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Abstract This chapter addresses generating artistic portrait drawings (APDraw-
ings) from images, and we focus on two methods based on generative adversarial 
networks (GANs). We first introduce the genre of portrait line drawings, and review 
some existing methods for generating them from images. We also describe the Artis-
tic Portrait Drawing (APDrawing) dataset, which contains 140 high-resolution face 
photos and corresponding portrait drawings executed by a professional artist. We 
then describe the APDrawingGAN method, which is a hierarchical GAN model 
that learns from paired data of face photos and portrait drawings, and the QMUPD 
method, which can learn from unpaired data of face photos and drawing. APDraw-
ingGAN uses a novel distance transform loss to learn stroke lines in the drawings, 
and a local transfer loss to capture different drawing styles for different facial regions. 
QMUPD uses an asymmetric cycle mapping to preserve important facial features, 
and a quality metric to guide the generation towards high-quality drawings. We fur-
ther introduce some recent developments which are based on multiple scale analysis, 
3D information and multi-modal information. Finally, we describe the evaluation of 
artistic portrait drawings, which is a challenging task since there are many possible 
drawings that would be considered by experts to be acceptable. 
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1 Introduction 

This chapter focuses on the genre of portrait line drawings, and is therefore circum-
scribed both by medium (typically pen or pencil) and topic (typically human faces, 
although some artists specialise in non-humans, e.g. the horse portraits painted by 
George Stubbs). Nevertheless, portrait line drawings still cover a large range of styles, 
in part due to their long historical development, as well as their different applications. 
For instance, more than 2000 years ago, the ancient Greeks produced thousands of 
painted pottery vases, and Fig. 1a shows a portrait line drawing from the red-figure 
classical period, which looks fairly contemporary. While these drawings consisted of 
clean outlines, the consequence of eliminating colour and texture and using just lines, 
is that it becomes hard to capture shading. Removing colour also introduces prob-
lems, although both artists and researchers have developed solutions [ 2]. One method 
for retaining some aspect of shading is to introduce hatching Fig. 1b, although the 
main methods described in this chapter aim towards generating drawings with fewer 
lines. This is in the spirit of our earlier work whose goal was to perform minimal 
rendering with lines as well as regions [ 29]. Depending on their goals, artists might 
switch between the different styles, as seen in the example by Leonardo da Vinci 
in Fig. 1c. Here, one version of the head is drawn in detail with careful hatching to 
provide good modelling of the surface, whereas another version is more an outline 
for quickly exploring some possible design options. Moving forwards to the twenti-
eth century, Fig. 2 shows different styles, e.g. minimal/clean, messy, highly stylised, 
and minimal/cartoon. Figure 3 shows how, from the basis of similar photographs, an 
artist can derive dissimilar artworks, e.g. realist versus highly stylised. 

Moving to computer generated line portraits, early work in the non-photorealistic 
rendering (NPR) community developed various approaches, many of which involved 
lines and solid black regions. For instance, Gooch et al. [ 12] extracted lines using 
difference of Gaussian filters (DoG) at multiple scales followed by global threshold-

Fig. 1 Examples of portrait line drawings from the last 2500 years. a section of a vase in the Attic 
red-figure style by Aristophanes (410–400 B.C.), b Self-portrait with Long Bushy Hair (1629–1633) 
by Rembrandt, c Study for the head of Leda (1503–1507) by Leonardo da Vinci
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Fig. 2 Twentieth century portrait line drawings. a Fernand Léger (1956) by Adolf Hoffmeister, 
b Hans Fallada (1943) by Erich Ohser, c Self portrait (1921) by Geo Milev, d André Gorz (2022) 
by HerB104 

Fig. 3 Portraits of Jimmy Wales by Jericó Delayah derived from the source photographs 

ing. The lines were combined with dark regions that were extracted from the source 
intensity image by thresholding. As Fig. 4b shows the results are reasonable, but in 
the absence of additional filtering are somewhat noisy even for simple input images. 
The results from Meng et al. [ 24] in Fig.  4c are meant to simulate paper-cuts. These 
are effectively binary renderings with the extra constraint that the black pixels form 
a single connected region. Their approach is more complex, involving a hierarchical 
composition model which represents the face by an AND-OR graph in which the 
nodes represent facial components. Facial features are located in the source image 
by fitting an active appearance model [ 9], from which local thresholding produces a 
set of “proposal” regions which are matched to the graph. Finally, post-processing 
is applied to extract the hair and clothing using graph cut segmentation, and enforce 
connectivity by inserting some curves. Like Gooch et al., Rosin and Lai [ 29] combine 
lines and regions. In their case lines are extracted using Kang et al.’s [ 19] coherent 
line drawing algorithm, which constructs a smooth edge tangent flow following the 
salient image edges that determines the kernel shape for the DoG filter. Both black 
and white (negative) lines are extracted. Regions are extracted by applying thresh-
olding followed by GrabCut [ 33]. The results shown in Fig. 4d are cleaner than those 
of Gooch et al., although some details have been lost (e.g. the jaw-line).
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Fig. 4 Various black and white line and region NPR portrait renderings. a Source image, b Gooch 
et al. [ 12], c Meng et al. [ 24], d Rosin and Lai [ 29] 

