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MFDAN: Multi-level Flow-Driven Attention
Network for Micro-Expression Recognition
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Abstract—Facial expressions are an essential part of human
emotional communication, and micro-expressions (MEs), as tran-
sient and imperceptible non-verbal signals, can potentially reveal
real human emotions. However, subtle motion variations, lim-
ited and unbalanced samples make micro-expression recognition
(MER) challenging. In this paper, we design a novel dual-
branch learning framework of multi-level flow-driven attention
for micro-expression recognition (MFDAN), which innovatively
integrates optical flow prior to guide the attention learning in the
image encoding branch, enabling the model to focus on the most
discriminative facial regions for subtle motion patterns. Firstly,
we extract optical flow information by an optical flow encoding
module. Then, in the image coding module, we construct a
Transformer structure containing an optical flow-driven attention
mechanism, which can effectively locate the interest region of
micro-expressions in the image according to the position infor-
mation of optical flow to capture more sensitive and fine-grained
micro-expressions. By interoperating prior knowledge with data
learning, and introducing the Dropkey operation and Focal
Loss, our method can handle subtle micro-expression features
on small imbalanced datasets. Through extensive experiments on
three independent datasets and a composite database, including
SMIC-HS, SAMM, and CASME II, robust leave-one-subject-out
(LOSO) evaluation results show that our method outperforms
state-of-the-art methods especially on the composite database.

Index Terms—optical flow, micro-expression recognition, at-
tention mechanism.

I. INTRODUCTION

FACIAL expressions, including macro-expressions and
micro-expressions, are an effective form of nonverbal

communication, rich in emotional information, and crucial
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for understanding human emotional states [1]. Unlike macro-
expressions, micro-expressions (MEs) generally occur when
individuals try to hide their genuine emotions. MEs are shorter
in duration and have more subtle facial muscle movements.
They last between 0.04 and 0.2 seconds and are more difficult
to perceive [2]. Since micro-expression (ME) is a spontaneous
emotion that is difficult to control, it is more likely to reflect
real human emotions, so automated ME analysis is widely
used in national security, political psychology, lie detection,
and depression treatment. This kind of analysis provides
important clues to understanding human emotional intent and
plays a vital role in different fields.

The MER task is to recognize sequences of micro-
expression fragments into various emotional categories, which
is challenging. Spontaneous ME is unconscious, subtle, fleet-
ing, and has individual differences [3] due to the influence of
emotional and cultural backgrounds. As a result, the collection
and annotation of ME data are complex, leading to small and
unbalanced ME datasets. Due to the short and uncontrollable
nature of micro-expression, as well as the lack of training
samples, it becomes crucial to extract robust and effective ME
features accurately for performing ME analysis.

Early MER methods were mainly based on manual fea-
ture extraction [4], [5]. However, designing manual features
is time-consuming, and these methods are inefficient and
poorly adaptive for MER. With the rapid development of
deep learning and its superiority in capturing features, the
focus has gradually shifted to deep learning methods in recent
years. While many studies have demonstrated the efficacy
of deep learning in MER through the design of efficient
shallow networks [6]–[8], there remains significant potential
to enhance the current deep learning architectures to better
extract the spatial features of facial micro-expressions. Some
works have introduced the Transformer structure and attention
mechanism to capture susceptible and discriminative features
[9], [10]. However, MER still faces the challenges of locating
discriminant expression regions due to slight motion and
limited samples.

Compared with image, motion information in videos can
provide an additional important clue, and many actions can
be identified by motion information alone. As optical flow
containing motion information, numerous MER techniques
employ optical flow to characterize small surface movements
and reduce the impact of identity features [11], [12]. To further
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TABLE I
COMPARISON WITH PREVIOUS METHODS ON THE USE OF OPTICAL FLOW.

Method Utilization of the
optical flow

Optical flow
information

Spatial
information

Collaborative
modeling

Bi-WOOF [5],Sparse MDMO [19] Manual feature descriptor YES NO NO

EMRNet [20] RGB image YES NO NO

STSTNet [15], SFAMNet [16],
AM3F-FlowNet [17] Three-channel image YES NO NO

MERSiamC3D [21] Optical flow sequence YES NO NO

TSCNN [22],LFBVT [18] Optical flow and image
parallel modeling YES YES NO

Ours(MFDAN) Optical flow guides image
spatial feature extraction YES YES YES

capture the subtle facial changes, references [13], [14] calcu-
late the optical flow motion characteristics between the onset
frame and the apex frame from the horizontal and vertical
directions, respectively, and input them into the network in the
form of images, where the onset frame represents the moment
when the ME motion begins, and the apex frame represents the
moment when the ME motion is the most intense. Other works
[15]–[17] divide optical flow into three channels for feature
extraction. However, these approaches only directly utilize
the motion information from the optical flow, disregarding
the spatial information and neglecting the correlation between
dynamic and static components within the moving regions.
Although some studies [10], [18] employ the spatio-temporal
information of micro-expressions to process optical flow and
image features independently through a two-branch network,
their spatio-temporal features are spliced at a later stage in
the fully connected layer of the network, without interaction
and fusion in the feature extraction stage. In order to clearly
compare the differences between the previous methods used
of optical flow, we summarized their differences as shown in
the TABLE I.

