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Abstract

This paper tackles the problem of efficient and stable video
semantic segmentation. While stability has been under-
explored, prevalent work in efficient video semantic seg-
mentation uses the keyframe paradigm. They efficiently pro-
cess videos by only recomputing the low-level features and
reusing high-level features computed at selected keyframes.
In addition, the reused features stabilize the predictions across
frames, thereby improving video consistency. However, dy-
namic scenes in the video can easily lead to misalignments
between reused and recomputed features, which hampers per-
formance. Moreover, relying on feature reuse to improve pre-
diction consistency is brittle; an erroneous alignment of the
features can easily lead to unstable predictions. Therefore,
the keyframe paradigm exhibits a dilemma between stabil-
ity and performance. We address this efficiency and stability
challenge using a novel yet simple Temporal Feature Corre-
lation (TFC) module. It uses the cosine similarity between
two frames’ low-level features to inform the semantic label’s
consistency across frames. Specifically, we selectively reuse
label-consistent features across frames through linear inter-
polation and update others through sparse multi-scale de-
formable attention. As a result, we no longer directly reuse
features to improve stability and thus effectively solve fea-
ture misalignment. This work provides a significant step to-
wards efficient and stable video semantic segmentation. On
the VSPW dataset, our method significantly improves the pre-
diction consistency of image-based methods while being as
fast and accurate.

1 Introduction
Video semantic segmentation (VSS) (Miao et al. 2021) is
critical in enabling machines to understand dynamic visual
scenes and plays an important role in various applications,
such as AR/VR, live video, self-driving, and robotics. The
explosion of deep learning techniques brought significant
improvements to VSS. Nevertheless, current methods often
use a per-frame segmentation network for VSS (Liu et al.
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2020). As a result, predictions across frames are unstable/in-
consistent (Miao et al. 2021), making image-based methods
impractical for real-world video applications. However, in-
corporating the temporal information is expensive (Sun et al.
2022a,b), leading to the emerging focus on efficient video
semantic segmentation (Zhu et al. 2017; Shelhamer et al.
2016).

While stability in VSS has been under-explored (Miao
et al. 2021), prevalent work (Zhu et al. 2017; Shelhamer
et al. 2016; Hu et al. 2023) in efficient video seman-
tic segmentation uses the keyframe paradigm: the non-
keyframes only need to compute their low-level features and
reuse high-level features computed at selected keyframes.
The reused features stabilize the predictions across frames,
thereby improving video consistency. However, dynamic
scenes in the video can easily cause misalignments between
the reused and recomputed features in the non-keyframe fea-
ture pyramid (Jain, Wang, and Gonzalez 2019; Hu et al.
2020). Therefore, the keyframe paradigm hurts the perfor-
mance of existing image-based methods (Jain, Wang, and
Gonzalez 2019). Furthermore, feature reuse implicitly im-
proves stability but is sensitive to incorrectly aligned fea-
tures. Consequently, the keyframe paradigm suffers from a
dilemma between stability and performance. Prior work ad-
dresses the performance drop by aligning the reused features
with flow-based warping (Jain, Wang, and Gonzalez 2019).
Yet, optical flow is prohibitively expensive, and erroneous
warping leads to unstable predictions.

We address the efficiency and stability challenge using a
novel yet simple Temporal Feature Correlation (TFC) mod-
ule. TFC uses the cosine similarity between two frames’
low-level features to inform the semantic label’s consistency
across frames. As shown in this paper (Fig. 3), its prediction
of the between-frame semantic label consistency is highly
accurate. Specifically, we selectively reuse label-consistent
features across frames while updating others to account for
the feature misalignment.