Figure 5 shows further examples of line drawings, some specifically designed for 
portraits, while others are general purpose such as Chiu et al.’s circular scribble 
art [ 6]. This produces a whimsical circular scribble pattern that is attractive, but does 
not really capture the portrait’s identity, see Fig. 5b, c. Their system first generates a 
virtual tracing path that takes the image’s intensity and edge structure into account. 
Circular scribbles are synthesized along the virtual path, with the circle radius con-
trolled by the local intensity. Figure 5d shows a binary version of the heavily stylised 
Julian Opie effect produced by Rosin and Lai’s portrait stylisation method [ 30]; it 
uses the black and white lines and regions produced by their earlier minimal ren-
dering style [ 29] and a template to create the facial features. Stippling is a popular 
general purpose image stylisation approach, widely used both by artists and the wider 
community. Given that it uses a huge number of graphical elements (stipples), it is 
the antithesis of this chapter’s focus on more minimal stylisation. However, there 
is a portrait-specific variant of stippling called hedcut, shown in Fig. 5e that pro-
duces a clearer effect. This result was generated with Son et al.’s [ 38] algorithm, 
that uses a regularly spaced grid of dots and hatching lines which are deformed to fit 
the image. Rosin and Lai [ 31] created an engraving stylisation using a dither matrix 
(i.e. a spatially-varying threshold) that generates a pattern of black and white lines 
forming cross hatching. A simple cylindrical model of the face warped the dither 
matrix so that the lines curve around the face, providing a pseudo-3D effect—see
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Fig. 5 Various black and white portrait stylisations. a original image, b, c Chiu et al.’s circular 
scribble art [ 6], d Rosin and Lai’s ‘Julian Opie’ style [ 30], e Son et al.’s hedcut [ 38], f Rosin and 
Lai’s engraving [ 31], g Berger et al.’s [ 3] portrait sketching, h Yi et al.’s APDrawingGAN [ 49] 

Fig. 5f. Berger et al. [ 3] use the statistics of a set of drawings of artists to drive an 
algorithm that creates a contour image, detects facial features, and then modifies 
the face geometry to follow the specific artist’s geometric style. Finally, contours 
are drawn using strokes from the artist’s stroke database, see Fig. 5g. The style is 
intentionally sketchy, which enables it to effectively hide errors in rendering. The 
last result, Fig. 5h, shows a stylisation by APDrawingGAN [ 49]—this method will 
be described in more detail in the next section. 

It can be seen that generating high quality portrait line drawings is challenging, 
and this comes from two fronts. First, the use of a sparse set of lines rather than a 
dense set of graphical primitives (e.g. painting strokes or stipples) means that any 
errors in these lines is significant. A mislocalisation or deformation of even a single 
line can become evident to the viewer, and spoil the artistic effect. In comparison, an 
error in an individual stipple will barely be visible. Second, the human visual system 
is especially sensitive to the human face, and will quickly perceive any errors. For 
instance, a missing eye on a portrait is unacceptable, and of much greater consequence 
than, e.g. a missing finger.
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2 APDrawingGAN 

APDrawingGAN [ 49, 50] is a Hierarchical Generative Adversarial Network (GAN) 
model dedicated to face structure and Artistic Portrait Line Drawing (APDrawing) 
styles for transforming face photos to high-quality APDrawings. To effectively learn 
different drawing styles for different facial regions, the APDrawingGAN architecture 
involves several local networks dedicated to facial feature regions, along with a 
global network to capture holistic characteristics. To further cope with line-stroke-
based style and imprecisely located elements in artists’ drawings, APDrawingGAN 
proposed a novel distance transform (DT) loss to learn stroke lines in APDrawings. 

2.1 Challenges 

APDrawingGAN addressed the following five challenges to improve the quality of 
artistic portrait drawings (APDrawing). In addition to the two previously mentioned, 
namely sparse graphical elements and sensitivity of the human visual system to faces, 
some additional challenges include: 

• In previous methods, different facial areas may be rendered in different styles (e.g., 
eyes vs. hair). 

• APDrawings will make some trade-offs to the elements of the original face, posing 
a challenge for methods based on pixel correspondence (e.g., Pix2Pix [ 18]). 

• In APDrawings, some lines are not directly related to low level features in the view 
or photograph of the person. 

Figure 6 gives some examples. These examples include lines in the hair indicating 
the flow, or lines indicating the presence of facial features even if the image contains 
no intensity or colour discontinuities. Such elements of the drawings are hard to 
learn. Therefore, many image style transfer algorithms (e.g., [ 11, 18, 20, 21, 37, 
57]) inevitably fail to produce good and expressive artistic portraits (Fig. 7). 

To solve the above challenges, APDrawingGAN firstly uses a Hierarchical GAN 
architecture for artistic portrait drawing synthesis from a face photo, which can gen-
erate high-quality and expressive artistic portrait drawings. To best emulate artists, 
who use multiple graphical elements when creating a drawing, APDrawingGAN 
separates the GAN’s rendered output into multiple layers, each of which is con-
trolled by separate loss functions. The APDrawing dataset is constructed to facilitate 
research in this area, and contains 140 high-resolution face photos and correspond-
ing portrait drawings executed by a professional artist. Fig. 7 shows the qualitative 
results of APDrawingGAN and the comparison with seven neural style transfer and 
image-to-image translation methods.
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Fig. 6 Some examples of image pairs (each pair contains a face photo and an artist’s portrait 
drawing) in the APDrawing dataset [ 49] 

Input Ground Truth StyleRef CNNMRF DeepAnalogy Headshot Gatys’ method CycleGAN Pix2Pix APDrawingGAN APDrawingGAN++ 