To solve the above problems, our method proposes the
optical flow-driven attention mechanism to integrate optical
flow and image features and comprehensively model the
spatio-temporal information of micro-expressions, enabling a
more effective capture of the subtle facial movements. This
strategy can make the temporal and spatial features promote
and improve each other in the extraction process. In Fig.1, the
magnitude of the optical flow vector indicates the intensity
of the motion. The longer the vector, the further away the
pixels have moved. In other words, the optical flow contains
more information in the region of large motion amplitude.
Taking this as a starting point, we make full use of this
prior information to enhance the adaptive representation of
key facial areas of micro-expression. Specifically, based on the
magnitude of the motion amplitude in the optical flow, we can
locate that facial action occurs in a certain region of the image,
that is, the region has a relatively high importance in spatial
feature extraction. We propose a novel Multi-level Flow-
Driven Attention Network (MFDAN) framework to thoroughly
extract the key regional features to improve the performance
of MER. Firstly, we employ two branches to extract temporal
information and spatial information, respectively. Secondly,
we learn the mutual relations between the two branches by
innovatively integrating the window attention mechanism and

… … … …

onset frame 1 frame 2 frame 3 apex

Optical flow

Fig. 1. ME motion is invisible to the naked eye, key feature areas are
susceptible to redundant information, and the optical flow extracted from the
onset frame and the apex frame has more distinctive features in regions of
greater motion intensity. Our method adaptively enhances the focus on these
image regions.

utilizing cosine similarity to compute the similarity matrix
between the optical flow and image, effectively mapping the
positions with large motion amplitudes in the optical flow to
the corresponding image regions. Finally, we fused temporal
and spatial information in the fully connected layer to ensure
learning of the global information of MEs. In essence, we
introduce the prior information of feature pattern and change
rules of the micro-expression into the MER model, so that the
model can learn the feature representation related to the task
more effectively. This will reduce the degree of dependence on
data volume to a certain extent, providing an effective solution
for small and unbalanced micro-expression datasets.

The main contributions of our work includes:
• We propose a novel optical flow-driven attention mecha-

nism that leverages the prior knowledge of optical flow
positions with large motion amplitudes to guide attention
allocation, ensuring that the image feature extraction
process precisely captures the crucial regions containing
micro-expression variations.

• We propose a novel Multi-level Flow-Driven Attention
Network (MFDAN) for MER, which introduces an inno-
vative collaborative modeling scheme for optical flow and
image features. The MFDAN architecture incorporates
two flow-driven blocks combined with a window attention
mechanism, effectively preserving the validity of spatial
information while enabling comprehensive integration of
spatio-temporal features.

• To address sample imbalance, we introduce Focal loss
and employ the Dropkey operation to enhance our MER
model’s performance. Extensive experiments demonstrate
that the proposed MFDAN outperforms state-of-the-art
methods, and the significant improvement in cross-dataset
evaluation showcases its exceptional generalization capa-
bility.

The rest of the paper is organized as follows: section II
reviews essential MER-related work. Section III describes our
methodology in detail. Section IV describes the experimental
setup, preparation, and evaluation metrics, and section V
presents the experimental results, which are analyzed and
discussed. Finally, section VI summarizes the paper and the
direction of future work.
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Fig. 2. The general framework of the proposed two-branch multilevel optical flow-driven attention network. We first crop the video frames, use a pair of
onset and apex frames, and then extract the spatiotemporal information using optical flow and magnified images. The MFDAN Module consists of two layers
of Flow-Driven Block.

II. RELATED WORK

Currently, the MER methods are mainly divided into manual
feature-based methods and deep learning-based methods.

A. Manual feature-based methods

The manual approach refers to designing visual descriptors
artificially to capture the unique features of MEs. These
features are then fed into an emotion recognition classifier for
recognition. Zhao et al. [4] transform the vector code into the
form of a histogram and design a Local Binary Pattern with
three orthogonal planes(LBP-TOP). It uses the time and space
properties of three orthogonal planes to enhance the ability to
distinguish local texture feature information, then extracts and
classifies features. Subsequently, in order to improve its low
computational complexity, many improved algorithms based
on LBP-TOP are proposed [23]–[25]. In addition, excellent
progress has been made in extracting the motion features
of MEs using optical flow. In order to reduce the feature
dimension, Liu et al. [26] designs the main direction mean
optical flow (MDMO), but this method makes the inherent
underlying manifold structure lose the feature space. Later,
Liu et al. [19] introduced a new distance measurement method
and proposed sparse MDMO, which constructs all optical
flow features in video into a dictionary to achieve sparse
representation. Xu et al. [27] designed facial dynamics maps
(FDM) to reduce the interference of noise and lighting changes
in optical flow vector analysis. Liong et al. [5] proposed bi-
weighted oriented optical flow (Bi-WOOF) and showed that

the information in the onset and apex frame can already
describe the characteristics of the entire micro-expression to a
large extent. Inspired by this, our method uses the onset and
apex frames to extract the optical flow information. However,
the performance of the manual feature extraction method
mainly depends on the manually designed feature extractor
and requires a complex parameter adjustment process, which
have poor robustness and generalization ability.

B. Deep learning-based methods

Deep learning methods refer to techniques that use deep
neural networks to learn and extract facial information features
in micro-expressions automatically, and these networks have
made remarkable achievements in the field of computer vision.
These achievements have stimulated the application of deep
learning in the field of MER, and researchers have proposed
various deep learning methods to improve the performance of
MER. In this section, we introduce these approaches from the
perspective of spatio-temporal information correlation, areas
of interest, and Transformer network of MER.

Spatio-temporal information association: Patel et al. [28]
adopted CNN network and transfer learning methods to realize
MER, a milestone work to identify micro-expressions based
on deep learning. Quang et al. [29] perform MER using
CapsuleNet using only apex frames. Later, the optical flow is
widely used as a pixel-level motion vector calculated between
successive frames in deep learning methods for MER [22],
[30]–[34]. Liu et al. [20] extract features from optical flow to
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classify MEs. However, a single view cannot provide enough
information due to the subtle motion and limited samples of
MEs. Multiple inputs from different views can help us more
fully understand the spatial distribution and temporal variation
of micro-expressions. As a result, much of the recent work on
MER uses a multi-branch network to synthesize information
from different views, capturing subtle changes in micro-
expressions from multiple inputs [35]–[37]. Liong et al. [13]
and khor et al. [14] compute the optical flow characteristics
from the onset and apex frames of each video and input the
vertical and horizontal components of the optical flow into the
two-stream CNN. Building upon OFF-ApexNet, Liong et al.
[15] propose a Shallow Triple Stream Three-dimensional CNN
(STSTNet) and obtained optical strain features to improve the
performance further. Therefore, these methods do not directly
interact and integrate spatio-temporal information. Following
the mainstream approach, our MFDAN model also utilizes
a two-branch structure with optical flow and image inputs.
However, we develop unique collaborative modeling schemes
to enhance feature learning, which significantly improves
the extraction of subtle features, such as those in micro-
expressions.

