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Abstract

Contrastive learning has recently demonstrated great potential for unsupervised pre-training in 3D scene understanding tasks.
However, most existing work randomly selects point features as anchors while building contrast, leading to a clear bias toward
background points that often dominate in 3D scenes. Also, object awareness and foreground-to-background discrimination
are neglected, making contrastive learning less effective. To tackle these issues, we propose a general foreground-aware
feature contrast FAC++ framework to learn more effective point cloud representations in pre-training. FAC++ consists of
two novel contrast designs to construct more effective and informative contrast pairs. The first is building positive pairs
within the same foreground segment where points tend to have the same semantics. The second is that we prevent over-
discrimination between 3D segments/objects and encourage grouped foreground-to-background distinctions at the segment
level with adaptive feature learning in a Siamese correspondence network, which adaptively learns feature correlations within
and across point cloud views effectively. Our proposed approach enhances both the local coherence as well as the overall
feature discrimination. Moreover, we have designed the linguistic foreground-aware regional point sampling to enhance
more balanced foreground-aware learning, which is termed FAC++. Visualization with point activation maps shows that our
contrast pairs capture clear correspondences among foreground regions during pre-training. Quantitative experiments also
show that FAC++ achieves superior knowledge transfer and data efficiency in various downstream 3D semantic segmentation,
instance segmentation as well as object detection tasks. All codes, data, and models are available at: (https://github.com/
KangchengLiu/FAC_Foreground_Aware_Contrast).
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1 Introduction

Communicated by Minsu Cho.
Understanding 3D scenes is crucial for many tasks such

The preliminary results of this work are published at the Proceedings as grasping robots, embodied robotic control and planning,
of the IEEE/CVF Conference on Computer Vision and Pattern smart manufacturing, virtual reality/augmented reality, and
Recognition 2023 (CVPR 2023). . .
autonomous navigation (Huang et al. 2018; Liu et al. 2017,
5 Kangcheng Liu Liuetal. 2022g; Liuetal. 2022h; Liu et al. 2022c; Liu 2022d).
kcliu@mae.cuhk.edu.hk Moreover, the data-efficient vision language model plays an
important role in embodied intelligence, promoting label-
efficient scene parsing (Liu and Cao 2023, Liu 2023d, Liu
2022d, Liu 2022e). However, most existing work is fully
supervised, which relies heavily on large-scale annotated 3D
data that is often very laborious to collect. Self-supervised
learning (SSL), which allows learning rich and meaning-
ful representations from large-scale unannotated data, has

The College of Electrical and Information Engineering,
Hunan University (HNU), Changsha, China

The Division of Engineering and Applied Science, California
Institute of Technology (Caltech), Pasadena, USA

The School of Control Science and Engineering, Shandong
University, Jinan, China

The School of Control Engineering, Minjiang University,
Fuzhou, China

The Department of Computer Science and Technology, ©  The School of Artificial Intelligence, Peking University,

Tsinghua University, Beijing, China Beijing, China

Published online: 14 January 2025 &) Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-024-02340-z&domain=pdf
http://orcid.org/0000-0002-8387-3565
https://github.com/KangchengLiu/FAC_Foreground_Aware_Contrast
https://github.com/KangchengLiu/FAC_Foreground_Aware_Contrast

International Journal of Computer Vision

recently demonstrated great potential to mitigate the annota-
tion constraint. It learns with auxiliary supervision signals
derived from unannotated data, which are usually much
easier to collect. In particular, contrastive learning as one
prevalent SSL approach has achieved great success in vari-
ous visual downstream 2D recognition tasks.

Contrastive learning has also been explored for robot point
cloud-based representation learning in various downstream
tasks such as semantic segmentation (Xie et al., 2020a),
instance segmentation (Hou et al.,2021), and object detection
(Yin et al., 2022). However, many successful 2D contrastive
learning methods do not work well for 3D point clouds,
largely because point clouds often capture wide-view scenes
which consist of complex points of many irregularly dis-
tributed foreground objects as well as a large number of
background points. Several studies attempt to design spe-
cific contrast to cater to the geometry and distribution of
point clouds. For example, Huang et al. (2021) employs
max-pooled features of two augmented scenes to form the
contrast, but they tend to over-emphasize holistic information
and overlook informative features about foreground objects.
Xie et al. (2020a), Hou et al. (2021), Liang et al. (2021)
directly use registered point/voxel features as positive pairs
and treat all non-registered as negative pairs, causing many
false contrast pairs in semantics.

We propose exploiting scene foreground evidence and
foreground-background distinction to construct more fore-
ground grouping aware and foreground-background dis-
tinction aware contrast for learning discriminative 3D rep-
resentations. For foreground grouping aware contrast, we
first obtain regional correspondences with over-segmentation
(Papon et al., 2013) and then build positive pairs with
points of the same region across views, leading to semantic
coherent representations. In addition, we design a sampling
strategy to sample more foreground point features while
building contrast, because the background point features
are often less-informative and have repetitive or homo-
geneous patterns. For foreground-background distinction
aware contrast, we first enhance foreground-background
point feature distinction and then design a Siamese cor-
respondence network that selects correlated features by
adaptively learning affinities among feature pairs within and
across views in both foreground and background to avoid
over-discrimination between parts/objects. Visualizations
show that, in acomplementary manner, foreground-enhanced
contrast effectively guides the learning toward foreground
regions while foreground-background contrast enhances dis-
tinctions among foreground and background features. The
two designs collaborates to learn more informative and dis-
criminative representation as illustrated in Fig. 1.