Fig. 7 Qualitative results of APDrawingGAN/APDrawingGAN++ and comparison with seven 
neural style transfer and image-to-image translation methods. From left to right: input face pho-
tos, ground truth APDrawings, the randomly-chosen style images for methods which take one 
content and one style image as input, CNNMRF [ 20] results, Deep Image Analogy [ 21] results, 
Headshot Portrait [ 37] results, Gatys [ 11] results, CycleGAN [ 57] results, Pix2Pix [ 18] results, the 
original APDrawingGAN [ 49] results, APDrawingGAN++ [ 47] results. Compared with the origi-
nal APDrawingGAN, APDrawingGAN++ uses auto-encoders, classifiers for lip and hair, and line 
continuity loss for better qualitative results 

2.2 Technical Details of APDrawingGAN 

The process of learning to transform face photos to APDrawings can be modeled 
as a function .Ψ which maps the face photo domain .P into a black-and-white line-
stroke-based APDrawing domain . A. The function .Ψ is learnt from paired training 
data .Sdata = {(pi , ai )|pi ∈ P, ai ∈ A, i = 1, 2, . . . , N }, where .N is the number of 
photo-APDrawing pairs in the training set. The discussion in this section focuses on 
the extended version called APDrawingGAN++ [ 47], which uses additional auto-
encoders for fine facial features, classification for lips and hair, and line continuity
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loss to improve the line quality. To streamline the text, unless explicitly specified, 
we use APDrawingGAN to refer to the extended model. 

APDrawingGAN consists of a generator .G and a discriminator . D, both of 
which are convolutional neural networks specifically designed for line drawing-based 
APDrawings in the style of artist’s drawings. The generator. G learns the APDrawing 
of the output . A, while the discriminator .D serves to determine whether an image is 
real or generated by the generator. 

The discriminator.D is trained to classify the real.ai ∈ A and the synthetic image 
.G(pi ), .pi ∈ P as accurately as possible, while .G is trained to minimize this proba-
bility. The loss function, denoted .L(G, D), is specifically designed with five terms 
.Ladv(G, D),.LL1(G, D),.LDT (G, D),.Llocal(G, D) and.Lconti (G, D). Then the func-
tion.Ψ can be formulated using the function.L(G, D) to solve the following min-max 
problem: 

.

min
G

max
D

L(G, D) = Ladv(G, D) + λ1LL1(G, D)

+ λ2LDT (G, D) + λ3Llocal(G, D)+λ4Lconti (G, D).
(1) 

2.2.1 Hierarchical Generator . G

The hierarchical generator .G converts the input face photos into APDrawings. 
The model is trained on one style of APDrawings at a time. In the hierarchy of 
.G = {Gglobal ,Gl∗, E∗,C∗,G f usion}, .Gglobal is a global generator, . Gl∗ = {Gl_eye_l ,

.Gl_eye_r ,Gl_nose,Gl_mouth,Gl_hair ,Gl_bg} is a set of six local generators. . E∗ =
{Eeye_l, Eeye_r , Enose, Elip_b, Elip_w} is a set of five auto-encoders,. C∗ = {Clip,Chair }
is a set of two classifiers and .G f usion is a fusion network. 

The generator .G uses the U-Net structure [ 28]. .Gl_eye_l , .Gl_eye_r , .Gl_nose and 
.Gl_mouth are all U-Nets with three downward and three upward convolutions.. Gl_hair

and .Gl_bg are U-Nets with four downward and four upward convolution blocks. In 
.Gl∗, the role of the local generator is to learn the drawing styles of different local facial 
features; for example, the hair style for hair (i.e., capturing the soft, flowing details of 
individual strands of hair with short or long strokes), the delicate line style for eyes 
and noses, and the solid or line style for mouths. A U-Net with skip connections can 
incorporate multi-scale features and provide sufficient but not excessive flexibility 
to learn the artist’s drawing techniques for different facial regions in APDrawings. 

Local Generators. The inputs of .Gl_eye_l , .Gl_eye_r , .Gl_nose, and .Gl_mouth are 
local regions centered on facial elements (i.e., left eye, right eye, nose and mouth) 
as the centered local regions, obtained from the MTCNN model [ 54]. The input of 
.Glbg is the background region detected by the portrait segmentation method [ 36]. 
The input of .Ghair is the remaining region in the face photo. The outputs of all 
local generators are blended into an aggregated picture .Ilocal by using min pooling 
in the overlapping regions. This min pooling effectively preserves the responses of 
individual local generators, because in artistic pictures, low intensities are considered 
as the responses of black pixels.
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Global Generator. .Gglobal is a U-Net with eight lower and eight upper convo-
lutional blocks, which handles the global structure of the face. .G f usion consists of a 
vanilla convolution block (the feature map size stays the same), six residual blocks 
and a final convolution layer..G f usion is used to fuse.Ilocal and.Iglobal (i.e., the output of 
.Gglobal) to obtain the final synthetic map of. G. In many previous GAN models (e.g., 
[ 13, 17]), some noise is usually input or injected to the generator network. Following 
[ 18], instead of adding noise explicitly in . G, APDrawingGAN uses dropout [ 39] as  
noise in the U-Net block. 

Fusion Network. The fusion Network .G f usion is used to fuse the output from 
the local and global generators together for final portrait drawing synthesis. This 
block helps combine different drawing techniques learnt by different generators 
(.Gglobal ,Gl∗). 

Handling Multiple Styles for Lips and Eyes. In the APDrawing dataset, lips and 
hair exhibit multiple styles, e.g., white/black lips, and dark/middle/light hair (Fig. 6). 
We use two classifiers for lip and hair (.Clip, .Chair ) to detect the target style for the 
lip and hair regions respectively, and the detected class information is then used to 
guide the generation toward the desired style. 

