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Fig. 1. We present PVP-Recon, a novel system that uses warping consistency to progressively determine the most informative views as input for surface
reconstruction. PVP-Recon produces high-quality mesh surfaces with a constrained budget on the number of input views. Colors indicate surface normals.

Neural implicit representations have revolutionized densemulti-view surface
reconstruction, yet their performance significantly diminishes with sparse
input views. A few pioneering works have sought to tackle this challenge by
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leveraging additional geometric priors or multi-scene generalizability. How-
ever, they are still hindered by the imperfect choice of input views, using
images under empirically determined viewpoints. We propose PVP-Recon, a
novel and effective sparse-view surface reconstruction method that progres-
sively plans the next best views to form an optimal set of sparse viewpoints
for image capturing. PVP-Recon starts initial surface reconstruction with
as few as 3 views and progressively adds new views which are determined
based on a novel warping score that reflects the information gain of each
newly added view. This progressive view planning progress is interleaved
with a neural SDF-based reconstruction module that utilizes multi-resolution
hash features, enhanced by a progressive training scheme and a directional
Hessian loss. Quantitative and qualitative experiments on three benchmark
datasets show that our system achieves high-quality reconstruction with a
constrained input budget and outperforms existing baselines.
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1 Introduction
3D mesh surface reconstruction from multi-view RGB images has
always been an important issue in computer vision and graphics.
Classic multi-view stereo (MVS) algorithms [Schönberger et al. 2016;
Yao et al. 2018] are well established in the field of 3D reconstruction,
but struggle to handle areas with homogeneous textures. Recently,
neural implicit methods [Wang et al. 2021; Yariv et al. 2021] pro-
pose to represent the scene as a signed distance field (SDF) and
optimize mesh surfaces directly from 2D image supervision through
differentiable rendering. Although neural implicit methods surpass
previous works in achieving high-fidelity mesh reconstruction, they
typically rely on densely captured images as inputs, whose acquisi-
tion process can be time-consuming. To alleviate this reliance, some
methods attempt to reconstruct 3D mesh from a predefined set of
sparse views, based on geometric priors [Yu et al. 2022] or generaliz-
able priors [Long et al. 2022]. Evidently, the surface reconstruction
quality will depend on the input sparse views. However, it remains
unknown how to determine a suitable set of sparse input views to
achieve good surface reconstruction of a given object.

In this paper, we observe that two key factors contribute to good
surface reconstruction under sparse views: (1) an effective view
planning strategy to provide the most informative input images;
and (2) a suitable neural representation with well-designed regu-
larization techniques to encode the geometry. Thus, we propose
PVP-Recon, a new sparse-view surface reconstruction system that
contains two modules: (1) a view planning module for identifying
most informative viewpoints for additional image capturing on the
fly during surface optimization; and (2) a neural surface reconstruc-
tion module utilizing supplemented additional views to gradually
improve reconstruction quality. The modules are easy to use and
highly flexible, and they can be switched out in a modular manner
against other existing approaches.

Different from existing sparse-view reconstruction methods, our
method does not use a predefined set of sparse images as input. In-
stead, we use our view planningmodule to progressively identify the
most informative viewpoints for capturing additional images during
the reconstruction process until a high-quality surface is obtained.
Hence, we have essentially solved a next-best-view problem [Banta
et al. 2000] in the setting of image-based surface reconstruction. We
propose a novel warping-based strategy, which selects the viewpoint
with maximum information gain for subsequent reconstruction by
calculating the cross-view rendering consistency for each candidate
viewpoint. As a result, PVP-Recon typically ends up successfully
reconstructing an object using no more than 8 images.
Our reconstruction module uses multi-resolution hash features

to represent the SDF of object surfaces due to their expressiveness.
Moreover, we introduce a progressive training scheme that gradually
activates higher-resolution hash features, and a novel directional
Hessian loss to regularize the neural SDF field and encourage the
SDF under sparse views to be more smooth, which in combination
make the optimization process more robust by preventing the model
from quickly overfitting. The reconstruction module can provide

renderings to the view planning module for decision-making, and
facilitates the optimization of hash features under progressively
added sparse views with the directional Hessian loss.
In summary, we make the following three contributions: (1) A

novel object-level surface reconstruction system from sparse input
views, where the inputs are progressively supplemented during
the surface optimization process; (2) An effective view planning
strategy based on image warping consistency; (3) A progressive
training scheme enhanced by a directional Hessian loss to facilitate
high-quality 3D reconstruction.