Regions of interest (RoIs): The facial action unit com-
prises basic facial movement patterns, each corresponding
to a specific facial muscle movement and region [38] [39].
Since the facial movement of micro-expression may be more
pronounced in some areas and relatively weak in others,
different facial regions do not contribute equally to the MER.
To enhance the characterization of MEs local regions and
better describe local variations, some works such as [40] [41]
divide the entire face into several areas on average. Other
methods, such as [10], [42], [43], select areas of interest from
faces for feature extraction according to the scheme provided
by the Facial Action Coding System (FACS), thus mitigating
the effect of invalid information regions. Liong et al. [44]
utilize the cropped eye and mouth regions for MER, and Ruan
et al. [45] utilize different weights for the areas of interest.
Nevertheless, the cropping and artificial processing of these
regions of interest impose limitations on developing an end-
to-end approach for deep learning networks. Our MFDAN can
adaptively find these key feature regions and effectively extract
the subtle motion features in the key areas.

Transformer’s Attempt at MER: With Vision Transformer
(ViT) [46] applying self-attention mechanisms to the field of
image, the transformer architecture has demonstrated excellent
performance in a variety of visual understanding tasks [47],
[48]. Through the self-attention mechanism, the network can
learn the relevance and importance of facial features, helping
the network focus on the essential feature areas of the face and
more effectively capture the information of tiny expressions
when processing facial data. The researchers have also tried
them in the field of ME. Lei et al. [49] utilize the encoder
part of the Transformer for feature extraction. Zhao et al.
[9] incorporates a local attention module into a 3D residual
prototype network to emphasize key areas in the face while
making the network more sensitive to the details of micro-
expressions. Liu et al. [50] introduce the MobileViT module
combining convolution and self-attention mechanism to im-
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Fig. 3. The optical flow encoder network uses the optical flow information of
three channels as input. It captures the motion features of the micro-expression
through the convolutional and local response normalization layers.

prove the recognition efficiency, then propose a ShuffleNet
model with pre-trained optical flow combined with a small
self-attention module [51].

The window attention mechanism of Swin Transformer [52]
is unique in that it segments the image into small fixed-sized
chunks (windows) and applies the attention mechanism to
these windows. Qin et al. [53] proved the superiority of Swin
in face feature extraction by designing a multi-task model.
This innovative approach is well suited for micro-expression
analysis because micro-expression features are usually present
in small parts of the face, and these subtle changes need to be
accurately captured and extracted. Inspired by this, we intro-
duce the sliding window self-attention mechanism. Together
with the optical flow-driven attention, our Transformer model
can focus more finely on these micro-expression regions and
capture subtle facial expression changes, resulting in more
accurate and reliable micro-expression features.

III. OUR METHOD

This section presents our proposed MFDAN (multi-level
flow-driven attention network) model for recognizing micro-
expressions. As shown in the Fig 2, the cropped onset and
apex frames are extracted from the micro-expression clip. Our
framework is divided into an optical flow encoder module, an
image encoder module, and a classifier. The optical flow en-
coder uses optical flow as input to encode spatial displacement
features to characterize the subtle motion changes of ME. The
image encoder performs flow-driven attention in a designed
MFDAN module to adaptively enhance feature representation
of areas of interest on micro-expression images. By combining
these two coding methods, the model obtains robust spatio-
temporal features that effectively capture the subtle dynamics
of micro-expressions. In addition, to address the sample im-
balance problem, we adopt Focal loss as the loss function to
better optimize the model and mitigate overfitting. We also
incorporate the Adan optimizer and the Dropkey operation to
improve our MER’s performance and generalization ability.

A. Optical Flow Encoder Module

First, we extract optical flow from the video and apply
identical pre-processing operations on the video frame to
ensure that the optical flow and the corresponding image
have the same feature representation or scale. Specifically, we
extract the total variation regularization with L1-norm (TV-L1)
optical flow using the onset and apex frames that were cropped
and aligned to obtain the horizontal and vertical optical flow
fields u and v, with a shape of RH×W×2, expressed as:

OF = {(uxy, vxy) | x = 1, . . . ,H; y = 1, . . . ,W} , (1)
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where H and W represent the height and width of the image. In
the third channel we use optical strain [14], which represents
the local facial movement or deformation in the image se-
quence and can measure the degree of pixel-level deformation
and direction of facial features in the image sequence. Optical
strain is defined as:

ϵ =

 ϵxx = ∂u
∂x ϵxy = 1

2

(
∂u
∂y + ∂v

∂x

)
ϵyx = 1

2

(
∂v
∂x + ∂u

∂y

)
ϵyy = ∂v

∂y

 , (2)

where the diagonal component (ϵxx, ϵyy) represents the hor-
izontal and vertical normal strain components, respectively,
while (ϵxy, ϵyx) represents the shear strain components ob-
tained by mixing partial derivatives. The optical strain size of
each pixel can be calculated by the sum of squares as follows:

|ϵ| =

∣∣∣∣∣∣
√(

∂u

∂x

)2

+

(
∂v

∂y

)2

+
1

2

(
∂v

∂x
+

∂u

∂y

)2
∣∣∣∣∣∣ . (3)

This was then normalized and adjusted to an image size of
R224×224×3.

For optical flow encoder module, we use the shallow net-
work structure of SSSN [14] for the extraction because the
optical flow features are more prominent, as shown in Fig.3.
The network has advantages in optical flow feature extraction.
It can quickly extract effective optical flow characteristics in
a short time and effectively resist some changes and noise
in the input data. It consists of two convolution modules,
each extracting the feature representation of the input data
through a convolution layer and a pooling layer. It uses the
ReLU activation function for nonlinear transformation. The
local response normalization layer enhances the robustness
and differentiation of features. Finally, the time information
is extracted through the fully connected layer.