Autoencoders for Fine APDrawing. In the original APDrawingGAN [ 49], the 
generator .G only consists of local generators, a global generator and a fusion net-
work, where the main loss function was calculated on the fused result output from 
the fusion network, while the local generators’ outputs are only supervised by a 
local loss. Therefore, the local drawings output from the local generators .Gl_eye_l , 
.Gl_eye_r , .Gl_nose, .Gl_li p are not as delicate as the artist drawn drawings. In APDraw-
ingGAN++ [ 47], a set of auto-encoders.Eeye_l ,.Eeye_r ,.Enose,.Elip_b/w (corresponding 
to the left eye, right eye, nose and lip) are designed to improve local drawings and 
generate better facial feature drawings in fine detail. Both the coarse input and fine 
output of these auto-encoders are parts of APDrawings. Trained with the APDraw-
ing dataset, each auto-encoder learns a good feature representation and reconstructs 
high-quality APDrawings close to the artist drawings. 

2.2.2 Hierarchical Discriminator . D

The discriminator .D distinguishes whether the input drawing is a genuine portrait 
of the artist. In the hierarchy of .D = {Dglobal, Dl∗}, .Dglobal is a global discrimi-
nator, and .Dl∗ = {Dl_eye_l , Dl_eye_r , Dl_nose, Dl_mouth, .Dl_hair , Dl_bg} is a set of six 
local discriminators. .Dglobal examines the whole drawing to determine the overall 
APDrawing features, and the local discriminators in.Dl∗ examine different local areas 
to evaluate the quality of the details. 

.Dglobal and all local discriminators in .Dl∗ use the Markovian discriminator in 
Pix2Pix [ 18]. The only difference is the input: the whole drawings or different local 
regions. The Markovian discriminator processes each .70 × 70 patch in the input 
image and examines the style of each patch. Local patches from different granularities 
(i.e., coarse and fine levels at global and local input) allow the discriminator to



446 R. Yi et al.

learn local patterns and better discriminate real artists’ drawings from synthesized 
drawings. 

2.2.3 Loss Function 

There are five terms in the loss function in Eq. 1, which are explained as follows. 
Adversarial loss. .Ladv models the ability of the discriminator to correctly distin-

guish between true and false APDrawings. According to Pix2Pix [ 18], the adversarial 
loss is formulated as 

. Ladv(G, D) =
Σ

Dj∈D
E(pi ,ai )∼Sdata [log(Dj (pi , ai ) + log(1 − Dj (pi ,G(pi )))].

When.Dj ∈ Dl∗, the images . pi , .ai and.G(pi ) are restricted to the local region spec-
ified by .Dj . Since .D maximizes this loss and .G minimizes it, .Ladv forces the syn-
thesized picture to become closer to the target domain . A. 

Pixel-wise loss. .LL1 drives the synthesised image close to the ground truth 
APDrawing image in a pixel-wise way. The loss of .LL1 is computed for each pixel 
in the entire drawing: 

.LL1(G, D) = E(pi ,ai )∼Sdata [||G(pi ) − ai||1]. (2) 

Using .L1 norm usually results in less blurry output than .L2 norm, so it is more 
suitable for APDrawing style. 

Line-promoting distance transform loss. Since the position of elements in 
APDrawings does not precisely correspond to the intensity of the image, .LDT is 
a loss specifically designed to facilitate line strokes in the APDrawing style. . LDT

is designed to tolerate the small misalignments often found in artist portraits and to 
better learn the lines in APDrawings. It relies on the Distance Transformation (DT) 
and Chamfer matching. 

A DT (also known as a “distance map”) can be represented as a digital image in 
which each pixel stores a distance value. Given a real or synthetic APDrawing. x , the  
two DTs of . x are defined as the images .IDT (x) and .I ,

DT (x): Suppose that . x̂ is the 
binarized image of . x , each pixel in .IDT (x) stores the distance to the closest black 
pixel in . x̂ and each pixel in .I ,

DT (x) stores the distance to its nearest white pixel. 
Two convolutional neural networks are used to detect the black and white lines in 

APDrawings, denoted as .Θb and .Θw, respectively. The Chamfer matching distance 
between APDrawings .x1 and .x2 is defined as: 

.

dCM(x1, x2) =
Σ

( j,k)∈Θb(x1)

IDT (x2)( j, k)

+
Σ

( j,k)∈Θw(x1)

I ,
DT (x2)( j, k),

(3)
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where .IDT (x)( j, k) and .I ,
DT (x)( j, k) are the distance values of pixels .( j, k) in the 

images .IDT (x) and .I ,
DT (x), respectively. .dCM(x1, x2) measures the sum of the dis-

tances from each line pixel in.x1 to the nearest pixel of the same type (black or white) 
in . x2. Then .LDT is defined as: 

.
LDT (G, D) = E(pi ,ai )∼Sdata [dCM(ai ,G(pi ))

+ dCM(G(pi ), ai )]. (4) 

Local transfer loss. .Llocal imposes additional constraints on the intermediate 
outputs of the six local generators in .Gl∗, which are then used as regularization 
terms for the loss function. The six local regions of APDrawing . x are denoted by 
.El(x), .Er(x), .Ns(x), .Mt (x), .Hr(x), and .Bg(x). .Llocal is defined as 

.

Llocal(G, D) = E(pi ,ai )∼Sdata

[||Gl_eye_l(El(pi )) − El(ai )||1
+ ||Gl_eye_r (Er(pi )) − Er(ai )||1
+ ||Gl_nose(Ns(pi )) − Ns(ai )||1
+ ||Gl_mouth(Mt (pi )) − Mt (ai )||1
+ ||Gl_hair (Hr(pi )) − Hr(ai )||1
+ ||Gl_bg(Bg(pi )) − Bg(ai )||1

]
.