This work is a significant extension of the prelimi-
nary version of the published conference work (Liu et
al., 2023), where basic ideas of forming contrast between
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Fig. 1 FAC++ takes both the foreground grouping and the foreground-
background distinction guidance into account, thus forming better
contrast pairs to learn more informative and discriminative 3D feature
representations. FAC++ provides more language-aware information
with the 3D visual-linguistic aligned prompts

grouped foreground and background are introduced to tackle
the final data-efficient 3D scene understanding during the
fine-tuning stage to enhance the foreground grouping and
foreground-background distinction. The core ideas are infuse
3D foreground linguistic information through 2D vision-
language aligned prompts. As demonstrated by our extensive
experiments, our proposed framework can provide linguistic
foreground-aware feature contrast, which provides valuable
guidance from the vision-language models. In summary, we
extensively enriched previous works in the following aspects:

First, we propose to enhance the foreground-background
discrimination directly with explicit foreground points queries
of FAC/FAC++ from the 3D vision-language models, which
achieved more generalized pre-training for representation
learning, and enhance the final data-efficient learning as well
as the open-vocabulary recognition performance.

Second, we added the experiments in instance segmenta-
tion, where we have achieved superior performance for that
the superior foreground-aware instance discrimination in fea-
ture representation learning is successfully achieved.

Third, we added comprehensive experimental about the
open-world recognition, which demonstrates apart from
state-of-the-art performance in data-efficient learning, our
proposed approach is also compatible with the current state-
of-the-art 3D open vocabulary recognition approaches, and
also has superior effectiveness in terms of recognizing novel
categories and novel semantic classes.
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Fourth, we added very comprehensive experimental com-
parative analysis about the efficiency as well as the train-
ing/inference time analysis of our proposed FAC++, which
demonstrates our proposed framework has relatively low
computational complexity thanks to our proposed regional
contrastive designs rather than conducting contrast point-
level. The proposed method can be seamlessly integrated
to the current state-of-the-art vision-language models. In
the meanwhile, our proposed can work harmoniously with
the prevailing State-of-the-art backbone network approaches,
including SparseConv as well as PV-RCNN. It demonstrates
superior data-efficiency, training efficiency, as well as com-
patibility of our proposed framework.

The contributions of this work can be summarized in
the following aspects. First, we propose FAC/FAC++, a
foreground-aware feature contrast framework for large-
scale 3D pre-training. FAC samples median-sized regions
as foreground regions, while FAC++ leverages foreground
prompts to enhance the foreground-aware feature repre-
sentations. Second, we construct region-level contrast to
enhance the local coherence and better foreground aware-
ness in the learned representations. 7Third, on top of that,
we design a Siamese correspondence framework that can
locate well-matched keys to adaptively enhance the intra-
and inter-view feature correlations, as well as enhance
the foreground-background distinction. Fourthly, we pro-
pose leveraging current prevailing vision-language models
to extend the model’s generalization capacity while encoun-
tered with novel categories, and demonstrate the open-world
recognition capacity of the model by extensive experiments.
Lastly, extensive experiments over multiple public bench-
marks show that FAC++ achieves superior self-supervised
learning when compared with the state-of-the-art. FAC++
is compatible with the prevalent 3D segmentation backbone
network SparseConv and 3D detection backbone networks
including PV-RCNN, PointPillars (Lang et al., 2019), and
Point-RCNN (Shi et al., 2019). It is also applicable to
both indoor dense RGB-D and outdoor sparse LiDAR point
clouds. Therefore, the proposed framework has been demon-
strated very effective in constructing a generalized robotic
vision-language learning model leveraging linguistic fore-
ground aware contrast.

2 Related Work
2.1 3D Scene Understanding

The intelligence of the robot embodied is highly dependent
on the powerful parsing and perception capacity (Liu 2023a,
2023c, 2023b; Liu and Ou 2022a; Liu and Ou 2022b; Liu
2022a; Liu et al. 2022f; Liu 2022c). Understanding the 3D
scene aims at understanding the depth of the 3D or point

cloud data and involves several downstream tasks such as
3D semantic segmentation (Chibane et al., 2022; Yang et
al., 2022), 3D object detection (Ercelik et al., 2022), etc. It
has recently achieved very impressive progress as driven by
the advance in 3D deep learning strategy and the increasing
large-scale 3D benchmark datasets (Liu and Chen 2022b;
Liu et al. 2024; Liu et al. 2022a; Liu et al. 2022b; Liu et al.
2022d; Liu and Chen 2022a). Different approaches have been
proposed to address various challenges in 3D scene under-
standing. For example, the point-based approach (Liu et al.,
2022e, 2019) can learn point features well but is often stuck
by high computational costs while facing large-scale point-
cloud input stream. Voxel-based approach (Mao et al., 2021;
Zhou & Tuzel, 2018; Liu, 2022b; Liu et al., 2022d, 2021b)
is computation and memory efficient but often suffers from
information loss from the voxel quantification. In addition,
voxel-based SparseConv network (Vu et al., 2022) has shown
very promising performance in indoor 3D scene parsing,
while combining point and voxel often has a clear advan-
tage in outdoor LiDAR-based detection (Lang et al., 2019;
Zhou & Tuzel, 2018; Shi et al., 2020). Our proposed SSL
framework shows consistent superiority in indoor/outdoor
3D perception tasks, and it is also backbone-agnostic.