2 Related Works

2.1 Neural Implicit Representation
Recently, neural implicit representations have emerged as a power-
ful tool to encode the 3D geometry of a target object due to their
compactness and remarkable performance. Occ-Net [Mescheder
et al. 2019] and DeepSDF [Park et al. 2019] first propose to use
neural networks to model shapes as occupancy or signed distance
functions. However, they require ground-truth 3D data to super-
vise the learning process. Some follow-up works try to incorporate
neural implicit functions and differentiable rendering to recover
surfaces only with multi-view 2D image supervision. Specifically,
IDR [Yariv et al. 2020] designs a differentiable rendering framework
for implicit shape and appearance representations. NeuS [Wang
et al. 2021] and VolSDF [Yariv et al. 2021] utilize signed distance
fields to represent implicit surfaces and adopt the volume rendering
technique introduced in NeRF [Mildenhall et al. 2020]. To enhance
the expressive capability, Neuralangelo [Li et al. 2023] replaces the
MLPs used in previous methods with multi-resolution hash grid
features to encode implicit geometric functions.

2.2 Sparse View Reconstruction
Although neural implicit methods can produce remarkable meshes
with dense input views, their performance drops drastically under
sparse views due to the shape-radiance ambiguity [Zhang et al. 2020].
To address this challenge, a few pioneering works have been pro-
posed, which can be divided into twomain categories: regularization-
based and generalization-based. Regularization-based methods uti-
lize semantic priors [Jain et al. 2021], geometric priors [Deng et al.
2022; Yu et al. 2022], frequency priors [Yang et al. 2023], or MVS
priors [Wu et al. 2023] as extra constraints, facilitating the ill-posed
optimization under sparse views. Generalization-based methods aim
to train on multiple scenes to gain generalization to unseen scenes.
There have already been some successful attempts [Chen et al. 2021;
Johari et al. 2022; Yu et al. 2021] at neural rendering. In terms of
surface reconstruction, SparseNeuS [Long et al. 2022] learns gener-
alizable priors from image features and adopts cascaded volumes
for surface prediction. DiViNeT [Vora et al. 2023] learns a set of tem-
plates across different scenes, which serve as anchors in new scenes.
To generate more details, VolRecon [Ren et al. 2023] represents the
geometry as the Signed Ray Distance Function (SRDF) and combines
multi-scale features to regress SRDF values using a ray transformer.
However, neither regularization-based nor generalization-based
methods consider the importance of input view planning for sparse
reconstruction. Regularization-based methods typically fix a few
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Fig. 2. Overview of our proposed system. The overall framework consists of two collaborative modules. In the reconstruction module, we use hash encoding to
represent the SDF of object geometry, and adopt a training scheme that progressively enables finer levels of hash features. In the view planning module, we
design a simple yet effective warping-based scoring strategy that progressively supplements the most informative views for surface reconstruction.

images as input before training, while generalization-based meth-
ods only work well under cautiously selected images with large
overlap [Vora et al. 2023].

2.3 Neural Implicit View Planning
Some recent methods [Jin et al. 2023; Lee et al. 2022; Pan et al. 2022;
Ran et al. 2023; Sünderhauf et al. 2023] attempt to adopt neural
implicit representations for robot active planning. These methods
determine the next best view based on uncertainty estimation with
different policies. Most of these active planning methods [Jin et al.
2023; Pan et al. 2022; Sünderhauf et al. 2023] focus on synthesizing
novel views rather than 3D surface reconstruction. Closely related
to our work, two studies [Lee et al. 2022; Ran et al. 2023] also aim
at view planning for 3D surface reconstruction. Lee et al. [2022]
propose to calculate the density entropy along each ray as the un-
certainty measurement, which is reasonable but susceptible to noise.
NeurAR [Ran et al. 2023] models the emitted radiance as Gauss-
ian distributions and evaluates the uncertainty by aggregating the
variance. However, this approach may lead to degraded quality
and training instability. The aforementioned methods mainly con-
centrate on designing uncertainty estimation strategies of implicit
representations, without considering discernible bias in surface
reconstruction. We propose a simple yet effective view planning
strategy for high-quality object-level surface reconstruction under
sparse views by evaluating the multi-view consistency.

3 Method
We propose PVP-Recon, a novel system consisting of a view planning
module and a reconstruction module, to reconstruct high-quality
object surfaces from a sparse set of RGB images. Specifically, the
view planning module uses a warping-based strategy to determine
the most informative viewpoint for subsequent image capture (Sec-
tion 3.2). The reconstruction module adopts a progressive hash encod-
ing as the geometric representation, facilitated by a novel directional
Hessian loss, for reconstructing high-quality object surfaces (Sec-
tion 3.3). The overall framework is illustrated in Figure 2.

We assume that view planning and surface reconstruction are
mutually reinforcing. The newly acquired image from the view plan-
ning module is supplemented to the reconstruction module to help
its optimization of recovering 3D surfaces. In turn, the reconstruc-
tion module provides current optimization status to guide the view
planning module to make further planning decisions. We alternately
plan subsequent input views and optimize the mesh surface, trying
to achieve the best reconstruction results with a few images.