(5) 

Line continuity loss. Line continuity is important in APDrawings, and the lines 
in the human artist drawings are often continuous. To promote the model to generate 
more continuous lines, a line continuity loss can be used to guide the model training. 
A line continuity prediction network.Rconti is designed to predict the line continuity 
score from a drawing patch, which is trained from the artist patches (which are 
assigned the highest continuity score) and manufactured defect patches (which are 
generated by randomly inverting line or non-line pixels in artist patches and are 
assigned lower continuity scores). 

In detail, the line continuity prediction network .Rconti , which contains three flat-
convolutions and a fully-connected layer, takes an.11 × 11 patch as input and outputs 
a single value for line continuity. As described above, the line continuity score of an 
APDrawing . I can be defined as: 

.Sconti (x) = Eρk∼P(x)Rconti (ρk), x ∈ I, (6) 

where .P(x) is the set of all patches that are not pure white or pure black, extracted 
from. I , and .ρk is the .k-th patch in this set. The higher the line continuity score, the 
more continuous the lines in APDrawing. I . For face and non-face patches, there are 
patch sets.Pf ace(x) and.Pnon− f ace(x). And the line continuity loss can be defined as: 

.Lconti (G, D) = E(pi ,ai )∼SdataEρk∼P(G(pi ))wk(1 − Rconti (ρk)), (7)
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where weight.wk = 2 if.ρk ∈ Pf ace(G(pi )), and.wk = 1 if.ρk ∈ Pnf ace(G(pi )). Since 
face patches have a complicated set of lines, the lines in the face area are often 
less continuous and need to be given higher weights to avoid them being unfairly 
penalised. 

3 Unpaired Portrait Drawing Generation (UPD) 

APDrawingGAN [ 49, 50] introduced in the previous section is trained using paired 
data consisting of face photos and APDrawings. However, paired data is costly to 
obtain, requiring professional artists hours to draw each delicate APDrawing. In 
comparison, unpaired training data collected from websites is easier to obtain. But 
training APDrawingGAN to perform generation from unpaired training data is more 
challenging than learning from paired training data, because: (1) Paired training data 
provides a more direct guidance for learning the photo-to-drawing mapping, while 
unpaired training data cannot provide such direct guidance; (2) Paired training data 
is usually specially collected and drawn by a few artists, which means the samples 
are both high quality and uniform in style, whereas this is less easy to achieve when 
collecting the necessarily large sets of unpaired samples. 

In this section, we introduce the Quality-Metric-guided Unpaired Portrait line 
Drawing Generation method (QMUPD) [ 47, 48], which targets the scenario in which 
only unpaired training data is available. Previous methods for unpaired image-to-
image translation [ 52, 56] use a cycle structure to regularize training. Due to the 
significant imbalance in information richness between photos and drawings, some 
existing unpaired transfer methods, such as CycleGAN [ 56], tend to indiscriminately 
embed invisible reconstruction information throughout the drawings, resulting in 
important facial features partially lost in the drawings (e.g., Fig. 8 second column). 
The problem mentioned above can be solved using a new asymmetric cycle map-
ping by forcing the reconstruction information to be visible (via truncation loss) and 
embedded only in selective facial regions (via a relaxed forward cycle consistency 
loss). Together with local discriminators for eyes, nose and lips, the asymmetric 
cycle mapping well preserves all important facial features in the generated portraits. 
By introducing a style classifier and taking into account style features, the Quality-
Metric-guided Unpaired Portrait line Drawing Generation can learn to generate mul-
tiple styles of portraits using a single network. Figures 8 and 9 show the results of the 
Quality-Metric-guided Unpaired Portrait line Drawing Generation and comparison 
methods. Due to the use of unpaired data, we consider three typical APDrawing 
styles, trained using APDrawing images collected from the internet.
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Input CycleGAN ComboGAN (style 1, 2, 3) UPD (style 1, 2, 3) QMUPD (style 1, 2, 3) 

Fig. 8 Quality-Metric-guided Unpaired Portrait line Drawing Generation (QMUPD) qualitative 
comparisons. From left to right: input face photos, CycleGAN [ 56] results, ComboGAN [ 1] results 
(styles 1, 2, 3), UPD [ 47] (styles 1, 2, 3), and QMUPD [ 48] (styles 1, 2, 3). The input face photos 
are from [ 32] 

Input APDrawingGAN++ QMUPD (style1) QMUPD (style2) QMUPD (style3) 

Fig. 9 Quality-Metric-guided Unpaired Portrait line Drawing Generation (QMUPD) qualitative 
comparisons. From left to right: input face photos, APDrawingGAN++ [ 50], QMUPD [ 48] (styles  
1, 2, 3). The input face photos are from [ 32]
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3.1 Challenge 

In practical applications, the data we have access to are often unpaired. Compared 
to paired training data, APDrawing generation for learning from unpaired data is 
more challenging but more relevant. Previous unpaired image-to-image translation 
methods [ 52, 56] use a cycle structure to normalize the training. Although cycle con-
sistency loss can be learned from unpaired data, when they are applied to face photo-
to-APDrawing translation, due to the apparent imbalance in information richness 
between the two data types, these methods tend to indiscriminately embed invisible 
reconstruction information throughout the APDrawing, resulting in degraded quality 
of the generated APDrawings, such as important facial features are partially lost. 

