divides the feature map Fi into M regions each
with ϖi,m-bits, and calculates the spatial confidence score oi
based on the received request map to indicate the importance
level of each region for the collaborative object detection.

Based on the data size ϖ = [ϖi,m]1≤i≤N,1≤m≤M and
spatial confidence score O = [oi,m]1≤i≤N,1≤m≤M of feature
maps, the channel gains hi between the CAV and RSU via the
pilot-based channel estimation scheme, the received jamming
power and interference level J = [Jl]1≤l≤F of each offloading
link via the energy detection technique such as [40], the current
state s(k)i is formulated by,

s
(k)
i =

[
O,ϖ, hi,J , ρ

]
(6)

where the confidence score and the data size of the feature
map, the channel gain, the received jamming signal strength
and interference level and the perception accuracy are quan-
tized into D1, D2, D3, D4 and D5 levels, respectively.

Unlike the centralized RL that the state and action spaces
increase exponentially with the network scale, this scheme
designs the distributed RL with the three-layer hierarchical
structure as shown in Fig. 2 to reduce the sample complexity
of the action space, which decomposes the selection of feature
map regions, radio channel and transmit power into three
sub-policies to improve the learning efficiency. Each policy
decision layer consists of a Q-table to evaluate the long-term
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reward for each state-action pair and an E-table to evaluate
the long-term risk of the selected policy.

More specifically, based on the state s(k)i as the input, the
layer j ∈ {1, 2, 3} of hierarchical RL outputs Q

(
s
(k)
i ,x′

j

)
and E

(
s
(k)
i ,x′

j

)
to formulate the policy distribution for

selecting the sub-policies given by

π
(
x′j |s

(k)
i , φj−1

)
=

exp

(
Q
(
s
(k)
i ,φj−1,x

′
j

)
ξjE
(
s
(k)
i ,φj−1,x′

j

)
+1

)
∑

x̂∈Xj

exp

(
Q
(
s
(k)
i ,φj−1,x̂

)
ξjE
(
s
(k)
i ,φj−1,x̂

)
+1

) , (7)

where φj represents the selected sub-policy from the layer
j of hierarchical RL, and thus φ0 = ∅, φ1 = xi and
φ2 = ai, respectively. Therefore, the action space Xj for each
sub-policy is given by X1 = {0, 1}M , X2 = {1, · · · , F}
and X3 = {lPV/L1|1 ≤ l ≤ L1}, respectively. Instead
of the traditional ϵ-greedy-based policy exploration method,
the modified Boltzmann distribution is formulated based on
the proportional weighting factor ξ = [ξj ]1≤j≤3 to tradeoff
the importance of policy reward and risk level. The policy
distribution in Eq. (7) tends to choose the sub-policy with a
higher Q-value and a lower risk for reducing the perception
performance degradation, in which the risk level of each policy
is evaluated based on the offloading latency and PLR.

After receiving the feature maps, RSU performs the self-
attention-based feature fusion model to obtain the detection
result z, and further evaluates the perception accuracy ρ,
offloading latency τi and PLR bi, which in turn are sent back
to each CAV. In particular, the accuracy can be estimated based
on the average confidence score that indicates the probability
of the presence of the objects at each spatial region [34], [35],
as well as the perception latency is calculated based on the
offloading and inference latency given by Eq. (5c). The PLR
is calculated based on the rate of received packets over the total
transmitted packets in each time slot. Note that the SINR of the
received packets usually should be greater than a predefined
threshold γ0 corresponding to the specific modulation mode
to successfully decode the packet. The utility ui is given by

ui = ρ− ctτi − cbbi, (8)

where ct and cb represent the importance of perception latency
and PLR. The Q-values in each layer j ∈ {1, 2, 3} of
the hierarchical RL are updated iteratively via the Bellman
equation as follows,

Q
(
s(k), φj−1, xj

)
= (1− ϑ)Q

(
s(k), φj−1, xj

)
+

ϑ

(
ui + δ max

x′
j∈Xj

Q
(
s(k+1), φj−1, x

′
j

))
,

(9)

where the learning rate ϑ ∈ (0, 1] weighs the current commu-
nication experience and the discount factor δ ∈ (0, 1] evaluates
the importance of the future utility [41].