B. Image Encoder with MFDAN Module

In this work, we first input one onset frame and one
apex frame into a learning-based video motion magnification
network (MagNet) [54] to get the face image after motion
amplification. This process aims to improve the visibility
of micro-expressions, making the models more accessible to
capture and identify. Then, we propose an innovative optical
flow and image early fusion scheme and design the MFDAN
Module, a novel optical flow-driven attention module to extract
facial feature information, which performs region learning and
feature extraction by two Flow-Driven-Block. This layered
structure enables the model to perform optical flow-driven
attention at different scales and efficiently handle global and
local relationships. It is worth noting that the optical flow
plays a driving and guiding role here, while the temporal
information is extracted by the optical flow encoder. The
structural design of the Flow-Driven Block is inspired by Swin
[52] for efficient capture of critical information. Finally, we
obtained information on the critical parts with significant ME
features by MFDAN.

Motion amplification. To improve the network’s sensitivity
to subtle expression changes and enhance the intensity of facial
micro-expressions, inspired by the work of Lei et al. [49], we

input the onset frame and the corresponding apex frames into
the MagNet [54] to obtain an image that has been zoomed in
by motion, where the onset and apex frames undergo the same
processing as when extracting the optical flow. During the
training process, a randomized amplification factor operation is
performed to increase the training data’s richness and enhance
the network’s robustness and generalization ability. Similarly,
we normalize and adjust it to the same size as the optical flow
so that the optical flow and the image maintain the consistency
of the information source at the exact corresponding region
location.

MFDAN Module. In this module, different from the general
video processing methods, we combine optical flow and image
in the early stage by proposing optical flow-driven attention.
MFDAN Module obtains critical information about the image
by two designed Flow-Driven blocks from low-level and high-
level features.

First, we split the input image and optical flow (Xm, Xf )∈
RH×W×3 into non-overlapping patches. The patch size is
4×4, and then each patch is flattened in the channel direction
to a token Xt ∈ RH

4 ×W
4 ×48. Each token is then mapped

into an embedding vector of length C through the Linear
Embedding layer. This chunking and embedding helps to
extract local features of the image and optical flow data,
providing finer-grained inputs for subsequent processing and
attention computation.

Next, our Flow-Driven-Block structure is similar to Swin
[52], with the difference that we use our optical flow-
driven attention when performing window attention(will be
introduced in Sec.III-C). As shown in the Fig 2, each
Block consists of two layers of structure. We design
the Window-driven-attention (W-Driven) structure and Shift-
window-driven-attention (SW-Driven) structure during the at-
tention computation driven by optical flow. The W-Driven
structure is used for in-window self-attention computation,
focusing on critical facial regions by manipulating attention in-
side the window. The SW-Driven structure is used for window-
to-window information transfer, which utilizes the sliding
window mechanism to interoperate and integrate information
between different windows. The module output is further
processed through a multilayer perceptron MLP with hidden
layers and a layer norm layer.

The successive Flow-Driven-Block is calculated by:

ẑl = LN(W-Driven(ẑl−1)) + zl−1, (4)

zl = LN(MLP(ẑl)) + ẑl, (5)

ẑl+1 = LN(SW-Driven(zl)) + zl, (6)

zl+1 = LN(MLP(ẑl+1)) + ẑl+1, (7)

where ẑl and zl are respectively denoted as the output features
of the (S)W-Driven module and the MLP module, and LN is
the Layernorm layer.

Note that we use the same optical flow features as inputs
when performing window attention calculations in both W-
Driven and SW-Driven. This means that since the optical
flow feature remains the same, it does not affect the region-
guiding effect of the sliding window attention. After the low-
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Fig. 4. The left figure shows the main idea of the optical flow-driven attention. The attention matrix is generated by calculating the cosine similarity between
the optical flow and the image to increase the weight of the critical parts of the image. And the right figure shows the main flow of the (S)W-Driven structure.

level feature processing, we down-sample the feature map
three times to obtain high-level features. Similarly, before
entering the next block, we down-sampled the optical flow
information that had not gone through the first Flow-Driven-
Block three times to obtain optical flow features with the same
receptive field and an equal number of windows as the image
feature maps to fulfill the dimensionality requirement for the
second time to perform the optical flow-driven attention. With
this design, we can maintain the correspondence between the
optical flow features and the image features to ensure their
interact and correlate information in the same spatial extent
so that no additional inconsistency or information loss will be
introduced when performing the second optical flow-driven
attention. And thus the critical features of the facial region
can be better captured, and better discriminative high-level
features can be extracted. We use two layers of transformers
to introduce optical flow-driven attention from low and high
layers. This structure can help the network focus on moving
areas at the low-level feature level and enable the network
to classify ME based on specific motion information at the
high-level feature level.

C. Flow-Driven Attention

The image and optical flow are preprocessed to the same
size so that the position of each pixel corresponds to the
position of its optical flow. Along with this finding, we propose
flow-driven attention, which uses the motion amplitude infor-
mation in optical flow images to infer essential areas in the
images, thereby helping the network understand image features
and strengthen its attention to critical parts. It is carried out
in the (S)W-Driven structure. As shown in Fig.4, according to
the idea of the attention mechanism, we use cosine similarity
to calculate the similarity matrix of optical flow and image so
that the network can selectively focus on the moving region.

First, the image Xm and optical flow Xf are passed in
through Equation 8:

(Xm
′, Xf

′) = F (Xm, Xf ), (8)

where Xm is the input after motion amplification and Xf is
the input to the optical flow. F(·) is the Patch embed operation,
which maps the image and optical flow to get their respective
features (Xm

′, Xf
′) ∈ Rnhnw×nc .

The queries (Q), keys (K), and values (V) are feature vectors
extracted from the feature map at different locations. The
query is used to calculate correlations with other locations, the
key is used to provide reference features, and the value is used
to generate the final feature representation. The corresponding
Q, K, and V are obtained by a linear transformation of the
image and the feature map of the optical flow. The formula is
as follows:

Qi
m,Ki

m, V i
m, Qi

f ,K
i
f , V

i
f = Wqkv(Xm

′, Xf
′), (9)

where Wqkv is the parameter of the linear transformation, and
it is worth noting that the linear layer of the image and optical
stream input is weight-shared, and i represents the attention
head.