2.2 Self-Supervised Pre-training on Point Clouds
2.2.1 Contrastive Pre-training

Recent years have witnessed notable success in contrastive
learning for learning unsupervised representations (Li &
Heizmann, 2022; Wang et al., 2021b; Zhang et al., 2022;
Sanghi, 2020). For example, contrast scene context (CSC)
(Hou et al., 2021; Xie et al., 2020a) explores contrastive pre-
training with scene context descriptors. However, it focuses
too much on optimizing low-level registered point features
but neglects the regional homogeneous semantic patterns and
high-level feature correlations. Some work employs max-
pooled scene-level information for contrast (Huang et al.,
2021; Liang et al., 2021), but it tends to sacrifice local geom-
etry details and object-level semantic correlations, leading to
sub-optimal representations for dense prediction tasks such
as semantic segmentation. Differently, we explicitly consider
regional foreground awareness as well as feature correlation
and distinction among foreground and background regions
which lead to more informative and discriminative represen-
tations in 3D downstream tasks.

Further, many approaches incorporate auxiliary temporal
or spatial 3D information for self-supervised contrast with
augmented unlabeled datasets (Huang et al., 2021) and syn-
thetic CAD models (Chen et al., 2022). STRL (Huang et
al., 2021) introduces a mechanism of learning from dynamic
3D scenes synthetic 3D by regarding 3D scenes are RGB-D
video sequences. Randomrooms (Rao et al., 2021) synthe-
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sizes man-made 3D scenes by randomly putting synthetic
CAD models into regular synthetic 3D scenes. 4DContrast
(Chen et al., 2022) leverages spatio-temporal motion priors
of synthetic 3D shapes to learn a better 3D representation.
However, most of these prior studies rely on extra supervi-
sion from auxiliary spatio-temporal information. Differently,
we perform self-supervised learning over original 3D scans
without additional synthetic 3D models.

2.2.2 Masked Generation-Based Pre-training

Masked image modeling has demonstrated its effectiveness
in various image understanding tasks (Xie et al., 2022; He
et al., 2022) with the success of vision transformers (Liu
et al., 2021a; Carion et al., 2020). Recently, mask-based
pre-training (Liang et al., 2022; Pang et al., 2022; Wang
et al., 2021b) has also been explored for the understanding
of small-scale 3D shapes (Uy et al., 2019). Confidence-
based discrimination has also been shown to be effective
in semi-supervised learning and confidence-level-based dis-
criminative pre-training (Liu, 2022f). However, mask-based
designs usually involve a transformer backbone (Liang et al.,
2022; Pang et al., 2022) that has a high demand for both com-
putation and memory while handling large-scale 3D scenes.
We focus on pre-training with contrastive learning, which
is compatible with both point-based and voxel-based back-
bones.

3 Method

As illustrated in Fig. 2, our proposed FAC/FAC++ frame-
works are composed of four components: data augmentation,
backbone network feature extraction, feature matching, and
foreground-background aware feature contrastive optimiza-
tions with matched contrast pairs. The differences of them
merely lie in that FAC samples median-sized regions as fore-
ground regions, while FAC++ leverages foreground prompts
to enhance the foreground-aware feature representations. In
the following, we first revisit typical contrastive learning
approaches for 3D point clouds and discuss their limita-
tions that could lead to less informative representations. We
then elaborate our proposed FAC from three major aspects:
(1) Regional grouping contrast that exploits local geometry
homogeneity from over-segmentation to encourage semantic
coherence of local regions; (2) A correspondence framework
that consists of a Siamese network and a feature contrast loss
for capturing the correlations among the learned feature rep-
resentations; (3) Optimization losses that take advantage of
the better contrast pairs for more discriminative robot self-
supervised learning.

@ Springer

3.1 Point- and Scene-Level Contrast Revisited

The key in contrastive learning-based 3D SSL is to construct
meaningful contrast pairs between the two augmented views.
Positive pairs have been constructed at either point level as
in PointContrast (PCon) (Xie et al., 2020a) or scene level as
in DepthContrast (DCon) (Zhang et al., 2022). Concretely,
given the augmented views of 3D partial point/depth scans,
the contrastive loss is applied to maximize the similarity of
the positive pairs and the distinction between negative pairs.
In most cases, InfoNCE (Oord et al., 2018) loss can be applied
for contrast:

1
Letra = ———
ctra ||Bp|| Z

(a,b)eB,

o eXp(ff;l ‘sz/T)
¢ Y (creB, Py foa/T))
)]

Heref, andf ,, are the feature vectors of two augmented
views for contrast. B, is the index set of matched positive
pairs. (a, b) € B, is a positive pair whose feature embed-
dings are forced to be similar, while {(a, ¢)|(-,¢) € By, ¢ #
b} are negative pairs whose feature embeddings are encour-
aged to be different. PCon (Xie et al., 2020a) directly adopts
registered point-level pairs while DCon (Zhang et al., 2022)
uses the max-pooled scene-level feature pairs for conducting
contrast.