In addition, the policy risk ri to result in the time asynchro-
nization and information loss of the feature maps is evaluated
with the weighted sum of the offloading latency τi and PLR
bi, which are quantized into C1 and C2 levels with the

Algorithm 1: RL-based collaborative perception
against jamming and interference for CAV i

1 Initialize ϑ, β, δ, τ (0), ρ(0) and b(0);
2 for k = 1, 2, ...,K do
3 Calculate the spatial confidence scores oi,m and

data size ϖi,m of the feature map;
4 Estimate the received jamming signal strength and

interference level Jl of each radio channel;
5 Formulate s(k)i via Eq. (6);
6 Obtain Q

(
s
(k)
i ,x′

)
and E

(
s
(k)
i ,x′

)
from the

first layer;
7 Select regions of the feature map xi via Eq. (7)to

formulate F̂i;
8 Formulate [s

(k)
i ,xi] to choose the radio channel ai;

9 Formulate [s
(k)
i , ai] to choose the transmit power

pi;
10 Offload the feature map F̂i to the RSU;
11 Receive z, τi, bi and ρ from the RSU;
12 Calculate ui via Eq. (8);
13 Evaluate ri via Eq. (10);
14 for j = 1, 2, 3 do
15 Update Q-values via Eq. (9);
16 Update E-values via Eq. (11);
17 end
18 end

different penalty factors cl,1 and cl,2 associating with multiple
thresholds µl,1 and µl,2 given by

ri =

C1∑
l=0

cl,1I (τi > µl,1) +

C2∑
l=0

cl,2I (bi > µl,2) , (10)

The E-values in each layer of the hierarchical structure are
updated based on the risk function to maximize the expected
long-term discounted risks, that is, the risk levels from previ-
ous L steps are used to evaluate the long-term risks in policy
exploration given by

E
(
s(k), φj−1, x

′
j

)
=

L∑
l=0

ϱlr
(k−l)
i , (11)

where ϱ weighs the discounted previous risk levels.

V. DRL-BASED COLLABORATIVE PERCEPTION AGAINST
JAMMING AND INTERFERENCE

We also propose a deep RL version, named DRLCP, for
CAVs to choose the feature map regions, radio channels
and transmit power against jamming and interference for the
fine-grained regions of feature maps in large-scale vehicular
networks. More specifically, neural networks are exploited to
extract state features that increase with the number of col-
laborative CAVs, regions of feature maps and radio channels,
as well as to address the quantization errors for the spatial
confidence scores and the channel gains, thus accelerating the
learning efficiency and improving the detection accuracy.

As shown in Fig. 3, the current state s(k)i is formulated
via Eq. (6) to input the Q-network (QNN) and E-network
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Replay buffer

Utility/Risk evaluation

Update      via Eq. (14)

Update      every w steps

Update       every w steps

Formulate

...

...

... ...

...

...

... ...

...

...

... ...

...

...

... ...

Layer j

Update       via Eq. (13)

State formulation

...

...

... ...

...

...

... ...

...

...

... ...

...

...

... ...

Learning module
Hierarchical RL

Policy [xi
(k), ai

(k), pi
(k)]

QNN with weightsQNN with weights

Target QNN with weightsTarget QNN with weights

Minibatch

ENN with weightsENN with weights

Target ENN with weightsTarget ENN with weights

Q

jω

E

jω

ˆ Q

jω

ˆ E

jω

Fig. 3. Illustration of deep RL-based collaborative perception
scheme for each CAV, which designs neuron networks to
address the quantization error of state space.

(ENN) with full-connected (FC) layers in the first level of
hierarchical RL. The input layer of QNN in the first level
consists of Ω1 = 2M + 2F + 2 neurons that depend on the
number of neighboring CAVs, feature map regions and radio
channels, and the output layer consists of 2M neurons to obtain
the estimated long-term utility Q

(
s
(k)
i ,x′;ωQ

1

)
and policy

risk E
(
s
(k)
i ,x′;ωE

1

)
for the region selection. Two FC layers

that includes f1,1 and f2,1 ReLU activation neurons extract
the state features for less sample computational complexity
compared to deep Q-learning presented in [41] with several
convolutional layers.

Similarly, the inputs of the second and third layers of the
hierarchical structure have Ω2 = 3M + 2F + 2 and Ω3 =

2M + 2F + 3 neurons for the state
[
s
(k)
i ,xi

]
and

[
s
(k)
i , ai

]
as the inputs, respectively. The radio channel ai and transmit
power pi are chosen based on the outputs with F and L1

neurons to formulate the policy distribution via Eq. (7). Each
CAV evaluates the utility ui via Eq. (8) and risk level ri via
Eq. (10) based on the latency τi, PLR bi and accuracy ρ.