3.1 Preliminaries
3.1.1 Multi-resolution hash encoding. Instant-NGP [Müller et al.
2022] first proposes a multi-resolution hash encoding representation.
The hash encoding partitions the space into multi-resolution grids
of 𝐿 levels {𝑉1, ...,𝑉𝐿}. Using the spatial hash function [Teschner
et al. 2003], each grid cell corner is mapped to a hash entry that
stores a learnable feature vector. Given a 3D point 𝒙 , we map it
to different locations 𝒙𝑙 at each grid resolution 𝑉𝑙 and retrieve the
corresponding features 𝛾𝑙 (𝒙𝑙 ) ∈ R𝐹 via trilinear interpolating hash
entries at cell corners. The feature vectors of each level and auxiliary
inputs 𝜉 ∈ R𝐸 (such as the view direction) are concatenated together
to form the final encoded feature:

𝛾 (𝒙) = (𝜉,𝛾1 (𝒙1), ..., 𝛾𝐿 (𝒙𝐿)). (1)

The encoded feature 𝛾 (𝒙) ∈ R𝐿𝐹+𝐸 is then passed to a shallow MLP
decoder to regress the final output. Hash collisions are not handled
explicitly, as the decoder is assumed to disambiguate collisions.

3.1.2 SDF-based volume rendering. NeuS [Wang et al. 2021] pro-
poses to encode 3D scene as a signed distance field 𝑓𝑔 (𝒙;𝜃𝑔) that
outputs the SDF value of any specified location 𝒙 , and a color
field 𝑓𝑐 (𝒙, 𝒅;𝜃𝑐 ) that outputs the view-dependent emitted radiance.
Both fields can learn from 2D image supervision using the differ-
entiable volume rendering technique. Given a ray 𝒓 emitted from
a posed camera, the rendering scheme first samples a set of points
{𝒙1, 𝒙2, ..., 𝒙𝑁 } along the ray. Then, the rendered pixel color 𝐶 (𝒓)
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Fig. 3. Illustration of our view planning strategy on DTU scan114. For each
candidate view, we render the current reconstructed mesh from this view.
Then, we use the rendered depth and silhouette mask to warp the rendered
RGB image into the closest training view and evaluate the warping score.

of this ray 𝒓 can be calculated as:

𝐶 (𝒓) =
𝑁∑︁
𝑖=1

𝑇𝑖𝛼𝑖 𝑓𝑐 (𝒙𝑖 , 𝒅), 𝑇𝑖 =
𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗 ), (2)

where 𝒅 is the direction vector of ray 𝒓 , and 𝛼𝑖 denotes the discrete
opacity of the 𝑖-th ray segment. Formally, 𝛼𝑖 is defined as:

𝛼𝑖 =max
(
0,
Φ𝜏 (𝑓𝑔 (𝒙𝑖 )) − Φ𝜏 (𝑓𝑔 (𝒙𝑖+1))

Φ𝜏 (𝑓𝑔 (𝒙𝑖 ))

)
, (3)

where Φ𝜏 is the Sigmoid function with a learnable parameter 𝜏 . The
final surface 𝑆 can be extracted as the zero level-set of the SDF, i.e.,
𝑆 = {𝒙 ∈ R3 |𝑓𝑔 (𝒙) = 0}, by the Marching Cubes method.

3.2 View Planning Module With Warping Consistency
Our view planning module maintains a set of images for surface
recovery, whose number dynamically increases as training proceeds.
This module first discretizes the continuous camera space into a set
of candidate viewpoints. Here, viewpoints refer to camera poses
from which subsequent images can be captured, and can be easily
obtained through uniform sampling or predefined. Then, we cluster
all candidate camera poses and obtain the images under the cluster
center poses as initial training images (typically 3 views). At regular
training intervals, we score each remaining candidate pose and sup-
plement the training image set with a newly captured image under
the highest-scoring pose, until the view number reaches a given
threshold. Note that when our view planning strategy evaluates
the set of candidate camera poses, we assume that no images under
these poses are already captured or available.
The main challenge is to calculate a reasonable score for each

candidate camera pose that indicates its potential contribution (the
amount of additional information it can provide) to future recon-
struction. Our key insight is that the consistency of rendered images
and depths from the reconstruction module can effectively reflect
whether a specific area needs more information from an additional
image. We aim to examine the multi-view consistency of renderings
by drawing attention from the image-warping technique. Specifi-
cally, denote the relative transformation matrix between two camera
poses as 𝑇 , the camera intrinsic matrix as 𝐾 , the depth map as 𝑑 ,
then the image-warping process can be computed as:

𝑝′ = 𝐾F −1{𝑇F {𝑑 (𝑝)𝐾−1𝑝}}, (4)

where 𝑝 and 𝑝′ are the homogeneous locations of the source image
and the warped image. F is the homogeneous conversion from 3×1
to 4×1 vectors. To calculate thewarping score for a specific candidate
pose, we first render the image, depth, and silhouette mask from our
reconstruction module under that pose. The rendered image is then
warped to its closest training view, i.e., an existing training image
whose pose is closest to this candidate pose. The silhouette mask is
also warped and acts as a visibility mask, indicating which areas of
this training view are visible to the rendered image. The warping
score 𝒔 is defined as the photometric difference between the warped
image 𝐼 ′ and the training image 𝐼 within the visibility mask𝑀 :