In this paper, we make two main contributions. First, we
use the cosine similarity as the weight of the linear interpo-
lation between features of two frames before the class pre-
diction head. If the cosine similarity is high, it would as-
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Figure 1: Outline of our method. At keyframes, the computation is kept the same as SegFormer (Xie et al. 2021). At non-
keyframes, we propose two modules based on the cosine similarity. The yellow arrow going from one decoder to the next
decoder represents zk needed for linear interpolation at the next decoder. We only drew the diagram for one frame interval to
keep the figure clean and easy to read. The above structure is repeated for every frame interval.

sign more weight to the keyframe features, and the predic-
tion head would be biased toward predicting the same labels
as the keyframe frame. Notably, linear interpolation requires
no learnable parameters and only incurs a marginal compu-
tational cost. To further improve the prediction consistency,
we add a binary cross-entropy loss based on focal loss (Lin
et al. 2020) to guide the cosine similarity. We then obtain bi-
nary labels by comparing the semantic masks of two frames.

Second, we propose a sparse multi-scale deformable at-
tention (MSDA) to efficiently solve the misalignment be-
tween reused and recomputed features. MSDA (Zhu et al.
2021) is a multi-scale feature fusion module that aggregates
feature points at arbitrary locations and levels of the feature
pyramid. It considers the feature misalignment and the se-
mantic gap between features at different levels. Since the
linear interpolation reuses feature points with high cosine
similarity, we reduce the computation of MSDA by apply-
ing it to feature points with low cosine similarity. In VSPW
(Miao et al. 2021), points with cosine similarity lower than
0.8 only account for about 10% of the feature points, which
supports our sparse update strategy.

While prior work either focuses on stability (Sun et al.
2022a,b) or efficiency (Zhu et al. 2017), our work provides a
significant step towards efficient and stable video semantic
segmentation. Our method shown in Fig. 1 is novel yet sim-
ple. It solves for efficiency and stability with the cosine simi-
larity between low-level features of two frames to inform the
semantic label’s consistency across frames. On this basis, we
can selectively reuse label-consistent features across frames
while updating others with MSDA to account for the feature
misalignment. Our proposed method opens new considera-
tions for the keyframe framework as a strong paradigm for

efficient and stable VSS. On the VSPW (Miao et al. 2021)
dataset, we significantly improve the prediction consistency
of image-based methods while being as fast and accurate.

We organize this paper as follows. First, we summarize
prior works in Sec. 2. Sec. 3 introduces the proposed lin-
ear interpolation and sparse MSDA. Experimental results in
Sec. 4 illustrate our key design choices. Finally, Sec. 5 pro-
vides discussions.

2 Related Work
VSS Datasets & Prediction Consistency. Video seman-
tic segmentation requires temporally dense annotations to
study prediction consistency across frames. Yet, popular
VSS datasets (Brostow, Fauqueur, and Cipolla 2009; Bros-
tow et al. 2008; Cordts et al. 2016; Kim, Yim, and Kim
2018) are all sparsely-annotated or small-scale. For instance,
Cityscapes (Cordts et al. 2016) and CamVid (Brostow,
Fauqueur, and Cipolla 2009; Brostow et al. 2008) only anno-
tate a single frame per video sequence. The Highway Driv-
ing dataset (Kim, Yim, and Kim 2018) is densely-annotated
but small-scale; it contains a total of 1,200 annotated frames.
As a result, much of prior work focuses on image semantic
segmentation (Chen et al. 2017, 2018a,b; Fan et al. 2021; Li
et al. 2019; Lin et al. 2017a; Liu et al. 2020; Long, Shel-
hamer, and Darrell 2015; Mehta et al. 2018; Nirkin, Wolf,
and Hassner 2021; Orsic et al. 2019; Wang et al. 2020;
Wu, Shen, and van den Hengel 2016; Xie et al. 2021; Yu
et al. 2021, 2018; Zhao et al. 2017). The lack of large-scale
datasets with temporally dense annotations has bottlenecked
the study of prediction consistency in videos. Fortunately,
VSPW (Miao et al. 2021) resolves this issue and provides
dense annotations at 15 FPS for 3,536 videos. Therefore,
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VSPW is so far the only viable dataset for studying stability
and efficiency in VSS.