Scaling dot-product attention is used in traditional self-
attention modules, provided its queries, keys, and values come
from the same feature graph. The self-attention mechanism
can establish the correlation between pixels within the image
to capture the local and global relationships in the image. The
formula is as follows:

Sself (Q
i
m,Ki

m) =
Qi

mKi
m

T

√
d

+B. (10)

In contrast, the input to our optical flow driver module uses
the optical flow feature as the query, the image feature as
the key, and the attention matrix is Sflow. The formula is
expressed as:

Sflow(Q
i
f ,K

i
m) = cos(Qi

f ,K
i
m)/τ +B, (11)

where B is the relative position offset and τ is a learnable
scaling factor. As shown in the Fig.4, the optical flow describes
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the displacement of a pixel point, while the image represents
the pixel value of a pixel point, which belong to different
domains. Based on this perspective, we argue that the attention
weight map obtained using the dot product is not representative
of the attention scores of the feature regions, so we use cosine
similarity to compute the similarity between them. Cosine
similarity does not vary depending on the scale, meaning it
is not affected by the size of the vectors. In other words, it
quantifies the degree of similarity between the optical flow and
the image. It thus captures their similarity more efficiently and
robustly, enabling the subsequent network to learn the features
of the critical regions.

D. Dropkey Regularization

The micro-expression dataset has a small sample size and
subtle micro-expression features, which are susceptible to the
influence of noisy data interference, so we use a kind of op-
eration called Dropkey [55], which is a novel dropout-before-
softmax scheme to regularize the attention weights while
maintaining their probability distribution, which intuitively
helps to penalize the peaks of the weights, and enhances the
model’s ability of generalization by regularizing the attention
weights.

As shown in the right picture of Fig.4. Unlike Dropout,
which treats Keys as dropout units instead of weights, Drop-
Key randomly masks a certain percentage of keys in the
input key mapping in each training iteration. Specifically, a
mask matrix M ∈ Rnhnw×nhnw with the same dimension
as the attention matrix is first randomly generated, and the
hyperparameter dropout rate is set to d to achieve a mandatory
make part of the attention score in the similarity matrix to be
−∞. The formula for the attention score Mj is as follows:

Mj =

{
0 probability = 1− d

−∞ probability = d
. (12)

Two outputs through the attention mechanism are calculated
by:

Attn(Qi
m,Ki

m, V i
m) = Softmax(Sself (Q

i
m,Ki

m) +Mj)V
i
m, (13)

Attn(Qi
f ,K

i
m, V i

m) = Softmax(Sflow(Q
i
f ,K

i
m) +Mj)V

i
m. (14)

Ultimately, we sum the features after the optical flow-driven
attention with the self-features, which is done so that the spa-
tial features provided by the regions without motion changes
will not be affected. In a one-shot (S)W-cross, the output X̂m

is obtained by:

X̂m = Attn(Qi
m,Ki

m, V i
m) +Attn(Qi

f ,K
i
m, V i

m). (15)

In this way, we also perform a self-attention operation on
the image itself to prevent losing some vital information about
the face. The contribution of original image spatial features
to classification is preserved, and discriminative features are
extracted through our optical flow-driven attention mechanism.

Finally, the feature vectors obtained by the optical flow
encoder and image encoder are spliced in the fully connected
layer, and the resulting features are input into the classifier for
ME classification.

E. Focal Loss

The micro-expression dataset is highly imbalanced in cat-
egories, and most of the work on categorization loss uses
the cross-entropy loss, which causes the model to be more
inclined to predict the majority of the categories, thus ignoring
the minority of the categories, making the model perform
poorly. For this reason, we introduce Focal Loss to solve the
problem of category imbalance in the MER task, which mainly
mitigates the problem by introducing a tunable parameter. The
formula is as follows:

LFL(Pt) = −(1− Pt)
γ log(Pt), (16)

where Pt is the probability of each category, and γ is a
constant, and when it is 0, focal loss is consistent with
the normal cross-entropy loss function. Focal Loss adopts a
dynamic weighting approach, which makes the model pay
more attention to the difficult-to-categorize samples, and this
effectively avoids the problem of the model’s overfitting for
the difficult-to-categorize samples.

IV. EXPERIMENTAL SETUP

In this section, we describe our experimental configuration
and preparation, which includes the dataset, preprocessing, and
evaluation metrics.

A. Datasets

Our experiments are performed on The Chinese Academy
of Sciences Micro-Expression II(CASME II) [56], the Spon-
taneous Actions and Micro-Movement(SAMM) [57], and the
Spontaneous Micro-Expression Corpus(SMIC) [58], which are
the three most commonly used datasets for micro-expression
recognition. In CASME II, the camera had a sampling rate of
200 fps, a resolution of 640 × 480, and a facial resolution of
280 × 340, providing 247 micro-expression samples from 26
subjects of the same ethnicity, categorized into five categories.
In SAMM, there is a frame rate of up to 200fps and a facial
resolution 400×400. The dataset contains 159 samples from 32
participants and 13 ethnicities, divided into seven categories.
Each sample has emotion labels, apex labels, and action unit
labels. SMIC-HS consists of a sample of 164 participants
divided into three categories. They cover 16 participants from
3 ethnicities, recorded at a resolution of 640 × 480 and a frame
rate of 100 fps. These samples lacked apex frames and action
unit labels.

In addition, we use the Composite Database Evaluation
(CDE) protocol [59] from the second Micro-Expression Grand
Challenge Competition (MEGC2019) to harmonize different
category settings across datasets. Specifically, the CDE reor-
ganizes CASME II, SAMM, and SMIC into three categories:
Negative {”Repression”, ”Anger”, ”Contempt”, ”Disgust”,
”Fear”, ”Sadness”}, Positive {”Happiness”}, and Surprise
{”Surprise”}. Finally, a total of 442 samples are taken from 68
subjects. Detailed descriptions of these three datasets and the
composite dataset are shown in TABLE II. Among them, the
onset(start time of the ME), apex(time of the highest intensity
of the ME), and offset(end time of the ME) frames have been
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TABLE II
SUMMARY OF DATASET DISTRIBUTION

Expression Class SMIC-HS CASME II SAMM Combined

Negative 70 88 92 250

Positive 51 32 26 109

Surprise 43 25 15 83

Total 164 145 133 442

labeled and provided in the datasets SAMM and CASME II.
Since the labeling of the apex frames is not performed in
SMIC, we use the apex frame or the middle frame information
provided by Quang et al. [29] instead of the apex frames.