𝒔 =
𝑀 ⊙ (𝐼 ′ − 𝐼 )


1 . (5)

Figure 3 illustrates our proposed planning strategy. There are two
main factors contributing to a high warping score as defined in Eqn.
5. First, this photometric difference between 𝐼 ′ and 𝐼 can be caused
by incomplete training of the 3D neural representation, revealing
errors in current reconstructed geometry. Second, the difference
between 𝐼 ′ and 𝐼 can be attributed to the multi-view inconsistency
caused by occlusion, that is, there are some regions of the current
reconstructed 3D model that are visible to the view under candidate
pose, but not present in the training image 𝐼 , suggesting that a new
view under this candidate pose is likely to provide coverage to new
regions that have not been covered by the existing training views.
While the definition of our warping score takes both factors into
account, we observe that the latter contributes more to the score. To
sum up, by progressively selecting the highest-scoring viewpoints,
we attempt to seek the best next views with maximum information
gain to improve subsequent surface reconstruction.

3.3 Reconstruction Module With Progressive Scheme
In this module, we represent the object geometry as a signed distance
field (SDF) encoded by multi-resolution hash features. Although
hash features converge quickly and can capture fine-grained details,
we observe that directly using hash features at all resolutions leads
to noise and floating artifacts with sparse input views. This is be-
cause the expressive ability of multi-resolution hash features is too
powerful. They can easily overfit to the few-shot training views,
causing the optimized SDF to fall into local minima.

Inspired by FreeNeRF [Yang et al. 2023], we assume that the low-
resolution hash features encode a coarse geometric shape, while
the high-resolution features represent high-frequency information.
Hence, to avoid quickly overfitting and unwanted artifacts, we adopt
a carefully designed training scheme that progressively activates
hash features. In the early stages of training, we only use low-
resolution hash features to generate overly smooth geometries. In
the later stages, we gradually use higher-resolution hash features to
compensate for fine-grained details. This scheme can be achieved
by applying a progressive activation mask:

𝛾 (𝒙,𝜓 ) =𝑚(𝜓 ) ⊙ 𝛾 (𝒙),
𝑚(𝜓 ) = (𝑚0 (𝜓 ),𝑚1 (𝜓 ), ...,𝑚𝐿 (𝜓 )),

(6)

where 𝑚𝑖 (𝜓 ) = 𝑰 [𝑖 ≤ 𝜓 ], and 𝜓 controls the bandwidth of the
hash encoding. In practice, we set 𝜓 = 𝑖

Θ𝐿, where 𝑖 is the current
training iteration,Θ is a predefined threshold, and 𝐿 is the resolution
level of hash features. Our progressive activation scheme shares
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Table 1. Quantitative results on DTU dataset (bold means best, underline means second best). We report the Chamfer distance (mm) ↓.

Methods Time scan55 scan65 scan69 scan83 scan105 scan106 scan110 scan114 scan118 scan122 mean

NeuS (random)
83min

1.44 2.03 1.21 1.66 1.01 0.99 3.60 0.48 1.14 1.23 1.48
NeuS (cluster) 0.76 1.90 1.17 1.57 0.98 0.98 3.11 0.49 0.96 0.77 1.27
NeuS (farthest) 1.45 1.76 1.87 1.62 1.25 1.26 3.35 0.63 1.37 1.04 1.56

Neuralangelo (random)
512min

0.54 1.18 1.36 1.62 0.96 0.80 2.62 1.54 0.79 0.91 1.23
Neuralangelo (cluster) 0.52 1.43 1.15 1.43 0.74 0.65 2.98 0.99 0.88 0.70 1.15
Neuralangelo (farthest) 0.70 1.96 1.66 1.39 0.99 0.86 3.14 1.42 1.67 0.78 1.46
MonoSDF (random)

435min
0.79 1.24 1.19 1.44 0.80 3.05 1.53 0.68 1.34 2.34 1.44

MonoSDF (cluster) 0.89 1.07 1.09 1.35 0.97 2.74 1.29 0.71 1.38 1.73 1.32
MonoSDF (farthest) 0.98 1.53 1.39 1.37 0.91 2.64 1.90 0.86 1.68 1.45 1.47

SparseNeuS − 0.84 1.87 1.07 1.51 1.26 1.11 1.09 0.74 1.46 1.83 1.28
VolRecon − 0.92 1.92 1.01 1.58 0.89 1.09 1.48 0.63 1.20 1.12 1.18