Flow-Guided Warping. Prior work focuses on warping
the high-level features (e.g., optical flow (Jain, Wang, and
Gonzalez 2019; Lee, Chen, and Peng 2021; Li, Shi, and Lin
2018; Xu et al. 2018; Zhu et al. 2017)) to mitigate the mis-
alignment between the reused and recomputed features in
the feature pyramid. This approach has two significant draw-
backs in practice. First, flow-based warping struggles to alle-
viate the performance drop because it is inherently sensitive
to occlusions. Second, previous methods improve prediction
consistency through feature reuse, which assumes that the
reused features remain the same. However, any erroneous
warping would break that assumption and thus affect predic-
tion consistency. MSDA (Zhu et al. 2021) has the following
advantages over flow-guided warping. First and foremost, it
considers the semantic gap in the feature pyramid due to the
difference in the receptive field of each level. As a result,
it provides a strong multi-scale feature fusion. Next, MSDA
is less error-prone than flow-guided warping because it is
not sensitive to occlusions. Instead of aggregating at the pre-
dicted flow, it aggregates feature points at arbitrary locations
and levels of the feature pyramid. Nevertheless, MSDA is
just as expensive as optical flow. Our work reduces compu-
tation by proposing a sparse MSDA.

Linear Interpolation between frames. While some
work in VSS uses a linear interpolation between adjacent
frames (Gadde, Jampani, and Gehler 2017; Jain and Gon-
zalez 2018; Mahasseni, Todorovic, and Fern 2017), they
do not use it to improve the prediction consistency. Net-
Warp (Gadde, Jampani, and Gehler 2017) interpolates pre-
viously warped features with current features. Yet, NetWarp
is not based on the keyframe paradigm and thus hampers
its image-based counterpart with an expensive flow module.
Jain et al. (Jain and Gonzalez 2018) interpolates between the
current frame features and the warped features from adjacent
keyframes, but it is not an online method because it looks
ahead to the next keyframe. Mahasseni et al. (Mahasseni,
Todorovic, and Fern 2017) directly interpolates between the
previous frames’ predicted pixels to produce labels for the
current frame. Note that this method uses learnable param-
eters for the interpolation. In contrast with prior work, our
linear interpolation does not rely on any learnable parame-
ters, but uses the already computed low-level features. Based
on the keyframe paradigm, we explicitly use our linear inter-
polation to improve prediction consistency across frames.

Multi-scale Feature Fusion. The difference in the recep-
tive field of each level of a feature pyramid has the following
effect. High-level features contain rich semantic information
but lack fine-grained spatial information. Low-level features
contain rich fine-grained spatial information but lack se-
mantic information. Furthermore, Zhang et al. (Zhang et al.
2018) observed increased image segmentation performance
by reducing the semantic gap. Although there exist many
different flavors of multi-scale feature fusion (Lin et al.
2017b; Liu et al. 2018; Ghiasi, Lin, and Le 2019; Tan, Pang,
and Le 2020; Zhang et al. 2018; Zhu et al. 2021; Roh et al.
2022), none of them use it to mitigate feature misalignment
in keyframe-based methods.

3 Method
Our method uses a simple encoder-decoder architecture that
predicts a semantic mask given an image. Akin to previous
keyframe-based methods, our method follows SegFormer’s
computation (Xie et al. 2021) at keyframes and reuses the
computed high-level features for non-keyframes. At non-
keyframes, we use TFC to improve the prediction consis-
tency across frames and to efficiently mitigate feature mis-
alignment.

For clarity of explanation, we explain the computa-
tion for keyframes and non-keyframes separately. At non-
keyframes, we address both efficiency and stability using the
cosine similarity between low-level features of two frames,
which is highly informative of the semantic label’s con-
sistency across frames. Based on the cosine similarity, we
derive two operations: (1) a linear interpolation and (2) a
sparse MSDA. The linear interpolation selectively reuses
label-consistent features across frames while sparse MSDA
updates others to account for the feature misalignment. Note
that the parameters are shared across all frames except for
the two proposed modules, which are only used at non-
keyframes. We illustrate our method in Figs. 1 & 2.