The collaborative perception experiences are formulated
by e(k) =

[
s
(k)
i ,xi, ai, pi, ui, ri, s

(k+1)
i

]
, which is stored in

the replay buffer, i.e., D ← D ∪ e(k). A minibatch with
Z experiences is uniformly sampled from the replay buffer
for updating the weights of the neural network, i.e., B ={
e(z)|0 ≤ z ≤ Z

}
, which is the input of the neural networks

in three layers of hierarchical RL. Specifically, the target QNN
outputs the maximum Q-value for the collaborative perception
policy under the current state to update the weights of QNN
ωQ

1≤j≤3 that minimizes the mean-square error between the

Algorithm 2: DRL-based vehicular communication
scheme for collaborative perception

1 Initialize ϑ, β, δ, τ (0), ρ(0), b(0);
2 for k = 1, 2, ...,K do
3 Same as Lines 3-5 in Algorithm 1;
4 Obtain Q

(
s
(k)
i ,x′;ωQ

1

)
and E

(
s
(k)
i ,x′;ωE

1

)
;

5 Formulate π
(
x′|s(k)i

)
via Eq. (7) to select xi;

6 Formulate
[
s
(k)
i ,xi

]
to choose the radio channel

ai via Eq. (7);
7 Formulate

[
s
(k)
i , ai

]
to choose the transmit power

pi via Eq. (7);
8 Same as Lines 10-13 in Algorithm 1;
9 Formulate the collaborative perception experience

e(k) and store it in the memory pool;
10 Sample a minibatch from the replay buffer D;
11 for j = 1, 2, 3 do
12 Update ωQ

j via Eq. (12);
13 Update ωE

j via Eq. (13);
14 end
15 if k mod w = 0 then
16 for j = 1, 2, 3 do
17 Update ω̂Q

j by copying QNN weights;
18 Update ω̂E

j by copying ENN weights;
19 end
20 end
21 end

estimated and the target Q-values according to the stochastic
gradient descent method given by

ωQ
j ← argmin

ω

1

Z

Z∑
z=1

(
u(z) −Q

(
s(z), φ

(z)
j−1, x

(z)
j ;ω

)
+ δQ

(
s(z+1), argmax

x∈Xj

Q
(
s(z), φ

(i)
j−1, x; ω̂

Q
j

)
;ωQ

j

))2

(12)

Similarly, ENNs with weights ωE
1≤j≤3 that evaluates the risk

levels of the selected policies are updated by

ωE
j ← argmin

ω

1

Z

Z∑
z=1

(
r(z) − E

(
s(z), φ

(z)
j−1, x

(z)
j ;ω

)
+ δE

(
s(z+1), argmax

x∈Xj

E
(
s(z), φ

(z)
j−1, x; ω̂

E
j

)
;ωE

j

))2

, (13)

where the discount factor δ weighs the importance of future
rewards and risk values. Both the weights of target neural
networks ω̂Q

j and ω̂E
j are updated every w steps by copying

the weights of QNN and ENN for stable learning.

VI. PERFORMANCE EVALUATION

We provide the upper performance bound of perception
accuracy, latency and utility based on the SE of the game
between N CAVs and the jammer, as well as the computational
complexity of our proposed schemes.
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A. Game Model

N CAVs N as the leader firstly chooses the collaborative
perception policies A = [χ,p,a] ∈ X = X1 × X2 ×
X3, which consists of the region of feature maps χ =
[xi,m]i∈N ,m∈M, the transmit power p = [pi]i∈N and the radio
channels a = [ai]i∈N , to maximize the overall perception
utility given by

ū =
1

N

N∑
i=1

ui (14)

The jammer J as the follower chooses the jamming power
y1 ∈ [0, PJ], the center frequency y2 ∈ [f, f̄ ] and the
bandwidth y3 ∈ (0, B̂] to maximize the jamming utility uJ
given by Eq. (3). Without loss generality, we assume the
jamming channel y2 and the bandwidth y3 are chosen from
the F vehicular communication channels, thus the jamming
strategy y can be simplified to allocate the power yl to the
l-th vehicular channel, which is given by y = [yl]l∈F ∈ Y =
[0, PJ]

F with the maximum power constraint
∑F

l=1 yl ≤ PJ.
The Stackelberg game between the CAVs and the jammer is
given by G = {N ,J ,A,y,X,Y , ū, uJ}.