Despite their decent performance in 3D downstream tasks,
the constructed contrast pairs in prior studies tend to be
sub-optimal. As illustrated in Fig. 1, point-level contrast
tends to overemphasize the fine-grained low-level details
and overlook the region-level geometric coherence which
often provides object-level information. Scene-level con-
trast aggregates the feature of the whole scene for contrast,
which can lose the object-level spatial contexts and distinc-
tive features, leading to less informative representations for
downstream tasks. We thus conjecture that region-level cor-
respondences are more suitable to form the contrast, and this
has been experimentally verified as illustrated in Fig. 1, more
details to be elaborated in ensuing Subsections.

3.2 Foreground-Aware Contrast

Region-wise feature representations have been shown to be
very useful in considering contexts for downstream tasks
such as semantic segmentation and detection (He et al., 2017;
Zhang et al., 2020; Bai et al., 2022). In our proposed geomet-
ric region-level foreground-aware contrast, we obtain regions
by leveraging the off-the-shelf point cloud over-segmentation
techniques (Papon et al., 2013; Guo et al., 2014). The adop-
tion of over-segmentation is motivated by its merits in three
major aspects. First, it can work in a completely unsupervised
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Fig. 2 The framework of our proposed FAC/FAC++. FAC samples
median-sized regions as foreground regions, while FAC++ leverages
foreground prompts to enhance the foreground-aware feature represen-
tations. They both take two augmented 3D point cloud views as input
which first extracts the backbone features D, and D), for foreground
aware contrast with £¢,,. The backbone features are then reshaped to
regularized representation E, and E, to find correspondences across
two views for feature matching. Specifically, we adopt the projector i
to transfer E, and E}, to feature maps S, and Sy, to adaptively learn their
correlations and produce enhanced representations H, and H,. Finally,
H, and H; are reshaped back to F, and F; where matched feature
pairs are enhanced with feature contrast loss £ r.,. Hence, both our

FAC++ becomes “Language-Aware (LA)” compared to FAC
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proposed FAC and FAC++ exploits complementary foreground aware-
ness and foreground-background distinction within and across views
for more informative and meaningful representation learning. We have
compared the performance of proposed FAC++ compared with FAC
the in a detailed manner as demonstrated in this Figure below. It can be
shown qualitatively and clearly that by leveraging "foreground objects"
as the language prompts, our proposed FAC++ becomes language-aware
compared with FAC. The proposed simple but effective module can pro-
vide seamless language prior information in our generalized FAC++
framework. As demonstrated from our experiments, the foreground
awareness will also provide a large performance boost compared with
the previous approaches
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manner without requiring any annotated data. Second, our
proposed regional sampling (to be described later) allows us
to filter out background regions such as ceilings, walls, and
ground in an unsupervised manner, where the background
regions are often represented by geometrically homogeneous
patterns with a large number of points. Regions with a very
limited number of points can also be filtered out, which
are noisy in both geometry and semantics. Third, over-
segmentation provides geometrically coherent regions with
high semantic similarity, while diverse distant regions tend
to be semantically distinct after sampling, which effectively
facilitates discriminative feature learning. Specifically, over-
segmentation divides the original point clouds scene into
class-agnostic regions S = {sy, 52, ..., s;}, and s; Nsx = @
for any s; # sx. Our empirical experiments show that
our proposed framework works effectively with mainstream
over-segmentation approaches without fine-tuning.

3.2.1 Foreground Prompted Regional Sampling for
Balanced Learning

In our preliminary conference version, we designed a simple
but effective region sampling technique to obtain meaningful
foreground from the geometrically homogeneous regions as
derived via over-segmentation as introduced above. Specifi-
cally, we first count the number of points in each region and
rank regions according to the number of points they contain.
We then identify the region having the median number of
points as s,,.4. Next, we select H regions having the closest
number of points with s,,.4 to form contrast pairs. Extensive
experiments show that this sampling strategy is effective in
the downstream task. We conjecture that the massive points
in background regions encourage biased learning towards
repetitive and redundant information, while regions with very
limited points are noisy in both geometry and semantics. Our
sampling strategy can encourage balanced learning towards
foreground regions which leads to more informative and dis-
criminative representations.