3.1 Keyframe
As mentioned earlier, the computation at keyframes follows
exactly that of SegFormer (Xie et al. 2021). SegFormer is
an encoder-decoder network with a hierarchical Transformer
encoder and a lightweight MLP decoder. Let k be the time
step of the keyframe. Then, given an image Ik, it predicts
semantic mask yk ∈ RC×H×W as follows.

First, the encoder produces feature maps at four levels
with resolutions {1/4; 1/8; 1/16; 1/32} of the original im-
age. In formulae,

(x1
k,x

2
k,x

3
k,x

4
k) = encoder(Ik). (1)

Next, we describe the decoder. A feature fusion step com-
bines these feature maps into xk = (x1

k,x
2
k,x

3
k,x

4
k) by pro-

jecting and concatenating these features after up-sampling
them at 1/4 resolution. In formulae,

zk = FC(concat(resize(FC(xk)))), (2)

Finally, a class prediction head predicts semantic classes at
resolution 1/4, and we obtain predictions at the original im-
age resolutions by upsampling the semantic class predic-
tions. Given zk ∈ RD×H/4×W/4, it yields

yk = resize(FC(zk)). (3)

3.2 Non-keyframe
Let t > k be the time step of the non-keyframe. Then, at
non-keyframe, the encoder only extracts the low-level fea-
tures (x1

t ,x
2
t ) and reuses the high-level features (x3

k,x
4
k)

from the keyframe to form the feature pyramid

xt = (x1
t ,x

2
t ,x

3
k,x

4
k). (4)

Two issues arise at non-keyframes. First, video scenes
may be dynamic, thus (x1

t ,x
2
t ) and (x3

k,x
4
k) become in-

consistent in Eq. (4). Second, relying only on feature reuse
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Figure 2: Sparse MSDA Diagram. The brown patches on
the image represent the points i that satisfy (wt)i < 0.8.
We apply MSDA to only these specific points to reduce the
computation cost while alleviating temporal misalignment.

to improve the prediction consistency across frames is brit-
tle. It marginally improves the stability and it assumes that
(x3

k,x
4
k) remain the same. Consequently, erroneous feature

alignments lead to unstable predictions.
Define the binary operator on feature maps ⟨·, ·⟩ and the

operator (·)i indexing a point i = (h,w) on a feature map.
We also denote the projected and resized version of xl in Eq.
(2) as x̂l. The binary operator computes the cosine similarity
between each feature point on x̂l

k ∈ RD×H/4×W/4 and its
corresponding feature point at time step t. In formulae,

wt = ⟨x̂l
k, x̂

l
t⟩ ∈ R1×H/4×W/4, (5)

where the cosine similarity (⟨·, ·⟩)i is defined as follows

(wt)i =
(x̂l

k)i
∥(x̂l

k)i∥2
· (x̂l

t)i
∥(x̂l

t)i∥2
. (6)

In Sec. 4.3, we empirically find that l = 2 provides better re-
sults than l = 1. Eq. (6) is highly informative of the semantic
label’s consistency across frames. Intuitively, for (x̂l

k)i and
(x̂l

t)i with consistent semantic label, we expect (wt)i to be
close to 1.

Linear Interpolation. We leverage linear interpolation to
maintain prediction consistency across frames by weighing
between keyframe feature zk and non-keyframe feature zt.
Define the Hadamard product on matrices with ⊙. We use
the linear interpolation based on the cosine similarity as fol-
lows

z′t = ŵt ⊙ zk + (1− ŵt)⊙ zt, (7)
where ŵt = clamp(ŵt,min = 0,max = 1). Intuitively, the
extent to which (zk)i and (zt)i weigh depends on the extent
that low-level features have changed at i since the keyframe.
If the cosine similarity is high, then (zt)i will be biased to-
wards (zk)i. Consequently, semantic prediction at (zk)i is
kept and prediction consistency is improved.