B. Performance Bound

Each feature map is divided into M regions each with ϖ-
bits. According to [39], the inference latency τ̂ depends on the
computational load, the CPU clock rate ζ and the CPU cycles
ψ for per-bit processing given by

τ̂ =
ψϖ

ζ

N∑
i=1

M∑
m=1

xi,m (15)

The perception accuracy of LiDAR-based object detection
depends on the DNN models for the feature fusion and
inference, the data quality such as the confidence score of
the feature map and the offloading performance such as
latency and PLR, which in turn depends on the collaborative
perception policies of CAVs given by Eq. (5). According to
[10], [19], the accuracy ρ increases with the spatial confidence
scores O = [oi,m]1≤i≤N,1≤m≤M and decreases with the
offloading latency τ = [τi]1≤i≤N and inference latency τ̂
denoted by ρ = F (O, τ , τ̂) if given the specific DNN
models. For simplicity, the accuracy is modeled by a linear
function of the spatial confidence scores and offloading latency
with the regression parameters α = [αi,m]1≤i≤N,1≤m≤M ,
β = [βi]1≤i≤N and β0 given by

ρ =

N∑
i=1

M∑
m=1

xi,m

(
αi,moi,m −

ψϖβ0
ζ
− βiϖ

ri

)
, (16)

where ri = B log(1 + γi) is the data rate of CAV i. The
accuracy given by Eq. (16) is a simplified expression for
analyzing the impacts of collaborative perception policies on
the perception accuracy, which can be easily developed to the
more practical models by collecting a large amount of sensing
data to fit the accuracy curve, and we leave it in the future
work. Without loss generality, the channel gains between the
CAVs and the RSU are assumed to follow h1 ≤ · · · ≤ hN .

Theorem 1. The upper performance bound of the collabora-
tive perception scheme is given by

ρ∗ =

N∑
i=1

M∑
m=1

αi,moi,m −
β0ψϖMN

ζ

−
N∑
i=1

ϖMβi

B log
(
1 + PVhi

ϕiPJg

) (17)

t∗ =
ψϖMN

ζ
+

ϖM

B log
(
1 + PVhN

ϕiPJg

) (18)

ū∗ =

N∑
i=1

M∑
m=1

αi,moi,m −
β0ψϖMN

ζ

− ϖM

B

N∑
i=1

Nβi + ct

N log
(
1 + PVhi

ϕiPJg

) (19)

where

ϕi =

√
hi∑N

i=1

√
hi

(20)

if N ≤ F , PJg ≫ N0

αi,moi,m ≥
ϖβi

B log
(
1 + PVhN

PJg

) +
β0ψϖ

ζ
(21)

hN ≥ max

{
γ0L1PJg

PV
,
cJP

2
J g

2

PVg

}
(22)

Proof. See Appendix A.

Remark 1: Each CAV offloads M regions of the feature
map to achieve the optimal perception accuracy given by
Eq. (17) if the minimum confidence score for the detection
accuracy gain is greater than the offloading latency for M
feature map regions given by Eq. (21) and the channel gains
exceed the lower bound given by Eq. (22) that depends on
the maximum jamming power and the SINR threshold γ0 for
decoding packets. The jammer allocates the jamming power
to N CAV-RSU offloading links with the power factor ϕi for
each link given by Eq. (20) to maximize the jamming utility
under the power constraint PJ. The perception latency given
by Eq. (18) increases with the data size of feature maps and the
worse channel gains hN between the CAV and RSU, yielding
the upper bound of utility given by Eq. (19).

C. Computational Complexity

According to [41], the computational complexity Γ1 of
RLCP depends on the total execution steps K and the process
of searching the policy with the maximum Q-value at each
layer in each time slot given by O

(∑3
j=1K|Xj |

)
, which

is determined by the number of feature map regions, radio
channels and power levels, and thus can be further simplified
to O

(
2MK

)
if 2M ≫ F ≈ L1. In addition, the sample

complexity Γ′
1 of RLCP for achieving the optimal policies

depends on the size of state and action spaces in each layer of
the hierarchical structure given by O

(∑3
j=1 |Sj ||Xj |

)
, and

can be simplified to O
(
2MFDM

1 DM
2 D3D

F
4 D5

)
if omitting
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the lower terms [42]. The sample complexity shows that
the total execution steps K should be much larger than the
size of the joint state-action space for sufficient exploration,
and thus the computational complexity Γ1 increases with the
quantization level of the state and action spaces. In particular,
the performance of the RL-based scheme decreases with the
quantization error of the state space, but has to balance the
performance gain and computational complexity.