Ours (random)
9min

0.64 1.34 0.84 1.52 0.95 1.22 1.13 0.48 0.93 0.62 0.97
Ours (cluster) 0.55 1.30 0.77 1.39 0.87 0.92 1.35 0.47 0.80 0.55 0.90
Ours (farthest) 0.76 1.38 1.22 1.43 0.89 1.05 1.47 0.49 0.91 0.51 1.01
Ours (planning) 0.51 1.15 0.75 1.28 0.84 0.91 0.95 0.46 0.72 0.50 0.81

some similarities with the coarse-to-fine strategy used in Li et al.
[2023]. Different from theirs, our scheme focuses on solving the
severe overfitting problem under sparse-view SDF optimization.
This scheme plays a vital role in our framework, as we aim to
achieve high-quality reconstruction without artifacts, and a well-
optimized reconstruction module also provides more informative
guidance to the view planning module.

3.4 Directional Hessian Loss
To produce reasonable geometry, recent works apply an Eikonal
loss L𝑒𝑖𝑘 [Gropp et al. 2020] for regularizing the gradient of SDF
to be close to one. However, we find that L𝑒𝑖𝑘 only considers the
first-order gradient of SDF and is difficult to provide sufficient reg-
ularization, especially under challenging sparse-view settings. A
higher-order gradient can provide a stronger constraint. Some stud-
ies [Li et al. 2023; Zhang et al. 2022] compute the second-order
Hessian matrix and directly regularize the matrix norm to zero. Yet,
we notice that the second-order gradient of SDF is not necessarily
zero everywhere in space. Instead, the directional derivative of the
SDF gradient along its normal direction should be zero due to the
parallelism of adjacent SDF level sets near the surface. Therefore,
we propose a directional Hessian loss L𝑑𝑖𝑟 , which can constrain
the second-order gradient more precisely:

L𝑑𝑖𝑟 = 𝑒𝑥𝑝 (−𝛿 · |𝑓𝑔 (𝒙) |) ·
|∇𝑓𝑔 (𝒙) | − |∇𝑓𝑔 (𝒙 + 𝜖 · ∇𝑓𝑔 (𝒙 )

∥∇𝑓𝑔 (𝒙 )∥ ) |

𝜖
, (7)

where∇ is the gradient operator, andwe set the step size 𝜖 to equal to
the minimum grid size of hash encoding; 𝑒𝑥𝑝 (−𝛿 · |𝑓𝑔 (𝒙) |) is a radial
basis function (RBF) with a hyperparameter 𝛿 , which encourages
the loss to focus more on regions near the surface. Our proposed
loss L𝑑𝑖𝑟 can serve as a smoothness constraint by regularizing the
inconsistency of the SDF gradient, thus facilitating the ill-posed SDF
optimization under sparse views.

3.5 Overall Loss
The total loss L used to optimize our model is:

L = L𝑟𝑔𝑏 +𝑤𝑛𝑜𝑟𝑚L𝑛𝑜𝑟𝑚 +𝑤𝑒𝑖𝑘L𝑒𝑖𝑘 +𝑤𝑑𝑖𝑟L𝑑𝑖𝑟 , (8)

where the RGB loss L𝑟𝑔𝑏 = 1
| R |

∑
𝒓∈R

𝐶 (𝒓) −𝐶 (𝒓)1 minimizes
the difference between the rendered pixel 𝐶 (𝒓) and ground-truth
pixel𝐶 (𝒓) for sampled ray 𝒓 . Here, R denotes the set of rays in each
batch. To further regularize the surface, we also predict the surface
normal using Omnidata [Eftekhar et al. 2021] and apply a normal
loss. The normal loss L𝑛𝑜𝑟𝑚 = 1

| R |
∑

𝒓∈R
1 − 𝑁 (𝒓)⊤�̂� (𝒓)


1 con-

strains the rendered normal vector 𝑁 (𝒓) to be consistent with the
predicted pseudo ground-truth normal vector �̂� (𝒓).

4 Experiments
Implementation details. We adopt a 12-level hash encoding, with

each hash entry having a channel size of 2. The total number of
hash entries is 219. We progressively activate hash features with
finer resolutions until Θ = 10, 000 iterations. We use 1 hidden layer
with 64 hidden units for the SDF decoder and 2 hidden layers with
64 hidden units for the color MLP. We first train our framework
using 3 clustered views for 1,000 iterations as initialization. Then, we
add a new view using the proposed strategy every 1,000 iterations
until the number of training views reaches a target value. The loss
weights are set to𝑤𝑛𝑜𝑟𝑚 =𝑤𝑑𝑖𝑟 = 0.05, and𝑤𝑒𝑖𝑘 = 0.1.