MSDA. Next, we describe how MSDA (Zhu et al. 2021)
performs multi-scale feature fusion (readers familiar with
MSDA can skip this part). Given zt from Eq. (2) and sparse
locations pt on the feature pyramid xt, MSDA yields

MSDA : (zt,xt,pt) → zt. (8)

The resulting feature points zt contain semantic information
from multiple levels and locations (given by pt) on xt. The
total number of sampling points is defined by the number of
levels l, heads m, and keys k. Let q be a point on zt, denoted

as (zt)q . Let vt be the values obtained from sampling points
(pt)qmlk on the multi-scale feature map xt. Then, MSDA
for a single point is

(zt)q =
∑
m

Wm

[∑
l

∑
k

(At)qmlk · vt((pt)qmlk)

]
, (9)

where
vt((pt)qmlk) = W′

mxl
t((pt)qmlk). (10)

We obtain sampling points (pt)qmlk and attention weights
(At)qmlk with a linear layer on top of (zt)q . More-
over, the attention weights are normalized such that∑

m

∑
l

∑
k(At)qmlk = 1. The strength of MSDA

comes from the fact that (pt)qmlk and (At)qmlk are data-
dependent. In this work, we advocate for MSDA as an effi-
cient way to mitigate feature misalignment.

Sparse MSDA. To sparsify MSDA, we propose applying
MSDA only on feature points of zt with low cosine similar-
ity. In formulae,

sparseMSDA : (zt,xt,pt,wt) → zt. (11)

Sparse MSDA only applies MSDA to feature points (zt)q
for which (wt)q < 0.8. In VSPW (Miao et al. 2021),
these points account for about 10% of points, which makes
sparse MSDA much cheaper than MSDA (Zhu et al. 2021).
More specifically, the complexity of MSDA w.r.t the number
points Nq is linear, i.e., O(NqD

2 + 5NqKD + 3NqDK),
where K is the number of sampling points |(p)q| and D is
the feature dimension. As a comparison, in MSDA, Nq =
HW/42 while in sparse MSDA, Nq ≪ HW/42.

3.3 Implementation Details
This section provides implementation details on the
keyframe interval and training loss. Methods focusing on se-
lecting keyframes (Shelhamer et al. 2016) are orthogonal to
our work. Hence, we select every 4th frame as a keyframe
for simplicity. In addition, the linear interpolation and co-
sine similarity are based on the keyframe xk and not the
previous frames xt−1. This prevents errors from accumu-
lating. For training, we do not tune the keyframe interval
as increasing it makes training prohibitively expensive. We
perform all our experiments using 16 GeForce GTX 1080,
where a keyframe interval of 4 fits well for all models (Xie
et al. 2021).

We can trivially obtain a binary mask for supervising the
(clamped) cosine similarity by comparing semantic labels
between two frames. Furthermore, we find that the binary
mask is imbalanced since the VSPW (Miao et al. 2021)
dataset contains temporally dense annotations at 15 FPS. To
account for the class imbalance, we implement the binary
cross entropy based on the focal loss (Lin et al. 2020) with
γ = 1.

Define Lseg as the cross entropy loss for supervising the
segmentation mask. Similarly, define Lbce as the binary cross
entropy based on focal loss (Lin et al. 2020) for supervising
the (clamped) cosine similarity. We train the whole model in
an end-to-end manner to minimize

L = Lseg + Lbce, (12)
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Figure 3: Predicted masks on the validation set. Based on the MiT-B5 (Xie et al. 2021) backbone, we show the predicted binary
mask for points with cosine similarity lower than 0.8. The binary masks are computed between the keyframe and the non-
keyframes. Because videos in VSPW (Miao et al. 2021) are very densely annotated, changes between frames are less visually
apparent than in other datasets. We set the spacing between frames to be higher than usual for better visualization.

where Lseg takes the average of the cross entropy loss on the
keyframe and the non-keyframes.

4 Experiments

Dataset. As summarized in Sec. 2, VSPW (Miao et al. 2021)
is so far the only dataset that provides temporally dense an-
notations (15 FPS) for VSS. Since the study of prediction
consistency across frames requires a temporally dense an-
notation, we perform all experiments on VSPW. In addition,
VSPW is the largest VSS benchmark, with 198,244 training
frames and 24,502 validation frames.