Furthermore, the computational complexity of the deep ver-
sion, denoted by Γ2, depends on the multiplication operations
for the forward-propagation to obtain the estimated long-term
utility and risk for policy selection, as well as the back-
propagation for the gradient descent to update the weights of
neural networks as shown in Fig. 3. More specifically, with
the same architecture of four neural networks in level j of
hierarchical RL, we have the dimension of input size Ωj , the
number of neurons in the full-connected layers f1,j and f2,j
and the output size |Xj |. In the policy selection process, the
number of multiplications in the forward-propagation of QNN
and ENN in the three levels is given by

LF
j = Ωjf1,j + (f1,j + 1)f2,j + (f2,j + 1)|Xj | (23)

Similarly, in the weight update process given by Eqs. (12)
and (13), all the four neural networks in the three levels
perform LF

j multiplications for the forward-propagation to
choose collaborative perception policies, and the QNN and
ENN also perform LB

j multiplications in the back-propagation
for weights update given by

LB
j = 2Ωjf1,j + 2(f1,j + 1)f2,j + 3(f2,j + 1)|Xj | (24)

DRLCP samples Z experiences at each time slot for weight
updating, yielding the total number of multiplications given
by

LT = (4Z + 2)

3∑
j=1

LF
j + 4Z

3∑
j=1

LB
j (25)

According to [8], the number of neurons on the FC layers
relies on the total learning steps K of each episode and the
dimension of the output layers in each level given by

f1,j =
√
K|Xj |+ 2

√
K

|Xj |
(26)

f2,j =
√
K|Xj | (27)

Theorem 2. The computational complexities of the proposed
RLCP and DRLCP schemes are given by O

(
2MK

)
and

O
(
2MKZ

)
if 2M ≫ F ≈ L1.

Proof. See Appendix B.

Remark 2: For both the RLCP and DRLCP schemes, the
computational complexity increases exponentially with the
number of feature map regions, which indicates that the
feature map should be divided into a moderate number of
regions to fine-tune a trade-off among the perception per-
formance, the communication overhead such as latency and
bandwidth consumption, and the computational complexity

TABLE I: Parameter settings in the simulation

Parameter Value Parameter Value
B/B̂ 10 MHz ϖ 1 MB
PV/PJ 100 mW N0 -174 dBm/Hz
L1/L2 10/10 F 6
M 4 N 5
C1/C2 2/2 h0 68.83
f1/f2 128/128 σ 5.5
γ0 10 α 2.75
ϑ 0.4 δ 0.3

of the collaborative perception schemes. In particular, the
sample complexity of RLCP for achieving the optimal policies
depends on the dimension of state and action spaces, which has
to balance the performance gain and the convergence speed.

VII. SIMULATION RESULTS

Simulations were performed on a server with Intel i9-
13900 CPU, NVIDIA GeForce RTX 3090 GPU and 128G
memory, which applies the feature fusion model in [16] and
the autonomous driving dataset containing 47,200 samples in
[17] to evaluate the performances of collaborative perception
in terms of perception accuracy, latency and utility for the
LiDAR-based object detection. The perception accuracy is
evaluated based on the intersection-over-union (IoU) threshold
of 0.5 that represents the proportion of the overlapping area
of bounding boxes between the prediction and ground truth
(e.g., a vehicle is detected if the proportion of the overlapping
area is greater than 0.5).

Each CAV partitions the feature map into four regions each
with 1-MB, one out of the six radio channels and the transmit
power up to PV = 100 mW that is quantified into L1 = 10
levels [38]. The smart jammer is away from the RSU by 200 m
estimates the RSSI of vehicular uplink channels, and applies
a Q-learning algorithm to choose one out of the six transmit
channels and power up to 100 mW to maximize the jamming
utility given by Eq. (3). Based on the vehicular channel model
as proposed in [36], the reference path-loss h0 is set to 68.83
at reference distance d0 = 1 m, the path-loss exponent α is
2.75 and the standard deviation of shadowing σ is 5.5. The
received packet is successfully decoded if the SINR is greater
than the predefined threshold γ0 = 10.

The vehicular collaborative perception policy is optimized
with the learning rate ϑ = 0.4 and discounted factor δ = 0.3
to maximize the utility function given by Eq. (8) with the
coefficients ct = 0.001 and cb = 0.01. The modified
Boltzmann distributions for the policy selection make a trade-
off between the policy quality and exploration risk with the
weights ξT = ξL = 10 in the learning process, and the risk
function in Eq. (10) takes cl,1 = cl,2 = 0.5 to evaluate the
risk level based on both the offloading latency and PLR that
are quantified into two levels with the threshold µl,1 = 50 and
µl,2 = 0.1, respectively. The parameters of simulation settings
are summarized in Table I for ease of reference.