3.2.2 Foreground Prompts

Note that for FAC, merely selecting the median-sized regions
can not always guarantee that all points lie within this region
are foreground points. Therefore, we designed an approach to
better guide the contrastive optimizations to more effectively
enhance the foreground-background distinctive representa-
tions. Specifically, we designed an effective approach for
the language-queried foreground sampling based on the cur-
rent prevailing vision-language models (Bai et al., 2023). We
directly utilize the model from the OpenMask3D (Takmaz
et al., 2023) to obtain the aligned 3D and language co-
embeddings. Then, we utilize the pre-trained models with the
corresponding language textual query termed "foreground"
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to obtain the final filtered regions with foreground points.
It tuns out that this simple but effective design filters out
many non-foreground points and provide more clearly sepa-
rate foreground regions, which will be of significance to the
final downstream 3D scene understanding tasks.

3.2.3 Contrast with Local Regional Consistency

Different from the above-mentioned PCon (Xie et al., 2020a)
and DCon (Zhang et al., 2022), we directly exploit region
homogeneity to obtain contrast pairs. Specifically, taking the
average point feature within a region as the anchor, we regard
selected features within the same region as positive keys and
in different regions as negative keys. Benefiting from the
region sampling strategy, we can focus on the foreground for
better representation learning. Denote the number of points
within a region as A/ (s;) and the backbone feature as D, we
aggregated their point feature d ; € D to produce an average
regional feature D,, within a region as the anchor in contrast
to enhance the robustness:

1

Dy =——— Z d;. )
INGOI S5

Regarding D,, as the anchor, we propose a foreground
aware geometry contrast loss L., pulling the point feature
to its corresponding positive features in the local geometric
region, and pushing it apart from negative point features of
different separated regions:

1 | exp(Ds, - d /1)
- og — .
B, (@beB, Yo, exp(Dy, -d ;7 /1))
(3)

L:Geo =

Here, dj and d’; denote the positive and negative samples,
respectively with D,,,. We set the number of positive and neg-
ative point feature pairs for each regional anchor as k equally.
Note our proposed foreground contrast is a generalized ver-
sion of PCon (Xie et al., 2020a) with foreground enhanced
and it returns to PCon if all regions shrink to a single point.
Benefiting from the regional geometric consistency and bal-
anced foreground sampling, the foreground aware contrast
alone outperforms the state-of-the-art CSC (Hou et al., 2021)
in data efficiency in our empirical experimental results.

3.3 Language-Guided Foreground-Background
Distinction Aware Contrast

Asillustrated in Fig. 2, we propose a Siamese correspondence
network (SCN) to explicitly identify feature correspondences
within and across views and introduce a feature contrast loss
to adaptively enhance their correlations. The SCN is merely
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used during the pre-training stage for improving the represen-
tation quality. After pre-training, only the backbone network
is fine-tuned for downstream tasks.

3.3.1 Siamese Correspondence Network for Adaptive
Correlation Mining

Given the input 3D scene X; with N points, our proposed
FAC/FAC++ framework first transforms it to two augmented
views X, and X, € RV *finand obtain backbone feature D,
and D, € RV*/e by feeding the two views into the back-
bone network G and its momentum update (via exponential
moving average), respectively (f, is the number of feature
channels). For fair comparisons, we adopt the same augmen-
tation scheme with existing work (Yin et al., 2022; Hou et
al., 2021). In addition, We reshape the backbone point-level
features to feature maps E, and E;, € R™% % /e 10 obtain
regularized point cloud representations and reduce compu-
tational costs. We then apply the projector k to E, and Ej,
respectively to obtain feature maps S, and S, € R™* < fe of
the same dimension as E, and E,. We adopt two simple point-
MLPs with a ReLU layer in between to form the projector h.
The feature maps S, and S, work as learnable scores which
adaptively enhance the significant and correlated features
within and across two views. Finally, we conduct element-
wise product between E and S to obtain the enhanced feature
H,and H), € R™* # % and further transform them back to
point-wise features F, and F;, € RV*/c for correspondence
mining. The global feature-level discriminative representa-
tion learning is enhanced by the proposed SCN, enabling
subsequent contrast with the matched feature. It should also
be noted that the Siamese Correspondence Network will not
exert any auxiliary extra computational burden, for the fact
the weights of the Siamese Correspondence Network are
shared in essence.

3.3.2 Contrast with the Matched Feature and
Foreground-Background Distinction

With the obtained sampled foreground-background pairs
labeled as negative, we conduct feature matching to select
the most correlated positive contrastive pairs. As illustrated
in Fig. 2, we evaluate the similarity between F, and Fj, and
select the most correlated pairs for contrast. The regional
anchors are selected in the same manner as in Subsection 3.2.
Concretely, we first introduce an average feature F¢, for
point feature within a region as the anchor when forming
contrast, given as F4, = m > JeN () f?, based on the
observation that points in the same local region tends to have
the same semantic. For j-th point-level feature f jb e R¢
in Fj, we calculate its similarity S, ; with regional feature

Fo e R
Sp.j=Fs(Fpf])- )

Here Fs(x,y) denotes the cosine similarity between vec-
tors x and y. We sample the top-k elements from S, ; as
positive keys with the regional feature 7, from both fore-
ground and background point features. The top-k operation
is easily made differentiable by reformulating it as an opti-
mal transport problem. Besides, we equally select other k
foreground-background pairs as negative.