Training and Inference. We train all models on 16
Nvidia GeForce GTX 1080 with a batch size of 1 on each
GPU (Contributors 2020). Training takes approximately 1−
2 days depending on the model size. Our backbone uses the
pretrained SegFormer on ImageNet (Deng et al. 2009). Ac-
cordingly, we keep all hyper-parameters as in SegFormer
(Xie et al. 2021). We use random resizing, flipping, crop-
ping, and photometric distortions during training. The crop-
ping size is set to 480× 480. In addition, we adopt AdamW
with a ”poly” learning schedule with an initial learning rate
of 6e−5. At inference, the keyframe interval is kept the same
as for training unless specified, and images are resized to
480× 853.

Evaluation. Following VSPW (Miao et al. 2021), we use
mean IoU (mIoU), weighted IoU (wIoU), and mean Video
Consistency (mVC). In particular, IoU measures the accu-
racy of the semantic mask, and video consistency measures
the prediction consistency across frames. For a video clip
{I(c)}Cc=1 of length C with ground-truth masks {y(c)}Cc=1

and predicted masks {ŷ(c)}Cc=1, video consistency VCC ∈

[0, 1] is computed as follows,

VCC =
(y(1) ∩ ... ∩ y(C)) ∩ (ŷ(1) ∩ ... ∩ ŷ(C))

(y(1) ∩ ... ∩ y(C))
(13)

Intuitively, (y(1) ∩ ... ∩ y(C)) computes the common area
along the video for ground-truth masks and similarly for
predicted masks. Then, we wish the common area of the
ground-truth and predicted mask to be as high as possible.

4.1 Baselines
This section summarizes the baseline methods in Tab. 1. To
our knowledge, there are no keyframe-based methods on the
VSPW dataset. We describe next a set of reimplemented
baselines that focus on efficient VSS.

CFFM & MRCFA. These methods (Sun et al. 2022a,b)
do not belong to efficient VSS methods. Therefore, a di-
rect comparison with these methods is unfair. In particu-
lar, they do not leverage the temporal prior to reduce the
computation of the image-based methods. Orthogonal to
the keyframe paradigm, they focus on improving a per-
frame segmentation model using extra computation to ex-
tract temporal information at multiple frames. In contrast,
keyframe-based methods reduce the computation at non-
keyframes by reusing features computed at keyframes. As
a result, keyframe-based methods process videos more ef-
ficiently than their image-based counterpart. We add these
non-efficient VSS methods for reference.

Feature Reuse. Our Feature Reuse (Shelhamer et al.
2016) baseline implements the vanilla version of the
keyframe paradigm, which corresponds to our method with-
out linear interpolation and sparse MSDA.

TDNet. We reimplement TDNet (Hu et al. 2020) and re-
move the knowledge distillation component for a fair com-
parison. We note that in TDNet, removing knowledge distil-
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Stability Efficiency
Methods Backbone Type mIoU ↑ mVC8 ↑ mVC16 ↑ Params (M) ↓ FPS (f/s) ↑
SegFormer MiT-B0 Image 32.9 82.7 77.3 3.8 37.5
Segformer + TFC MiT-B0 E & S 32.9 85.3 (+2.6) 80.0 (+2.7) 4.5 (+0.7) 38.2 (+0.7)
SegFormer + Feature Reuse MiT-B0 E 31.5 84.3 78.7 3.8 39.9
SegFormer + TDNet MiT-B0 E 31.74 83.4 78.8 5.8 14.1
SegFormer + MRCFA MiT-B0 S 35.2 88.0 83.2 5.2 27.3
SegFormer + CFFM MiT-B0 S 35.4 87.7 82.9 4.7 30.3
SegFormer MiT-B1 Image 36.5 84.7 79.9 13.8 34.9
Segformer + TFC MiT-B1 E & S 36.7 86.8 (+2.1) 81.5 (+1.5) 14.5 (+0.7) 37.1 (+2.2)
SegFormer + MRCFA MiT-B1 S 38.9 88.8 84.4 16.2 22.1
SegFormer + CFFM MiT-B1 S 38.5 88.6 84.1 15.5 21.5
SegFormer MiT-B5 Image 48.2 87.8 83.7 82.1 26.2
SegFormer + TFC MiT-B5 E & S 48.3 90.5 (+2.7) 86.7 (+3.0) 82.8 (+0.7) 37.8 (+11.6)
SegFormer + CFFM MiT-B5 S 49.3 90.8 87.1 85.5 20.0
SegFormer + MRCFA MiT-B5 S 49.9 90.9 87.4 84.5 23.0