3.2 Quality Metric for APDrawings 

For high-quality APDrawing generation, it is not sufficient to decide whether such 
a drawing is real or fake; the generator needs a quality metric during training for 
the high-quality synthesized drawing. Observing that humans can easily decide the 
quality of a portrait line drawing without knowing the original face photo, this section 
introduces a quality metric for portrait line drawings by learning from human pref-
erence, which can then be used to encourage the model to generate good looking 
portrait line drawings. The metric can be modelled by a regression network to cal-
culate the quality score of each drawing based on human preference and predict the 
quality score of an APDrawing. 

Human preference scores. Human preference scores were obtained based on 
pairwise comparison between portrait line drawings of the same style. A user study 
was conducted, where the user was shown three portrait line drawings of the same 
style in a single question and asked to rank the three drawings. The best of the three 
shown drawings gets +2 reward score, while the middle placed drawing gets no 
reward and the worst one gets . −2 score. 250 drawings for each of the three target 
styles were chosen for making the questionnaire and.2450–3450 question responses 
were collected for each style. After summarizing all question responses for a style, 
the score for each drawing of this style was calculated and the global ranking was 
obtained based on the score. Finally, the scores were normalized to the range. [0.1, 1]
for later steps. 

Network architecture. Given the portrait drawing data and the normalized quality 
score (given by humans), a regression network is trained to predict APDrawing 
quality. The regression network is based on the Inception v3 [ 40] architecture. It 
takes an APDrawing as input and outputs a quality value. Since the quality metric 
model behaviour is learnt from human evaluation, the predicted score can be used as 
a constraint item to guide the drawing generator toward better quality.
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3.3 Technical Details 

The Quality-Metric-guided Unpaired Portrait line Drawing Generation uses a new 
GAN with an asymmetric cycle structure for face photo to APDrawing conversion 
without paired training data. Let. P and. D be the face photo domain and the APDraw-
ing domain, and no pairing needs to exist between these two domains. The model uses 
the training data .S(p) = {pi |i = 1, 2, . . . , N } and .S(d) = {d j | j = 1, 2, . . . , M} to 
learn a function .Φ that maps from .P to . D. .N and .M are the numbers of training 
photos and APDrawings. The asymmetric cyclic mapping model consists of two 
generators—a generator .G that converts face photos to portrait drawings and an 
inverse generator .F that converts drawings back to face photos—and two discrim-
inators, .DD for discriminating generated drawings from real drawings and .DP for 
discriminating generated photos from real photos. 

3.3.1 Face Photo to Drawing Generator . G

The generator .G takes a face photo . p and a style feature . s as input and outputs a 
portrait line graph .G(p, s) with a style specified by . s. 

Style features. A classifier. C (based on VGG19) was used to classify the portrait 
line drawings into three styles, using the network drawing data labelled with style 
classes. Then, the output of a final fully connected layer and a softmax layer were 
used to compute a 3-dimensional vector as a style feature for each drawing (including 
unlabelled ones). 

Network structure. .G is an encoder-decoder with a residual block [ 15] in the  
middle. It starts with a flat convolution (the feature map size stays the same) and 
two down convolution blocks to encode the face photos and extract useful features. 
The stylized features are then mapped as 3-channel feature maps and inserted into 
the network by concatenating with the feature maps of the second lower convolution 
block. Additional flat convolution is used to merge the style feature maps with the 
extracted feature maps. After that, the remaining blocks of nine identical structures 
are used to construct content features and transfer them to the target domain. Then, 
the output drawing is reconstructed by two upward convolutional blocks and a final 
convolutional layer. 

3.3.2 Drawing Discriminator . DD

The drawing discriminator.DD has two tasks: (1) to distinguish the generated portrait 
line drawings from the real ones, and (2) to classify a drawing into three selected 
styles, where the real one. d is expected to be assigned to the correct style label (given 
by. C) and the generated one.G(p, s) is expected to be assigned to the style specified 
by the 3-dimensional style feature . s.
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For the first task, to ensure the presence of important facial features in the gener-
ated drawings, in addition to the discriminator .D that analyzes the whole drawing, 
three local discriminators .Dln, Dle, Dll are used here to discriminate the drawing of 
nose, eyes and lips, respectively. The inputs of these local discriminators are masked 
drawings where the mask is obtained from the face resolution network [ 14]. The. DD
consists of .D, Dln, Dle, Dll . 

Network structure. The global discriminator .D is based on PatchGAN [ 18] and 
modified to have two branches. These two branches share three down convolution 
blocks. The branch.Dr f includes two down convolution blocks to output the true/false 
prediction maps for each patch in the drawing. And the other classification branch 
.Dcls includes more down convolution blocks to output the probability values of the 
three style labels. The local discriminators .Dln, Dle, Dll also use the PatchGAN 
structure. 

3.3.3 Drawing to Face Photo Generator .F and Photo discriminator . DP

The generator .F in the inverse direction takes a portrait line drawing . d as input 
and outputs a face photo .F(d). It uses an encoder-decoder architecture with nine 
remaining blocks in the middle. The photo discriminator.DP discriminates generated 
face photos from real ones and also adopts the PatchGAN structure. 

3.3.4 Loss Functions 

There are six types of losses in Quality-Metric-guided Unpaired Portrait line Drawing 
Generation model training. 

Adversarial loss. The adversarial loss evaluates the ability of the discriminator 
.DD to assign correct labels to real and synthesized drawings. It is formulated as: 

.

Ladv(G, DD) =
Σ

D∈DD

Ed∈S(d)[log D(d)]

+
Σ

D∈DD

Ep∈S(p)[log(1 − D(G(p, s))]
(8) 

where. s is randomly chosen from the style features of the drawings in .S(d) for each 
. p. Since .DD maximizes this loss and .G minimizes it, this loss drives the generated 
drawings closer to real drawings. 