B. Data Pre-processing

For the CASME II dataset, the onset and apex frames are
first extracted from the video sequence. The face is aligned
to ensure that it is always horizontal and facial marker points
is extracted by OpenCV and Dlib toolkit. Specifically, we use
the 68 facial marker detectors provided by the Dlib toolkit
to obtain the coordinates of the left eye A(xL,yL) and the
right eye B(xR, yR) and compute the center coordinates
C(xC ,yC). The face image is then rotated horizontally by
affine transformation by calculating the tangent value of the
horizontal and vertical distances from the left eye to the center
point to the desired rotation angle θ. The image is then cropped
to the face position. Using center cropping, we cut the image
to 420 × 420 size for the SAMM dataset. For the SMIC-
HS dataset, we use the provided dataset that has been center-
cropped.

C. Evaluation Metrics

Regarding the evaluation metrics, we evaluate our method
using leave-one-subject-out (LOSO) cross-validation, where
ME samples from one subject are retained as the test set,
and all other samples are used as the training set, repeated S
times, with S being the total number of subjects. Performance
is measured using the unweighted F1 score (UF1) and the
unweighted average recall (UAR).

UF1 =
1

C

C∑
i=1

2× TPC

2× TPC + FPC + FNC
, (17)

UAR =
1

C

C∑
i=1

2× TPC

NC
, (18)

where C is the number of categories, NC is the number of
samples in category C. True positives (TP), false positives (FP)
and false negatives (FP) were obtained based on the confusion
matrix.

D. Experimental Details

We use the PyTorch framework, and all experiments are
performed on an NVIDIA GeForce RTX 4060 Laptop GPU

and an Intel(R) Core(TM) i7-13700H CPU processor. The
embedding vector size in the Transformer block is 96, the
attention heads of the Flow-Driven-Block module are 3 and
6, respectively, and the window size is 7 × 7. The γ in
the Focal loss is set to 2.0, the learning rate is 0.0001, and
the batch size is 16. In particular, concerning the optimizer,
we use the Adan optimizer developed by Xie et al. [60],
which consumes only half of the computational resources to
obtain results close to those of the SOTA optimizer, which
facilitates the training of the Transformer model, accelerates
the convergence of the model, and improves the performance
of the model by combining a rewritten Nesterov impulse with
an adaptive optimization algorithm and introducing decoupled
weight decay.

V. RESULTS AND DISCUSSION

We compare our model with the SOTA methods and perform
sufficient ablation experiments to verify the validity of each
module in our model.

A. Comparison with MER methods

Comparison to State-of-the-art Methods. We have con-
ducted comparison experiments with the SOTA representative
works of MER in recent years. TABLE III demonstrates that
our approach achieves an accuracy of over 91% for both
UF1 and UAR metrics on the CASME II dataset. On the
SAMM dataset, our method outperforms all other compared
methods. Some recent works [9], [20], which either pre-
train on large-scale macro-expression datasets or use action
unit (AU) annotations, may achieve higher scores on SMIC
and CASME II dataset. However, the SMIC dataset poses
challenges due to its low frame rate (100 fps), significant
background noise, and inaccurate apex frame labels. Future re-
search will focus on addressing these issues by improving low
frame rate data handling, apex frame labeling, and background
noise processing techniques. It is particularly noteworthy that
our model exhibits superior overall performance on a com-
bined dataset comprising three individual datasets, indicating
its strong generalization ability across diverse samples from
different sources. This can be attributed to our collabora-
tive modeling approach, which effectively captures standard
features and expression patterns while mitigating the impact
of individual differences. Consequently, our method enhances
the model’s tolerance to samples with varying expressions
of the same emotion, resulting in high stability. By utilizing
context information and better understanding micro-expression
features and their change patterns, our approach is able to
process micro-expression data and tackle the challenges posed
by limited and imbalanced datasets.

Comparison to the methods with optical flow. To evaluate
our network’s effectiveness for optical flow, we compare it
with recent state-of-the-art algorithms that use TV-L1 optical
flow as input, as well as some dual streams. Bi-WOOF [5] is a
traditional approach without any deep learning techniques, and
its performance is relatively low compared to deep learning-
based models. CapsuleNet [29] uses individual apex frames as
inputs instead of motion information, resulting in significantly
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TABLE III
FOR COMPARISON WITH STATE-OF-THE-ART METHODS, SMIC-HS, CASME II, AND SAMM SAMPLES ARE REGROUPED INTO NEGATIVE, POSITIVE,

AND SURPRISE CATEGORIES. THE REGROUPED SAMPLES FROM THE THREE DATABASES ARE COMBINED INTO A SINGLE DATASET, AND PERFORMANCE IS
EVALUATED USING THE LOSO VALIDATION METHOD. RED REPRESENTS THE FIRST BEST, AND BLUE REPRESENTS THE SECOND BEST.

Methods
SMIC-HS CASME II SAMM Avg 3DB-composite

UF1 UAR UF1 UAR UF1 UAR UF1 UAR UF1 UAR

LBP-TOP [4] 0.5882 0.5785 0.7026 0.7429 0.3954 0.4102 0.5588 0.5772 0.5882 0.5785

EMRNet [20] 0.7461 0.7530 0.8293 0.8209 0.7754 0.7152 0.7977 0.7728 0.7885 0.7824

UAI-CNN [61] 0.7451 0.7621 0.8280 0.8065 0.7056 0.6815 0.7596 0.7500 0.7603 0.7355

FGRL-AUF [49] 0.7192 0.7215 0.8798 0.8710 0.7751 0.7890 0.7914 0.7938 0.791 0.793

ME-PLAN [9] 0.7127 0.7256 0.8632 0.8778 0.7164 0.7418 0.7641 0.7817 0.772 0.786

FRL-DGT [10] 0.743 0.749 0.919 0.903 0.772 0.758 0.8113 0.8033 0.812 0.811

SelfME [62] 0.6972 0.7012 0.9078 0.9290 N\A N\A N\A N\A N\A N\A

MFDAN(Ours) 0.6815 0.7043 0.9134 0.9326 0.7871 0.8196 0.7940 0.8188 0.8453 0.8688

TABLE IV
COMPARISON WITH STATE-OF-THE-ART METHODS USING TV-L1 OPTICAL FLOW AND USING DUAL-STREAM NETWORKS.