1 exp(Fs - f /1)

—_ log - .
”Bp” (a.b)eB, Z(wC)EBp exp(.’Fﬁl -fjc’ /7))
(5)

Fea = —

Here, f I.b’+ denotes the positive keys of the identified k
most similar elements with F§, from F}, in another view.

f jb’_ denotes the sampled other k negative point features

in a batch, respectively. Therefore, the well-related cross-
view point features can be adaptively enhanced with the
learning of the point-level feature maps S, and S; of 3D
scenes. Our feature contrast enhances the correlations at the
feature level within and across views by explicitly finding
the region-to-point most correlated keys for the foreground
anchor as the query. With learned feature maps, the features
of well-correlated foreground/background points are adap-
tively emphasized while foreground-background distinctive
ones are suppressed. Our proposed framework is verified to
be very effective qualitatively in point activation maps and
quantitatively in downstream transfer learning and data effi-
ciency.

We have also illustrated our framework clearly as given
in Fig. 2. As demonstrated in Fig. 2, our proposed framework
has incorperated simple but effective designs for enhancing
the foreground-aware feature representations. Leveraging the
"foreground objects" as the linguistic prompts, our proposed
FAC++ becomes language-aware compared with the FAC.

The details of the proposal generation are illustrated appa-
rantly in Fig.2. We directly use the prompt of “foreground
objects” as the linguistic prompt to the 3D vision-language
model of OpenMask3D for semantic scene parsing. Utilizing
“foreground objects” as the linguistic prompt, the Open-
Mask3D can explicitly obtain the foreground regions with
the segmented foreground masks. Leveraging “foreground
objects” as the linguistic prompts, we can formulate the
“language-aware” contrast and provide seamless language
prior information for our generalized FAC++ framework.

In our subsequent experimental results, we have exam-
ined extensively regarding the performance of our proposed
framework for semantic segmentation, instance segmenta-
tion, as well as for the object detection tasks,both for the

@ Springer



International Journal of Computer Vision

open-world learning as well as the data-efficient learning cir-
cumstances. The visual-linguistic aligned foreground-aware
feature representations will have a boost on the final semantic
scene parsing performance for the fact more discrimi-
native feature representations are learnt through regional
foreground-aware contrastive feature learning.

3.4 Joint Optimization of Our Framework

Considering both local region-level foreground geometric
correspondence and global foreground-background distinc-
tion within and across views, the overall objective function
of FAC/FAC++ framework Lg,, is as follows:

Lsum = aLGeo + ,B»CFea- (6)

Here «, B are the weights balancing two loss terms. We
empirically set « = 8 = 1 without tuning.

4 Experiments

Data-efficient learning and knowledge transfer capacity have
been widely adopted for evaluating self-supervised pre-
training and the learned unsupervised representations (Hou
et al., 2021). In the following experiments, we first pre-train
models on large-scale unlabeled data and then fine-tune them
with small amounts of labeled data of downstream tasks to
test their data efficiency. We also transfer the pre-trained
models to other datasets to evaluate their knowledge transfer
capacity. The two aspects are evaluated over multiple down-
stream tasks including 3D semantic segmentation, instances
segmentation, and object detection. Details of the involved
datasets are provided in the Appendix.

4.1 Experimental Settings
4.1.1 3D Object Detection

The object detection experiments involve two backbones
including VoxelNet (Zhou & Tuzel, 2018) and PointPillars
(Lang et al., 2019). Following ProCo (Yin et al., 2022), we
pre-train the model on Waymo and fine-tune it on KITTI and
Waymo (Table 1).

Following ProCo (Yin et al., 2022) and CSC (Hou et al.,
2021), we augment data via random rotation, scaling and
flipping, and random point dropout for fair comparisons. We
set hyper-parameters 7 in Lr., and Lg,, at 0.1 following
ProCo (Yin et al., 2022), H= f.=m=20, and the total number
of positive/negative pairs as 4096 in all experiments includ-
ing detection and segmentation without tuning. In outdoor
object detection on Waymo and KITTI, we pre-train the net-
work with Adam (Kingma & Ba, 2014) optimizer and follow

@ Springer

ProCo (Yin et al., 2022) for epoch and batch size setting for
fair comparisons with existing works (Liang et al., 2021; Yin
etal.,2022). Inindoor object detection on ScanNet, we follow
CSC (Hou et al., 2021) to adopt SparseConv as the backbone
network and VoteNet as the 3D detector, and follow its train-
ing settings with the limited number of scene reconstructions
(Hou et al., 2021).

4.1.2 3D Semantic and Instance Segmentation

For 3D segmentation, we strictly follow CSC (Hou et al.,
2021) in the limited reconstruction setting. Specifically, we
pre-train on ScanNet and fine-tune pre-trained models on
indoor S3DIS, ScanNet and outdoor SemanticKITTI (SK)
(Behley et al., 2019). We use SGD in pre-training with a
learning rate of 0.1 and batch size of 32 for 60K steps to
ensure fair comparisons with other 3D pre-training meth-
ods including CSC (Hou et al., 2021) and PCon (Xie et al.,
2020a). In addition, we test the model pre-trained upon Scan-
Net for SK to evaluate its learning capacity for outdoor sparse
LiDAR point clouds. The only difference is that we fine-tune
the model for 320 epochs for SK but 180 epochs for indoor
datasets. The longer fine-tuning with SK is because trans-
ferring models trained on indoor data to outdoor data takes
more time to optimize and converge (Table 2).