Table 1: Main results on VSPW (Miao et al. 2021). We show in parenthesis the difference with the image-based counterpart. E
stands for Efficiency and S for Stability. In particular, prior works focus on either Efficiency (Shelhamer et al. 2016) or Stability
(Sun et al. 2022a,b). We report the average FPS on a single key-frame interval.

lation results in a performance drop of 1.2 mIoU. In partic-
ular, we are interested in comparing our linear interpolation
with their attention propagation module.

4.2 Results
Tab. 1 reports the main results on the VSPW evaluation
set (Miao et al. 2021). Previous state-of-the-art methods in-
crease stability at the cost of inference speed (Sun et al.
2022b,a). In contrast, our method boosts both stability and
efficiency. Furthermore, we find that relying on feature reuse
increases the VC by 1.6 and 1.4 for mVC8 and mVC16,
respectively. We also make gains in VC compared to the
backbone. On the MiT-B0 backbone, mVC8 and mVC16 in-
creases by 2.6 and 2.7, respectively. Compared to TDNet
(Hu et al. 2020), our linear interpolation significantly raises
the VC without requiring any trainable parameter.

Compared to the image-based counterpart, SegFormer
(Xie et al. 2021), our method significantly improves stabil-
ity while being as fast and accurate. For reference, at non-
keyframe, our method’s GFLOPs with B0 vs MiT-B0 at non-
keyframes is: 6.4 vs 6.8. Similarly with B5 vs MiT-B5 at
non-keyframes is: 53.2 vs 95.7. More importantly, enhanc-
ing stability without hampering speed and accuracy is a sig-
nificant milestone toward efficient and stable VSS.

4.3 Ablation
We perform ablation studies to show the importance of some
key design choices, including (1) the computation of co-
sine similarity, (2) the sparsity of MSDA, (3) the weighting
in linear interpolation, (4) the cosine similarity supervision,
and (5) the keyframe interval.

Cosine Similarity. The goal of the cosine similarity is
to inform the semantic label’s consistency across frames. In
particular, it is the main contribution of our method, which
uses it to derive a linear interpolation and sparse MSDA. As
described in Sec. 3.2, we compute the cosine similarity us-
ing x̂2

k and x̂2
t . This choice is not arbitrary. In Tab. 2, we

Figure 4: Accuracy of the binary mask. We display the bi-
nary mask accuracy for MiT-B0 (blue and orange) & MiT-
B5 (green) during training. For MiT-B0, we plot the accu-
racy of the clamped cosine similarity with (blue) and with-
out (orange) the binary cross entropy loss based on the focal
loss. Supervising the cosine similarity is essential for learn-
ing an accurate binary mask.

empirically show that using x̂1
k and x̂1

t gives weaker results
in both prediction accuracy and prediction consistency. We
briefly described some variants that we have tried that did
not work. First, we observed that the model does not con-
verge when we use zk and zt, probably because the reused
high-level features introduce significant noise. Second, we
found that using a neural network to directly output the bi-
nary mask is non-trivial. For both cases, the model could not
even overfit to a single batch. In contrast, the cosine similar-
ity provides a simple and efficient way to obtain the semantic
label’s consistency across frames.

Sparse MSDA. Tab. 3 compares the inference speed at
different MSDA sparsity levels against the inference speed
of computing high-level Segformer features (Xie et al.
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Methods mIoU mVC8 mVC16

Linear
Interp.