Methods
SMIC-HS CASME II SAMM Avg 3DB-composite

UF1 UAR UF1 UAR UF1 UAR UF1 UAR UF1 UAR

Bi-WOOF [5] 0.6296 0.6227 0.7805 0.8026 0.5211 0.5139 0.6437 0.6464 0.6296 0.6227

CapsuleNet [29] 0.5820 0.5877 0.7068 0.7018 0.6209 0.5989 0.6366 0.6295 0.6520 0.6506

GoogLeNet [63] 0.5123 0.5511 0.5989 0.6414 0.5124 0.5992 0.5412 0.5972 0.5573 0.6049

VGG16 [64] 0.5800 0.5964 0.8166 0.8202 0.4870 0.4793 0.6279 0.6320 0.6425 0.6516

OFF-ApexNet [13] 0.6817 0.6695 0.8764 0.8680 0.5409 0.5392 0.6997 0.6922 0.7196 0.7096

Dual-Inception [33] 0.6645 0.6726 0.8621 0.8560 0.5868 0.5663 0.7045 0.6983 0.7322 0.7278

STSTNet [15] 0.6801 0.7013 0.8382 0.8686 0.6588 0.6810 0.7257 0.7503 0.7353 0.7605

FeatRef [65] 0.7011 0.7083 0.8915 0.8873 0.7372 0.7155 0.7766 0.7704 0.7838 0.7824

MFDAN(Ours) 0.6815 0.7043 0.9134 0.9326 0.7871 0.8196 0.7940 0.8188 0.8453 0.8688

worse performance compared to approaches using optical
flow, while all other deep network models utilize the feature
information of optical flow. Dual-Inception [33] and STSTNet
[15] also design multi-stream networks to extract information
from both spatial and temporal streams. Compared with these
methods, our network fully exploits optical flow information
through collaborative modeling, and realizes the informa-
tion interoperation between optical flow and image. On the
CASME II and SAMM datasets, our method achieves the high-
est results, validating the effectiveness of our approach. Our
network effectively captures spatio-temporal patterns in micro-
expressions and precisely focuses on key regions through the
optical flow-driven attention mechanism. By integrating image
features and optical flow features, our model achieves superior
performance in micro-expression recognition. This collabo-
rative modeling approach empowers our network to more
accurately capture the dynamic and static features of micro-
expressions, surpassing the performance of other methods.

Confusion matrix. Fig. 5 shows the confusion matrix
of our model on the three datasets. The confusion matrix
shows that our model, on the CASME II dataset, performs
well for both negative, positive, and surprise, with a 96%
recognition rate for surprise. In contrast, on the SMIC dataset,
the recognition rate of surprise and positive is high, but the
recognition rate of negative is poor. The SAMM dataset has a
large number of negative emotion samples, resulting in poor
performance in identifying positive emotions on this dataset.
The dataset is unbalanced, in addition to the non-uniformity of
the features exhibited by positive emotions due to the influence
of individual differences. Our model can achieve a more stable
recognition of the three types of emotions on the composite
dataset. The experimental results show that for MER task,
the total number of samples for each emotion, the number
of differences in the emotions, and the movement amplitude
of the micro-expressions are essential factors.
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Fig. 5. Our proposed MFDAN has a confusion matrix with 3 ME classes on three datasets and the composite dataset.

B. Ablation Experiments

We conduct ablation experiments on the CASME II dataset
to verify the effectiveness of each module, as shown in TABLE
V.

Flow-Driven-Attention. By conducting ablation experi-
ments, we evaluate the performance of optical flow-driven
attention. In the M1 experiment, the UF1 and UAR of CASME
II without flow-driven attention are 0.8493 and 0.8674, respec-
tively, which are significantly lower. This indicates that in the
micro-expression recognition task, due to the small amplitude
of micro-expression movements, the network is easily inter-
fered with by redundant regional information, which makes it
difficult to focus on extracting the emotional features in the key
areas. Therefore, it is essential to fully utilize the correlation
information between optical flow and image features. How-
ever, the recognition ability is significantly improved when
we introduce the optical flow-driven attention operation. This
is because the optical flow-driven attention operation guides
the extraction of image features through the optical flow
information, which enables the model to focus on the motion
region in a targeted way, which helps to extract the features of
the critical areas and thus improves the performance of micro-
expression recognition. The experimental results show that
compared with the late fusion mode of the two-stream network
in the fully connected layer, we use the optical flow-driven
attention as an early space-time information fusion scheme of
the two-stream network is effective. This provides valuable
guidance for the further research and application of MER.

Focal Loss. To demonstrate the superiority of using Focal

TABLE V
THE ABLATION STUDY OF OUR PROPOSED NETWORK.✓INDICATES THE

MODULE IS USED, AND × INDICATES IT IS NOT USED.

Method Adan Flow-
Driven Dropkey Focal Loss

CASME II

UF1 UAR

M1 ✓ × ✓ ✓ 0.8493 0.8674

M2 ✓ ✓ ✓ × 0.8053 0.8351

M3 ✓ ✓ × ✓ 0.8623 0.8834

M4 × ✓ ✓ ✓ 0.8993 0.9201

M5 ✓ ✓ ✓ ✓ 0.9134 0.9326

Loss, we also evaluate the performance of the proposed
MFDAN framework under the conditions of negative log-
likelihood(NLL) loss, cross-entropy(CE) loss, and KL di-
vergence, respectively, and conduct comparative experiments
using data resampling. The experimental results are shown in
the TABLE VI. The traditional classification loss effect is sig-
nificantly lower than our overall design result, indicating that
the micro-expression data set is unbalanced and the sample is
small, considerably impacting micro-expression recognition.
Focal loss solves the problem that easily classified samples
contribute too much to the loss function by reducing the weight
of easily classified samples and makes the model pay more
attention to the samples that are difficult to classify to deal
with the training problem in the case of severe class imbalance
more effectively.
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TABLE VI
THE EFFECTIVENESS OF FOCAL LOSS WAS VERIFIED BY COMPARISON

WITH MAINSTREAM CLASSIFIED LOSS AND RESAMPLING EXPERIMENTS.