An adversarial loss for the photo discriminator.DP and the inverse mapping. F is: 

.
Ladv(F, DP) = Ep∈S(p)[log DP(p)]

+ Ed∈S(d)[log(1 − DP(F(d))] (9)
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Relaxed forward cycle-consistency loss. As mentioned earlier, there is much 
less information in the domain .D than in the domain . P . It is infeasible for . p →
G(p, s) → F(G(p, s)) to be pixel-wise similar to . p, but the edge information in . p
and .F(G(p, s)) needs to be similar, which is achievable. Edges are extracted from 
. p and .F(G(p, s)) using HED [ 46], and the similarity of edges is evaluated by the 
LPIPS perceptual metric [ 55]. Using .H to denote the HED and .Llpips to denote the 
perceptual metric, the relaxed cycle consistency loss is formulated as: 

. Lrelaxed−cyc(G, F) = Ep∈S(p)[Llpips(H(p), H(F(G(p, s))))] (10) 

Strict backward cycle-consistency loss. On the other hand, the information in 
the generated face photo is sufficient to reconstruct the drawing. Therefore, it is 
important that .d → F(d) → G(F(d), s(d)) is pixelwise similar to . d, where the 
style feature .s(d) is the style feature of . d. The strict cycle consistency loss in the 
backward cycle is then formulated as: 

. Lstrict−cyc(G, F) = Ed∈S(d)[||d − G(F(d), s(d))||1] (11) 

Truncation loss. The truncation loss is designed to prevent the generated drawing 
from hiding information in small values. It has the same format as the relaxed cycle-
consistency loss, except that the generated drawing .G(p, s) is first truncated to 6 
bits (a general digital image stores intensity in 8 bits) to ensure that the encoded 
information is clearly visible, and then fed into. F to reconstruct the photo. Denoting 
the truncation operation as .T [·], the truncation loss is formulated as: 

. Ltrunc(G, F) = Ep∈S(p)[Llpips(H(p), H(F(T [G(p, s)])))] (12) 

During the first training period, the weight for the truncation loss is kept low, other-
wise it would be too hard for the model to optimize. The weight is gradually increased 
as the training progresses. 

Style loss. Style loss is introduced to help. G generate multiple styles with different 
style properties. Denoting the classification branch in .DD as .Dcls , the style loss is 
formulated as: 

.

Lcls(G, DD) = Ed∈S(d)[−
Σ

c

p(c) log Dcls(c|d)]

+ Ep∈S(p)[−
Σ

c

p,(c) log Dcls(c|G(p, s))]
(13) 

For a real drawing. d,.p(c) is the probability of the style label. c given by the classifier 
. C , and .Dcls(c|d) is the maximum softmax probability of .Dcls prediction for . c. The  
probability .p(c) is used to account for real drawings that may not belong to a single 
style but lie between two styles, e.g., the softmax probability .[0.58, 0.40, 0.02]. 
For the generated drawing .G(p, s), .p,(c) denotes the probability on the style label 
. c, specified by the style feature . s, and .Dcls(c|G(p, s)) is the softmax probability
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predicted on. c. This classification loss motivates.Dcls to classify the drawing into the 
correct style and motivates .G to generate a drawing close to the given style feature. 

Quality loss based on the quality metric model. The quality loss is designed for 
generating high quality APDrawings. The quality metric model .M gives a quality 
score (.∈ [0.1, 1]) of an APDrawing about how consistent it is with human perception, 
where better looking drawings get higher prediction scores. The quality loss. Lquali t y

is then defined as: 

.Lquali t y(G) = Ep∈S(p)[1 − M(G(p, s))]. (14) 

4 Recent Developments 

Multi-scale methods are popular for finding the relation between the source domain 
and the target domain. For face photo to sketch transfer, MvDT [ 26] relies on a 
multiview domain translation method to bridge the domain discrepancy between an 
input test image in the source domain and a collection of images in the target domain, 
which flexibly integrates a Convolutional Neural Network (CNN) representation with 
hand-crafted features in an optimal way. Duan et al. [ 10] propose a multi-scale gradi-
ent self-attention residual learning framework for face photo-sketch transformation, 
and their method utilizes the relationship between features to selectively enhance the 
characteristics of specific information through self-attention distribution. 

3D shapes are used in some works for sketch drawing. Neural Contours [ 23] is  
proposed for learning to generate line drawings from 3D models, and the network 
of Neural Contours incorporates a differentiable module operating on geometric 
features of the 3D model and an image-based module operating on view-based shape 
representations. Neural Strokes [ 22] takes a 3D shape and a viewpoint as input, 
and outputs a drawing with textured strokes, with variations in stroke thickness, 
deformation, and color learnt from an artist’s style. 

Network architecture is another important factor for high-quality generation. 
Sketch-Transformer [ 58] contains a multi-scale feature and position encoder for 
a patch-level feature and position embedding, a self-attention module for capturing 
long-range spatial dependency, and a multi-scale spatially-adaptive de-normalization 
decoder for image reconstruction. CA-GAN (Composition-Aided GAN) [ 53] utilises 
paired inputs, including a face photo/sketch and the corresponding pixelwise face 
labels for generating a sketch/photo and stacked CA-GANs (SCA-GANs) to further 
rectify defects and add compelling details. 