Feature reuse 31.5 84.3 78.7
+ Linear interp. 32.0 85.0 79.3
+ Hard interp. 32.0 83.7 78.0
+ Fixed interp. 31.0 85.9 80.5

Sparse
MSDA

Feature reuse 31.5 84.3 78.7
+ Sparse MSDA (0.8) 32.7 84.2 78.7
+ Sparse MSDA (1.0) 33.8 79.0 74.3
+ Sparse MSDA (0.5) 31.9 84.3 79.0
+ Flow-guided Warping 32.7 81.0 75.0

Cosine
Similarity

x̂2 32.9 85.3 80.0
x̂1 31.6 84.5 79.0

Focal
Loss

With Focal Loss 32.9 85.3 80.0
Without Focal Loss 32.1 83.1 77.7

Frame
Interval

Interval 4 32.9 85.3 80.0
Interval 5 32.9 85.8 80.1
Interval 6 32.8 85.8 80.4
Interval 7 32.7 86.0 80.7
Interval 8 32.6 86.4 80.9
Interval 9 32.4 86.6 81.1

Table 2: Ablation results. We highlight the setup used in our method in gray. For Sparse MSDA, we show in parenthesis the
threshold. Our method is the only one that is efficient and stable.

Methods FPS f/s
SegFormer
(Xie et al.
2021)

MiT-B0 342.3
MiT-B1 319.1
MiT-B5 31.7

Sparse
MSDA

MiT-B0 (20%) 522.9
MiT-B0 (40%) 455.5
MiT-B0 (100%) 302.6

Table 3: sparse MSDA inference speed. We compare the in-
ference speed of sparse MSDA against the last two layers of
the backbone on an A100 GPU.

2021). We find that the computation at non-keyframes is
lower than at keyframes. In Tab. 2, we compare MSDA for
different thresholds on wt. The results show that sparsity
is important not only for improving efficiency but also for
preserving stability. When all points are selected (thresh-
old 1.0), the performance increases while stability decreases.
This is because the performance at non-keyframes becomes
greater than at keyframes. Flow-guided warping (Teed and
Deng 2020) also follows a similar trend. The erroneous
warping breaks the assumption of feature reuse methods,
leading to unstable predictions.

Linear Interpolation. We compare two other linear inter-
polation variants to show the effectiveness of our proposed
linear interpolation. The first variant binarizes the weight
by applying a threshold (the same threshold as in sparse
MSDA). The linear interpolation either reuses the features
completely or forgets them completely. Tab. 4.3 shows that
binarizing the weight significantly hurts the stability. The
second variant fixes the weight of the linear interpolation.
Since approximately 10% of the feature points change be-
tween two frames, we set the weight to be 0.1. As shown in

Tab. 4.3, the results are much more stable, but it leads to a
considerable performance drop.

Focal Loss. Intuitively, we would expect the network to
naturally learn an accurate binary mask. However, the re-
sults in Fig. 4 and Tab. 2 empirically demonstrate that su-
pervision with the binary cross entropy loss based on fo-
cal foss is essential. In addition, in Fig. 4, we observe that
better-performing models (MiT-B0 vs MiT-B5) tend to learn
a better binary mask. We also show some qualitative binary
masks in Fig. 3.

Keyframe Interval. Tab. 2 shows that our method can
easily generalize to longer sequences when trained on a
keyframe interval 4. In particular, we can increase the VC
by 0.7 by just adding 3 frames at inference.

5 Discussion and Conclusion

Previous work in video semantic segmentation either fo-
cuses on efficiency or stability. In contrast, our work pro-
poses tackling efficiency and stability together. While the
two problems are seemingly unrelated, we find that they can
be solved at the same time. In particular, we reveal that the
cosine similarity between two frames’ low-level features is
highly informative of the semantic label’s consistency across
frames. Leveraging this finding, we propose a linear interpo-
lation to selectively reuse features based on the cosine sim-
ilarity. Then, we propose a sparse MSDA to efficiently up-
date feature points. As a result, we can effectively preserve
efficiency while enhancing stability. We note here that a po-
tential limitation of our method is the propagation of error
from keyframes to non-keyframes, which we leave for future
work. We believe future work can use the proposed cosine
similarity for scheduling keyframes.
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