Method
CASME II

UF1 UAR
MFDAN + NLL loss 0.8207 0.8285
MFDAN + CE loss 0.8053 0.8351

MFDAN + KL Divergence 0.7907 0.7958

MFDAN with resampling 0.8368 0.8570

MFDAN + Focal loss (Ours) 0.9134 0.9326

TABLE VII
DROPKEY DISCARD RATE HYPERPARAMETERS (D) WERE ANALYZED ON

THREE DATASETS.

DropKey(d)
CASME II SAMM SMIC

UF1 UAR UF1 UAR UF1 UAR

×0.3 0.8886 0.9062 0.7871 0.8196 0.6815 0.7043

×0.4 0.9134 0.9326 0.7713 0.8154 0.6672 0.6965

×0.5 0.9100 0.9300 0.7501 0.7922 0.6733 0.7048

×0.6 0.8047 0.8221 0.7293 0.7557 0.6623 0.6999

Dropkey. When performing the dropout-before-softmax
scheme, the complexity of the model is reduced, and over-
fitting is prevented by randomly dropping keys during the
computation of attention. In the M3 experiment in TABLE
V, the modeling performance without Dropkey operation is
lower. Due to the insufficient sample size of the ME dataset,
Dropout can be more effective in mitigating the occurrence
of overfitting and achieving regularization to a certain extent.
Moreover, we will set a dropkey rate d. The effect of Dropkey
is shown in the TABLE VII. Too high a dropkey rate may lead
to too much information loss and a decrease in the training
effect of the model, while a low dropkey rate will affect the
model’s generalization ability. Therefore, a proper balance is
needed when choosing the drop rate. CASME II performs best
when we set the discard rate to 0.4, while SAMM and SMIC
are 0.3.

Adan optimizer. We evaluate the impact of the Adan
optimizer in our experiments and make a comparison with the
now famous AdamW optimizer in Visual Transformer, which
reached 89.93% for UF1 and 92.01% for UAR on CASME
II in the M4 experiments using the AdamW optimizer. It
is lower than our overall design results, and experimentally,
the Adan optimizer is found to be faster in convergence,
which confirms that the Adan optimizer can be used as a
performance-enhancing optimizer for subsequent visual Trans-
former frameworks.

C. Discussions

We use the Grad-CAM [66] visualization technique to
visualize the heat map of the lower norm layer in the MF-
DAN framework to visually evaluate the effectiveness of our
proposed framework on the micro-expression recognition task.
As shown in the Fig. 6 .It can be seen that our model enables to

Grad-CAM with
Flow-DrivenTV-L1Apex Frame

Grad-CAM without
Flow-Driven

Fig. 6. With Grad-CAM, we are able to plot heat maps with and without Flow-
Driven separately, and by comparing them with the optical flow visualization
maps, it is intuitively clear that Flow-Driven is effective in helping the network
find critical areas.

help the network to focus on the facial region with optical flow
movement to extract the feature information of the part and
contribute to the final classification. Moreover, when using op-
tical flow-driven attention, we find through observation that it
does not affect the spatial features provided by regions without
motion information. In other words, through the mechanism
of optical flow-driven attention, the model can pay targeted
attention to the moving areas while still utilizing the features
extracted from the spatial information for the regions with
no apparent movement. Therefore, the introduction of optical
flow-driven attention does not disrupt or affect the extraction
of spatial information by the model. On the contrary, it further
improves the performance of micro-expression recognition by
focusing on the motion region and making the model more
concentrated on extracting critical features related to micro-
expressions. This collaborative modeling scheme of optical
flow and image is of great significance in the micro-expression
recognition task, which retains the validity of spatial infor-
mation and fully uses the a priori knowledge of optical flow
information. It can be used for reference in the field of video
action recognition.

MFDAN currently uses TV-L1 optical flow as input, and
nowadays, more and more advanced methods using self-
supervised motion representation are being developed in MER.
Although TV-L1 optical flow can represent the motion be-
tween the apex frame and the onset frame very well, the
current ME datasets are performed on laboratory-controlled
scenes. Suppose MER needs to be completed in natural envi-
ronments. In that case, the motion information of the optical
flow is exceptionally vulnerable to noise, such as ambient light,
so future work will focus on adaptively extracting targeted
micro-expression facial motion information instead of optical
flow. MFDAN needs to determine the onset and apex frames
in advance, which may seriously affect the performance if they
are inaccurate. Therefore, in the future, a whole set of frame
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systems from micro-expression apex localization to optical
flow adaptive generation and recognition can be designed, and
our optical flow-driven attention will be a crucial part of it,
which will play an essential role in improving the performance.

VI. CONCLUSION

For micro-expression recognition task, we propose a new
two-branch multilevel optical flow-driven attention network
framework and design a new attention mechanism: optical
flow-driven attention, in which the optical flow information
is used as a query to guide the computational process of
attention to optimize the extraction of image features. This
mechanism makes full use of the motion information of the
optical flow, which enables the attention to be more focused
on the image regions related to motion. We also improve the
accuracy and performance of image features with Focal Loss
and Dropkey. Comparison experimental results on CASME
II, SAMM, SMIC-HS, and composite datasets of them, and
ablation experiments prove the effectiveness of each proposed
module. And our MFDAN effectively solves the problem of
insufficient and unbalanced micro-expression dataset, which
is a new attempt. Introducing optical flow-driven attention
brings new ideas and methods for solving image processing
and computer vision tasks. In the future, we will address these
limitations and extend the MFDAN framework to create a
unified pipeline for ME discovery and MER tasks.
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