Datasets. We simulate our problem setting and conduct experi-
ments on three datasets. Candidate viewpoints are limited to view-
points of images in these datasets. Similar to some previousworks [Long
et al. 2022; Wang et al. 2021], we use representative scenes cov-
ering different aspects (i.e., materials, appearances, and geome-
tries) for evaluation. Specifically, we use 10 scenes from the DTU
dataset [Jensen et al. 2014] and 5 challenging scenes (i.e., Bear, Cat-
tle, Clock, Man, Sculpture) from the BlendedMVS dataset [Yao et al.
2020] to evaluate the surface reconstruction quality. We further test
on 5 scenes (we exclude scenes containing semi-transparent, hollow
objects or fluids, which are not suitable for SDF-based surface recon-
struction methods) from the Blender dataset [Mildenhall et al. 2020]
to evaluate the novel view synthesis quality. For each dataset, we
use only 10% of dense views for reconstruction. Concretely, we use 6
and 8 views for DTU and Blender, and 8-12 views for BlendedMVS.

Baselines. Our proposed view planning and reconstruction mod-
ules can be flexibly switched out in a modular manner against other
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Table 2. Quantitative results on Blender dataset (bold means best, underline means second best). We report the PSNR and SSIM.

Methods Time
Mic Hotdog Chair Ficus Materials mean

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
NeuS (random)

91min
18.65 0.871 26.55 0.928 23.64 0.886 17.23 0.830 18.45 0.789 20.90 0.861

NeuS (cluster) 19.83 0.879 27.26 0.933 25.30 0.901 17.58 0.831 18.74 0.794 21.74 0.868
NeuS (farthest) 19.38 0.873 21.93 0.896 25.32 0.903 17.71 0.834 17.92 0.780 20.45 0.857

Neuralangelo (random)
518min

26.85 0.952 23.04 0.919 26.85 0.933 17.38 0.835 18.60 0.801 22.54 0.888
Neuralangelo (cluster) 26.60 0.947 25.08 0.928 26.96 0.934 17.57 0.833 20.41 0.819 23.32 0.892
Neuralangelo (farthest) 26.64 0.950 23.69 0.905 26.22 0.928 17.65 0.831 16.12 0.775 22.06 0.878
MonoSDF (random)

386min
23.58 0.928 24.99 0.919 20.69 0.848 17.59 0.852 19.40 0.827 21.25 0.875

MonoSDF (cluster) 23.29 0.927 25.24 0.924 23.61 0.882 19.52 0.863 19.65 0.838 22.26 0.887
MonoSDF (farthest) 22.99 0.925 23.39 0.902 23.38 0.883 18.89 0.861 19.67 0.830 21.66 0.880

Ours (random)
10min

27.65 0.951 26.97 0.935 25.16 0.910 22.36 0.903 18.12 0.804 24.05 0.901
Ours (cluster) 27.43 0.952 27.85 0.929 26.33 0.919 22.13 0.898 19.43 0.818 24.63 0.903
Ours (farthest) 26.45 0.950 26.24 0.917 25.46 0.911 22.30 0.895 18.25 0.807 23.74 0.896
Ours (planning) 27.87 0.956 28.51 0.936 26.54 0.925 22.59 0.899 20.23 0.832 25.15 0.910

exiting methods. For the reconstruction module, we compare with
the following baselines: (1) The state-of-the-art surface reconstruc-
tion methods, including NeuS [Wang et al. 2021] and Neuralan-
gelo [Li et al. 2023]; (2) The state-of-the-art sparse-view methods,
including generalization-based SparseNeuS [Long et al. 2022], Vol-
Recon [Ren et al. 2023] and regularization-based MonoSDF [Yu
et al. 2022]. Because these methods use fixed input views before
training, we apply three policies to select input views for them:
random sampling, cluster sampling, farthest sampling. Exceptionally,
for generalization-based methods, we use predefined views from
their original methods for comparison, as their performance drops
significantly when using other views as input. For the view plan-
ning module, we replace our proposed view planning strategy with
different strategies introduced by Lee et al. [2022], NeurAR [Ran
et al. 2023], and NeU-NBV [Jin et al. 2023] to show its effectiveness.

4.1 Quantitative Evaluation
To evaluate our reconstruction module, we use the same three poli-
cies to select input views and compare with baselines. In Table 1,
we report Chamfer distance on the DTU dataset to measure the
reconstruction accuracy. The object masks are used to remove the
background for proper evaluation [Long et al. 2022]. To further
evaluate image synthesis quality, we report the peak signal-to-noise
ratio (PSNR) and structural similarity index measure (SSIM) on
the Blender dataset (see Table 2). On average, PVP-Recon achieves
the lowest Chamfer distance and the highest PSNR and SSIM with
significantly less training time. The results indicate that our recon-
struction module generally outperforms existing works in terms of
surface reconstruction and image rendering. We also notice that our
reconstruction quality can be further improved after applying the
view planning module (i.e., planning).