Sometimes, we would like the model to be controlled by some conditions. Wang 
et al. [ 43] propose a GAN transfer method that depends on the user input sketches. 
SoftGAN [ 5] decouples the latent space of portraits into a geometry space and a tex-
ture space, therefore it can generate high-quality portrait images with independently 
controllable geometry and texture attributes.
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Recently, with the development of cross-modal methods, text information is 
embedded into visual generation models. CLIPasso [ 42] utilises CLIP [ 27], a joint 
image and text model, to distill semantic concepts from sketches and images alike, 
defines a sketch as a set of Bézier curves and uses a differentiable rasteriser to opti-
mise the parameters of the curves directly with respect to a CLIP-based perceptual 
loss. CLIPasso can generalize to various categories and cope with challenging levels 
of abstraction while maintaining the semantic visual clues that allow for instance-
level and class-level recognition. CLIPascene [ 41] further improves the CLIP-based 
method, and converts a given scene image into a sketch using different types of 
abstraction (precise to loose) and multiple levels of abstraction (detailed to sparse). 
Chan et al. [ 4] think that line drawings are encodings of scene information, and they 
propose a geometry loss to convey 3D shape and a semantic loss to match the CLIP 
features of a line drawing with its corresponding photograph. 

5 Evaluation 

Evaluation of artistic portrait drawings, such as those described in this chapter, is 
obviously important, but it is a challenging task. Whereas tasks such as image clas-
sification and object detection have large, annotated benchmark datasets and various 
natural and effective evaluation metrics (e.g. accuracy), this is largely absent from 
APDrawings. Probably this is a consequence of the lack of unique ground truth for 
image stylisation or image generation; even for a single basic style (e.g. APDraw-
ing) there are many possible drawings that would be considered by experts to be 
acceptable. In contrast, for tasks such as image classification and object detection 
their ground truth values, at least to a first order approximation, are expected to be 
unique and well defined. Thus their metrics can rely on simple techniques such as 
counting the proportion of correct decisions. However, for APDrawings evaluation 
involves aesthetics, which makes it complex and difficult to measure, and is moreover 
subjective. 

Consequently, a popular approach to performing APDrawing evaluation is to carry 
our a user study where the task is to assign a rating to an image or indicate a preference 
between several images (e.g. a two-alternative forced choice). Since carrying out such 
user studies is time consuming, and is also not exactly repeatable, a recent alternative 
has become popular: the use of the Frećhet Inception distance (FID) [ 16] which 
is computed as the distance between the distribution of Inception feature vectors 
extracted from two sets of images. Alternatively a single image FID version [ 35] 
is available that is applied to internal patch statistics of the image. However, FID 
does not capture the quality of content preservation achieved by a stylisation, and 
moreover, is biased [ 7]. In addition, differences between Inception feature vectors 
do not always reflect human perception, although retraining the Inception network 
on an art dataset shows significant improvement [ 45].
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Another approach is the ‘deception score’ which measures the proportion of 
stylised images classified by a VGG network as being artworks of the artist for 
which the stylisation was produced [ 34]. However, this means that its application is 
limited to cases in which a style is tightly specified (such that a style classifier can 
be trained). Also, like FID it ignores content preservation. 

The NPRportrait benchmark v1.0 [ 32] took a different approach for evaluating 
content preservation. Gender, age, and ethnicity were considered to be basic features 
to describe faces, and, along with attractiveness, it was expected that good stylisations 
could preserve these characteristics unless the styles were highly abstracted. The four 
characteristics were estimated from the source images by a user study and taken as as 
ground truth, while a subsequent user study estimated the characteristics from stylised 
versions of the images. The distances between these distributions were taken as an 
indication of content loss. 

NPRportrait v1.0 [ 32] structured the benchmark images into three levels of diffi-
culty. As the levels increased, elements such as lighting, pose, expression, etc. were 
less constrained. This enabled the robustness of the stylisation algorithms to be tested 
by measuring their performance (e.g. according to user studies, FID, etc.) across the 
three levels. 

6 Conclusions 

This chapter focuses on the genre of portrait line drawings, and is therefore circum-
scribed both by medium (typically pen or pencil) and topic (typically human faces, 
although some artists specialise in non-humans). Nevertheless, the topic has been 
of interest in various forms over a long history. We describe various approaches to 
generating line portraits, including early work from the non-photorealistic rendering 
field, as well as APDrawingGAN and QMUPD, which are deep generative models. 
Present methods have addressed some of the challenges of line portrait generation, 
and achieved decent results. APDrawingGAN realises high-quality drawing with 
several generators for different face regions. QMUPD uses the asymmetric cycle 
mapping to train the generator with unpaired data, further allowing more diverse line 
drawing results to be learnt. 

A good portrait should do more than just record a person’s physical features. 
An expert artist can also use a portrait to reveal the subject’s character, personality, 
social status, and so on [ 44]. Furthermore, the artist may be required to present a 
certain image of the subject, e.g. to idealise (or even caricature) them, send a political 
message, etc. In fact, traditional portraiture involves many subtleties; on one hand it 
aimed to provide a generic view of the sitter, but in contrast to this, also to feature the 
individual’s distinguishing characteristics [ 25]. Also, historical portraits follow many 
conventions regarding pose, dress, etc. and make use of emblems and symbols to 
communicate additional information that goes beyond mere likeness [44]. In the other 
direction, modernist portraitures such as Picasso or Miró involve such distortions and
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abstractions that literal likeness is mostly lost, and the artist has to rely on other means 
to capture the person’s identity. 

Most of this is currently beyond the capabilities of computerised art. However, 
strong progress has been made in recent years, and some work has succeeded in 
capturing or incorporating aspects such as identity [ 51], semantics and 3D [ 4], and 
emotion [ 8]. We are happy to see more exploration in this area and hope that it will 
support the development of AI-Generated Content (AIGC). 
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