An example result of LiDAR-based collaborative vehicle
detection at an intersection in town areas as shown in Fig. 4
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Fig. 4. Snapshot of detection results for LiDAR-based collab-
orative perception, in which the orange and blue annotations
represent the inaccurate and miss detection, respectively.

shows that our proposed schemes detect surrounding vehicles
more accurately compared with the benchmark ABFRL in
[12] due to the lower offloading latency and PLR against
smart jamming and interference. For example, the prediction
bounding boxes (red) for the vehicle locations of the DRLCP
scheme are well-aligned with the ground truth (green), while
ABFRL fails to detect 3 vehicles out of the line-of-sight
sensing range caused by the information loss of feature maps
from neighboring CAVs.

The performance of collaborative perception in vehicular
networks as shown in Fig. 5 averaged by 200 runs each with
5000 time slots shows that the perception accuracy, speed
and utility of our proposed schemes converge to the optimal
performance after 1500 and 4000 time slots, respectively.
For example, the perception accuracy of DRLCP increases
from 65.4% to 83.2% and the perception latency decreases
from 112.4 to 75.5 ms due to the safe exploration to avoid

0 1000 2000 3000 4000 5000

Time slot

0.6

0.65

0.7

0.75

0.8

0.85

P
er

ce
p

ti
o

n
 a

cc
u

ra
cy

DRLCP

RLCP

ABFRL [12]

(a) Perception accuracy

0 1000 2000 3000 4000 5000

Time slot

70

80

90

100

110

120

P
er

ce
p

ti
o

n
 l

at
en

cy
 (

m
s)

DRLCP

RLCP

ABFRL [12]

(b) Perception latency

0 1000 2000 3000 4000 5000

Time slot

0.5

0.55

0.6

0.65

0.7

0.75

0.8

U
ti

li
ty

DRLCP

RLCP

ABFRL [12]

(c) Utility

Fig. 5. Performance of the RL-based collaborative perception
scheme in LiDAR-based object detection, in which the percep-
tion accuracy, latency and utility are provided over 200 runs
each with 5000 time slots.

choosing the risk policies to reduce the PLR of the feature
map offloading. In addition, our proposed schemes outperform
the benchmark ABFRL [12] with 8.3% higher perception
accuracy and 21.1% less latency after 4000 time slots. The
reason is that both the confidence scores and the estimated
received jamming power are exploited to choose the feature
map regions and radio resources against smart jamming, thus
reducing the offloading latency and PLR to improve the
perception performance.

The perception performance averaged over 200 runs each
with 5000 time slots in Fig. 6 shows that our proposed schemes
outperform benchmark with the increasing number of CAVs.
For example, DRLCP improves 9.2% perception accuracy and
reduces 18.9% perception latency compared with ABFRL in
[12] if the number of CAVs is 5. The perception latency
of our proposed schemes is more robust compared with the
benchmark against the increasing number of CAVs under
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Fig. 6. Average perception performance in terms of accuracy,
latency and utility, which are provided over 200 runs with the
number of CAVs increasing from 1 to 5.

interference and jamming, in which the deep version improves
10.4% performance gain of the perception latency compared
with ABFRL if the number of CAVs increases from 1 to 5.

VIII. EXPERIMENTAL RESULTS

Experiments were performed based on an edge device
and five CAVs to detect 10 objects moving at 1 m/s in an
8.5×4×3.5 m3 area as shown in Fig. 7, in which CAVs capture
point clouds via Robosense RS-LiDAR-16 sensors and share
feature maps via the Raspberry Pi-4B with the Cortex-A72
processor. The GUI running on the edge device provides the
data visualization for the captured point cloud frames and the
detection results of the collaborative perception systems as
shown in Fig. 8.

Following IEEE 802.11ac protocol, CAVs choose the trans-
mit power with 10 levels ranging from 0 to 100 mW and
the radio channels at 5170-5330 MHz each with 20 MHz
bandwidth for offloading feature maps that is equally divided

CAV 2

Edge device

LiDAR

Raspberry Pi

CAV 1

CAV 3
CAV 4

CAV 5

Fig. 7. Experimental setting of the collaborative perception
against a smart jammer in an 8.5×4×3.5 m3 area.