For further evaluation of the view planning module, we compare
our proposed strategy with three representative strategies in the
field of robotics. Lee et al. [2022] calculate the density entropy along
each ray and use this entropy as a measure for view planning. Yet,
density struggles to provide the most valuable information for geo-
metric reconstruction. Also, calculating entropy for each ray results
in a heavy computational burden. NeurAR [Ran et al. 2023] and
NeU-NBV [Jin et al. 2023] model the emitted radiance as Gaussian

Table 3. Averaged Chamfer distance and running time of different view
planning strategies on 10 scenes of the DTU dataset.

Strategy Type 4 views 5 views 6 views Time

Entropy [Lee et al. 2022] 1.20 1.07 0.93 59s
NeurAR [Ran et al. 2023] 1.51 1.36 1.23 6.5s
NeU-NBV [Jin et al. 2023] 1.35 1.25 1.12 11.1s

Ours 0.99 0.92 0.81 7.8s

distributions and plans subsequent views using the distribution vari-
ance. Nevertheless, expanding the radiance from a specific value
to a distribution induces randomness, which makes the optimiza-
tion difficult and degrades the reconstruction quality. In contrast,
our strategy is simple yet effective as it directly verifies the multi-
view consistency via image warping. We implement and incorporate
these strategies into our framework and conduct experiments on the
DTU dataset. The entropy, variance maps, and warping scores are all
calculated at 150 × 200 pixel resolution. Table 3 shows the averaged
Chamfer distance and averaged running time for each round of view
planning. Our strategy consistently outperforms other strategies
under different input views with comparable running time.

4.2 Qualitative Evaluation
We visualize the reconstructed meshes and conduct qualitative com-
parisons (shown in Figure 4). For each baseline, we choose the best
results from three view selection policies. Neuralangelo [Li et al.
2023] and MonoSDF [Yu et al. 2022] struggle to generate accurate
geometries for textureless regions (Scan 110) or delicate structures
(Scan 118). VolRecon [Ren et al. 2023] generates missing or noisy
results. Moreover, baselines fail to generate good results on chal-
lenging scenes of the BlendedMVS dataset. In contrast, PVP-Recon
can reconstruct both smooth surfaces and detailed structures.
Although our primary goal is surface reconstruction, we also

evaluate rendering quality using the Blender dataset, which pro-
vides a separate test set for evaluating novel view synthesis. Figure
5 shows that PVP-Recon also outperforms baselines in terms of ren-
dering quality. NeuS [Wang et al. 2021] and MonoSDF [Yu et al.
2022] synthesize blurry images because of the low-frequency bias
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Fig. 4. Comparison of surface reconstruction on DTU and BlendedMVS datasets. Our method generates the most accurate and detailed results.
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Fig. 5. Comparison of image rendering on Blender dataset. Our method can generate high-quality renderings with richer details.

of the MLP networks. Neuralangelo [Li et al. 2023] captures more
details but produces incorrect textures in complex areas. This is due
to its ill-posed optimization of hash features under sparse views. By
utilizing our proposed training scheme and the directional Hessian
loss L𝑑𝑖𝑟 , our model is better optimized and recovers sharper and
more visually appealing rendering results.
In Figure 6, we show the evolution process of the reconstructed

mesh under progressively added input views. The recovered mesh
becomes more precise and richer in details, as our view planning

module can supplement the most informative views for surface
reconstruction. We also visualize the selected cameras, correspond-
ing RGB images, and final reconstruction results of different plan-
ning strategies for comparison in Figure 7. Input views planned by
entropy-based strategy [Lee et al. 2022] tend to neglect edge regions,
leading to incomplete surfaces of the target object. Variance-based
strategies (i.e., NeurAR [Ran et al. 2023] and NeU-NBV [Jin et al.
2023]) can plan reasonable input views, but introduce randomness
into the surface optimization process, making the recovered meshes
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Fig. 6. We show how the reconstructed mesh of BlendedMVS Sculpture changes as new input views are progressively added. Note that the newly added views
provide beneficial information that makes the reconstruction result more precise and detailed.

Entropy Strategy NeurAR Strategy Our StrategyNeU-NBV Strategy

Fig. 7. We visualize the selected cameras, corresponding RGB inputs, and final recovered meshes (DTU scan69) of different view planning strategies.

Table 4. Ablation results (averaged Chamfer distance) on the DTU dataset.

Configs w/o prog w/o L𝑑𝑖𝑟 full setup

farthest sampling 1.53 1.16 1.01
view planning 1.45 0.91 0.81

bumpy. Our warping-based strategy achieves better capture cover-
age and results in high-quality and delicate surfaces.