4.2 Data-efficient Transfer Learning
4.2.1 3D Object Detection

One major target of self-supervised pre-training is more
data-efficient transfer learning with less labeled data for fine-
tuning. We evaluate data-efficient transfer from Waymo to
KITTI as shown in Table 3 and Fig. 6. We can see that
FAC outperforms the state-of-the-art consistently. With 20%
labeled data for fine-tuning, FAC achieves comparable per-
formance as training from scratch by using 100% training
data, demonstrating its potential in mitigating the depen-
dence on heavy labeling efforts in 3D object detection. Also,
as demonstrated in Table 3, our proposed FAC++ demon-
strates superior performance in the tasks of open-world 3D
scene understanding and outperforms previous state-of-the-
art by a larger margin. The results reveal that our proposed
foreground prompted regional sampling approach can have
a significant boost on the final semantic and instance seg-
mentation. These results also to some extent indicate more
accurate foreground extraction as well as foreground object
awareness can boost the final constrative representations in
an effective manner. As Fig. 3 shows, FAC has clearly larger
activation for inter- and intra-view objects such as vehicles
and pedestrians, indicating its learned informative and dis-
criminative representations.
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Fig. 3 Visualizations of projected point correlation maps over the
indoor ScanNet (1st-4th rows) and the outdoor KITTI (5th-8th rows)
with respect to the query points highlighted by yellow crosses. The View
1 and View 2 in each sample show the intra-view and cross-view correla-
tions, respectively. We compare FAC with the state-of-the-art CSC (Hou
etal.,2021) on segmentation (rows 1-4) and ProCo (Yin et al., 2022) on
detection (rows 5-8). FAC clearly captures better feature correlations
within and across views (columns 3—4) (Color figure online)

We also study data-efficient learning while perform-
ing intra-domain transfer to the Waymo validation set in
an extremely label-scarce circumstance with 1% labels.
As Table 1 shows, FAC outperforms ProCo (Yin et al.,
2022) clearly and consistently, demonstrating its poten-
tial in reducing data annotations. Moreover, it can also be
demonstrated that our proposed FAC++ provides more supe-
rior performance gain while trained with less labeled data,
demonstrating its label-efficient learning capacity. It can be
attributed to that superior foreground-background distinc-
tive representations are learned during the pre-training stage,
which boost the final 3D object detection performance. In
addition, we conducted experiments for indoor detection on
ScanNet. As Table 4 shows, FAC achieves excellent transfer
and improves AP significantly by 20.57% with 10% labels
compared with From Scratch. Also, the improvementis larger

@ Springer

Table 4 Data-efficient 3D object detection average precision (AP%)
with the limited number of scene reconstructions on ScanNet with
VoteNet as the backbone network

Label ratio 10% 20% 40% 80% 100%
From Scratch 0.39 4.67 22.09 3375 3548
CSC (Hou et al., 2021) 8.68 2096 29.27 36.75 3932
ProCo (Yinetal., 2022) 12.64  21.87 3195 37.83 40.56
FAC (Ours) 2096 2735 3593 3991 4283
FAC++ (Ours) 2289 2887 3712 4123 4418

when less annotated data is applied. The superior object
detection performance is largely attributed to our proposed
foreground-grouping aware contrast that leverages informa-
tive foreground regions to form the contrast pairs and the
adaptive feature contrast that enhances holistic object-level
representations.

4.2.2 3D Semantic and Instance Segmentation

We first conduct qualitative analysis with point activation
maps over the dataset ScanNet. As Fig. 3 shows, FAC can
find more semantic relationships within and across 3D scenes
as compared with the state-of-the-art CSC (Hou et al., 2021)
(Fig. 4). This shows that FAC can learn discriminative rep-
resentations that capture similar features while suppressing
distinct ones. As Fig. 5 shows, FAC also produces clearly
better instance segmentation as compared with CSC (Hou
et al., 2021). Specifically, CSC tends to fail to distinguish
adjacent instances such as chairs while FAC can handle such
challenging cases successfully.