Fig. 8. GUI of the vehicular perception system running in the
edge device.

into four regions each with 1-MB data size. The edge device
located at (0, 0, 0.8) m that equips with Intel I9-13900
CPU, NVDIA GeForce RTX 3090 GPU and 128G memory to
perform the feature fusion and object detection after receiving
all the feature maps from neighboring CAVs, which assumes
the packet loss if the feature maps are not successfully received
within 400 ms. The smart jammer located at (4, 5, 0.8)
m equips with USRP N210 controlled by a laptop to emit
Gaussian signals, which applies Q-learning algorithm to select
the jamming power up to 30 mW and one out of the six
channels based on the estimated uplink RSSI.

A snapshot of detection result as shown in Fig. 9 illus-
trates the inaccurate and miss detection of objects due to the
packet loss and long latency of sensing data transmission. Our
proposed schemes show the performance gain of perception
accuracy over the benchmark in [12] with the lower location
offset and miss detection rate. For example, ABFRL fails to
detect three vehicles due to the loss of critical perceptual
information, as well as having position-misalignment of one
object caused by the time asynchronous of feature maps due
to the long offloading latency. Our proposed DRLCP scheme
detects all the 10 objects with one of them having a slight
location offset as marked by inaccurate detection due to the
lower PLR and offloading latency.

Experimental results in Fig. 10 averaged by 20 runs each
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(a) DRLCP

(b) RLCP

(c) ABFRL [12]

Fig. 9. Snapshot of detection results with the experimental
setting in Fig. 7, in which the orange and blue annotations
represent the inaccurate and miss detection, respectively.

with 1200 steps show that the proposed schemes converge
to the optimal performance after 200 and 600 time slots,
respectively. The perception accuracy of DRLCP increases
from 58.6% to 91.2% and the perception latency decreases
from 295.2 to 120.3 ms due to the lower PLR and offloading
latency against smart jamming. Our proposed schemes out-
perform ABFRL in [12] in terms of the perception accuracy,
latency and utility. For example, the RLCP scheme is a
low-complexity algorithm that enhances 15.1% accuracy with
28.5% less latency compared with ABFRL. In addition, the
deep version further enhances 22.4% accuracy and 41.3% less
latency compared with the benchmark.

As shown in Fig. 11, our proposed schemes are scalable
to the increasing number of collaborative CAVs, which shows
the performance gain of 15.3% perception accuracy for the
DRLCP scheme if the number of collaborative CAVs increases
from 1 to 5. In addition, our scheme enhances at least
14.4% perception accuracy with less 16.1% latency compared
with the benchmark in [12]. The scalability of our proposed
schemes can be further evaluated with faster CAV speed and
wider variety of traffic objects in a larger experimental area,
and we will leave it in the future work.
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Fig. 10. Experimental performance provided over 20 runs each
with 1200 time slots.

IX. CONCLUSION

This paper proposed the RL-based collaborative perception
schemes for LiDAR-based object detection against jamming
and interference, which chooses the regions of the feature map,
the radio channel and the transmit power with the hierarchical
structure to enhance learning efficiency and the multi-risk
levels to evaluate the performance degradation. An upper
performance bound based on the Stackelberg equilibrium of
the game between N CAVs and the jammer shows that the
perception accuracy increases with the number of selected
regions, the bandwidth and the maximum transmit power. Ex-
periments were conducted based on five CAVs equipped with
LiDAR and Raspberry Pi to collaboratively detect 10 objects
in an 8.5×4×3.5 m3 area against a smart jammer that chooses
jamming power up to 30 mW. Experimental results show the
performance gains of 22.4% higher perception accuracy and
41.3% less latency compared with the benchmark.

The potential limitations of our proposed system lie in
faster CAV speed, larger network size and data fabrication
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attacks from collaborative CAVs in a larger experimental area,
which requires lower transmission latency and data verifica-
tion schemes to avoid perception errors. In future work, we
will further exploit the spatial consistency checking schemes
to validate received sensing data to enhance the perception
performance, apply the adaptive modulation and coding and
the data compression schemes to further decrease the transmis-
sion latency in bandwidth-constraint vehicular networks, and
exploit the motion trajectories and speed of traffic objects to
mitigate the misalignment of object locations caused by both
the inconsistent frame rates of LiDAR sensors and the long
transmission latency.
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Fig. 11. Average performance provided over 20 runs with the
number of CAVs increasing from 1 to 5.