4.3 Ablation Study
We conduct more ablation experiments on the DTU dataset. We
remove the following key components separately: (1) progressive
training scheme (w/o prog); (2) directional Hessian loss (w/o L𝑑𝑖𝑟 ).
Note that we evaluate the effectiveness of these components both
with and without (i.e., farthest sampling) the view planning module,
to avoid entangling the evaluation with changes in the input views.
Table 4 and Figure 8 show the ablation results. In both settings, the
full setup achieves the best results, and the reconstruction quality
deteriorates when either component is removed. Specifically, the
progressive scheme prevents the reconstruction optimization from

quickly falling into localminima.Without this scheme (w/o prog), the
model fails to capture scene details and produces messy geometries.
Intuitively, our proposed loss L𝑑𝑖𝑟 constrains the gradient of SDF
and acts as a consistency prior by regularizing abrupt changes in
surface curvature. Therefore, the reconstructed meshes are non-
smooth and inconsistent when this loss is removed (w/o L𝑑𝑖𝑟 ). As
shown in Figure 8, our full setup generates the most accurate and
complete surfaces with fine-grained details.

4.4 Different Numbers of Input Views
We evaluate the reconstruction quality under different numbers of
input views. Figure 9 shows the Chamfer distance (C.D.) variation
curves for three representative scenes in the DTU dataset. With
fewer input views, the Chamfer distance decreases significantly each
time a new image is added. Our PVP-Recon generally outperforms
NeU-NBV [Jin et al. 2023] strategy under different numbers of views.
We also report the reconstruction results of Neuralangelo [Li et al.
2023] using all dense images (64 views) of a scene. Note that we can
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farthest sampling setting:

view planning setting:

Fig. 8. Ablation visualizations (DTU scan105 and scan118). Note that Arti-
facts will appear when any of our proposed components are removed.

Table 5. Integrating our view planning module into different 3D reconstruc-
tion methods can achieve lower averaged Chamfer distance on the DTU
dataset than predefining a fixed set of views before training.

Methods predefined views view planning

NeuS [Wang et al. 2021] 1.27 1.15
MonoSDF [Yu et al. 2022] 1.44 1.36

achieve comparable or even better results with fewer input images,
which demonstrates the effectiveness of our system.

4.5 Flexibility of the View Planning Module
Our warping-based view planning module is flexible and can be
combined with different 3D reconstruction methods. We incorpo-
rate the view planning module into NeuS [Wang et al. 2021] and
MonoSDF [Yu et al. 2022] framework. Figure 10 and Table 5 show
that, compared with predefining a fixed set of input views using
the cluster sampling, our incorporated view planning module can
further help NeuS and MonoSDF to reconstruct more accurate and
complete surfaces, and achieve lower Chamfer distance.

4.6 Real-World Robotic Application
PVP-Recon alternately optimizes the surface and plans subsequent
input views based on current optimization status. Therefore, PVP-
Recon is well suited for active reconstruction in the field of robotics
and can be applied in practice. In Figure 11, we show meshes recon-
structed by PVP-Recon from sparse images progressively captured by
a robotic arm. PVP-Recon can still generate accurate and high-quality
3D mesh surfaces in real-world robotic scenarios.

5 Limitations and Conclusion
Limitations. Currently, PVP-Recon takes 8 seconds each time for

view planning and 10 minutes for the overall reconstruction. Fu-
ture direction includes achieving further acceleration with CUDA
implementation for applications with high requirements on real-
time performance. Moreover, PVP-Recon now focuses on object-level
scene reconstruction. In the future, we aim to combine our method

with mobile robots or drones to achieve full 3D reconstruction of
large, unbounded, and non-object-centric scenarios.

Conclusion. In this paper, we propose PVP-Recon, a novel sparse-
view surface reconstruction system that progressively plans the
next best views to form an optimal set of input images. Specifically,
we design a scoring strategy that checks the multi-view consistency
to seek the most informative images for further training. To stabi-
lize the implicit surface optimization under sparse views, we also
introduce a progressive training scheme and a directional Hessian
loss. Extensive experiments on three datasets show that our method
outperforms previous reconstruction baselines and active planning
strategies. Furthermore, we demonstrate that PVP-Recon is well
suited for active reconstruction task in the field of robotics, and our
proposed view planning module can also be incorporated into other
frameworks to facilitate better surface reconstruction.
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Fig. 12. Additional comparison results of image rendering on Blender. Our approach can generate high-quality renderings with richer details.
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Fig. 13. Additional comparison results of surface normal on DTU and BlendedMVS. Note that our method produces more accurate and delicate results.

ACM Trans. Graph., Vol. 43, No. 6, Article 191. Publication date: December 2024.


	Abstract
	1 Introduction
	2 Related Works
	2.1 Neural Implicit Representation
	2.2 Sparse View Reconstruction
	2.3 Neural Implicit View Planning

	3 Method
	3.1 Preliminaries
	3.2 View Planning Module With Warping Consistency
	3.3 Reconstruction Module With Progressive Scheme
	3.4 Directional Hessian Loss
	3.5 Overall Loss

	4 Experiments
	4.1 Quantitative Evaluation
	4.2 Qualitative Evaluation
	4.3 Ablation Study
	4.4 Different Numbers of Input Views
	4.5 Flexibility of the View Planning Module
	4.6 Real-World Robotic Application

	5 Limitations and Conclusion
	Acknowledgments
	References