APPENDIX A
PROOF OF THEOREM 1

Proof: By Eqs. (16) and (21), we have

αi,moi,m −
xi,mψϖβ0

ζ
− xi,mβiϖ

ri
≥ 0 (28)

Thus, by Eqs. (8), (5d), (14), (16) and (22) and (28), ∀xi ∈
{0, 1}M , ∀ai ∈ {1, · · · , F}, ∀pi ∈ (0, PV] and ∀y ∈ [0, PJ]

F ,
we have

ū
(
A,y

)
=

N∑
i=1

M∑
m=1

xi,mαi,moi,m

− xi,mψϖβ0
ζ

− xi,mϖ(βi + ct)

B log
(
1 + pihi

κyig+N0

)
≤

N∑
i=1

M∑
m=1

αi,moi,m −
β0ψϖMN

ζ

− ϖM

B

N∑
i=1

Nβi + ct

N log
(
1 + PVhi

κyig+N0

)
= ū (A∗,y) , (29)

where A∗ is given by

A∗ =
[
[1, · · · , 1]︸ ︷︷ ︸

MN

, [1, · · · , N ], [PV, · · · , PV]︸ ︷︷ ︸
N

]
(30)

By Eqs. (3), (5d), (22) and (29), ∀y ∈ (0, PJ]
F , N ≤ F

and PJg ≫ N0 we have

uJ(A
∗,y) = −

N∑
i=1

PVhi
PJg

− cJ
F∑
l=1

yl

≤ −
N∑
i=1

PVhi
PJg

− cJ
N∑
l=1

yi = uJ(A
∗,y′) (31)

As
∑N

i=1 yi ≤ PJ, we have

L (y′, λ) = −
N∑
i=1

PVhi
PJg

− cJ
N∑
l=1

yi + λ

(
PJ −

N∑
i=1

yi

)
(32)

∂L (y′, λ)

∂yi
=
PVhi
y2i g

− cJ + λ = 0 (33)

∂L (y′, λ)

∂λ
= PJ −

N∑
i=1

yi = 0 (34)

By Eqs. (29), (31), (33) and (34), ∀y ∈ (0, PJ]
F , we have

uJ (A
∗,y∗) ≥ uJ (A,y) (35)

where y∗ = [y∗i ]1≤i≤F is given by

y∗ =
[
y∗1 , · · · , y∗N , 0, · · · , 0︸ ︷︷ ︸

F−N

]
, y∗i =

√
hiPJ

N∑
i=1

√
hi

(36)

Thus,
[
A∗,y∗] is a Stackelberg equilibrium of the game for

the collaborative perception against jamming and interference,
yielding the performance upper bound given by Eqs. (17)-(19).

APPENDIX B
PROOF OF THEOREM 2

Proof: According to [42], as |X1| = 2M , |X2| = F , |X3| =
L1, |S1| = DM

1 DM
2 D3D

F
4 D5, |S2| = |S1||X1| and |S3| =
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|S1||X2|, we have Γ′
1 given by

Γ′
1 = O

 3∑
j=1

|Sj ||Xj |

 (37)

= O
(
2MDM

1 DM
2 D3D

F
4 D5 + 2MFDM

1 DM
2 D3D

F
4 D5

+ FL1D
M
1 DM

2 D3D
F
4 D5

)
(38)

= 2MFDM
1 DM

2 D3D
F
4 D5 (39)

where Eq. (38) is obtained by submitting the |Sj | and |Xj |,
and Eq. (39) is obtained by omitting the lower terms.

According to [41], as Ω1 = 2M+2F+2, Ω2 = 3M+2F+2
and Ω3 = 2M + 2F + 3, we have

Γ2 = O
(
4Z

3∑
j=1

Ωjf1,j + (f1,j + 1)fj,2 + (f2,j + 1)|Xj |

+Ωjf1,j + 2(f1,j + 1)fj,2 + 3(f2,j + 1)|Xj |
)

(40)

= O
(
Z

3∑
j=1

√
K|Xj |+K|Xj |+

√
K|Xj |3

)
(41)

= O
(
KZ

(
2M + F + L1

))
(42)

= O
(
2MKZ

)
, (43)

where Eq. (40) is obtained by Eqs. (23)-(25), and Eq. (41) is
derived by submitting Eqs. (26) and (27). Eq. (42) is obtained
by submitting |X|1 = 2M , |X|2 = F and |X|3 = L1, and is
further simplified to Eq. (43) as 2M ≫ F ≈ L1.
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