We also conduct extensive quantitative experiments as
shown in the Table 5, where we adopt limited labels (e.g.,
{1%,5%,10%,20%}) in training. We can apparantly see that
FAC outperforms the baseline From Scratch by large mar-
gins consistently for both semantic segmentation tasks under
different labeling percentages. In addition, FAC outperforms
the state-of-the-art CSC (Hou et al., 2021) significantly when
only 1% labels are used, demonstrating its capacity in learn-
ing informative representations with limited labels. Note
FAC achieves more improvements while working with less
labeled data. It can also be demonstrated in Table 5, our
proposed foreground-prompted regional sampling can also
have very beneficial results in the task of semantic segmen-
tation. For example, it improves the performance from 35.25
to 37.71 for the task of semantic segmentation under the
1% labeled setting. It to some extent validates the better
foreground-aware representation can boost the performance
of the final data-efficient semantic segmentation. For seman-
tic segmentation over the dataset SK (Behley et al., 2019),
FAC achieves consistent improvement and similar trends
with decreasing labeled data (Tables 6, 7).
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Fig. 4 Visualizations of the outdoor panoptic segmentation in
SemanticKITTL. It is demonstrated that our proposed language queries
can provide explicit foreground regional information, and the final

Original Scene FAC ++ (Ours) Ground Truth

Fig. 5 Visualizations of indoor 3D segmentation over ScanNet com-
pared with CSC (Hou et al., 2021) as fine-tuned with 10% labeled
training data and outdoor object detection over KITTI with 20% labeled
training data compared with ProCo (Yin et al., 2022). Different seg-
mented instances and detected objects are highlighted in different
colors. Differences in prediction are highlighted with the yellow ellipses
as well as the red boxes

Foreground Seg.

Semantic Seg. FAC++ Pano. Seg. CSC Pano. Seg.

panoptic segmentation performance is qualitatively superior, which suc-
cessfully separates between diverse foreground objects very explicitly

We also study data-efficient learning while performing
intra-domain transfer to the Waymo validation set in an
extremely label-scarce circumstance with 1% labels. As
Table 1 shows, FAC outperforms ProCo (Yin et al., 2022)
clearly and consistently, demonstrating its potential in reduc-
ing data annotations. In addition, we conducted experiments
for indoor detection on ScanNet. As Table 4 shows, FAC
achieves excellent transfer and improves AP significantly
by 20.57% with 10% labels compared with From Scratch.
Also, the improvement is larger when less annotated data is
applied. The superior object detection performance is largely
attributed to our foreground-aware contrast that leverages
informative foreground regions to form the contrast, and the
adaptive feature contrast that enhances the holistic object-
level representations.

The data-efficient open-world recognition results are
shown in Figs.5 and 6. It can be demonstrated that better
foreground object awareness can be effectively capture by our
proposed FAC++ compared with the state-of-the-art (Ding
et al., 2023). In Figs.5 and 6, it can be also demonstrated
that the foreground-aware representations can be apparently
captured and well maintained (Table 8).

In the meanwhile, we have examined extensively about
the domain transfer learning performance as demonstrated

@ Springer
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Fig. 6 Visualizations of indoor 3D segmentation over ScanNet com-
pared with CSC (Hou et al., 2021) as fine-tuned with 10% labeled
training data and outdoor object detection over KITTI with 20% labeled
training data compared with ProCo (Yin et al., 2022). It can also be
demonstrated that our proposed language query provides explicit as

in Table 9. First, it can be shown that our proposed FAC
is less influenced by the domain gap compared with the
previous SOTAs ProCo. Second, it can be found that our
proposed FAC++ can generalize well between indoor and
outdoor benchmarks for KITTI and ScanNet as demonstrated
in Table 9. It can be inferred from Table 9 that the vision-
language aligned representations will improve the domain

FAC++ Instance
Seg. Results

CSC Instance
Seg. Results

Ground Truth

well as clearly separated foreground regional information. Different
segmented instances and detected objects are highlighted with different
colors. Differences in prediction are highlighted with yellow ellipses
and red boxes

generalization capacity, and make the model easy to gener-
alize well between indoor and outdoor circumstances.

4.3 Open-world 3D scene Understanding
We have also extensively evaluated the open-world 3D scene

understanding performance of our proposed approaches for
the final open-world 3D scene understanding tasks. Specif-

@ Springer
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Table 8 Comparisons of the open vocabulary learning performance

Datasets Models Few-shot settings
B15/N4 B12/N7 B10/N9
ScanNet (Dai et al., 2017) 3DGenZ (Cheraghian et al., 2020) 20.6/56.0/12.6 19.8/35.5/13.3 12.0/63.6/6.6
3DTZSL (Michele et al., 2021) 10.5/36.7/6.1 3.8/36.6/2.0 7.8/55.5/4.2
LSeg3D (Wang et al., 2021a) 0.0/64.4/0.0 0.9/55.7/0.1 1.8/68.4/0.9
PLA without caption (Ding et al., 2023) 39.7/68.3/28.0 24.5/70.0/14.8 25.7/75.6/15.5

PLA (Ding et al., 2023)

65.3/68.3/62.4

55.3/69.5/45.9

53.1/76.2/40.8

FAC & PLA (Ours) 68.9/70.6/66.8 60.3/71.7/58.8 58.7/77.5/51.6
FAC & PLA (Ours) 70.8/71.9/68.3 61.9/72.9/60.5 59.6/78.8/52.9
Fully-supervised 74.5/68.4/79.1 73.6/72.0/72.8 69.9/75.8/64.9

Datasets

Models

Few-shot settings

B12/N3

B10/N5

B6/N9

NuScenes (Caesar et al., 2020)

3DGenZ (Cheraghian et al., 2020)
3DTZSL (Michele et al., 2021)
LSeg-3D (Ding et al., 2023)

PLA without caption (Ding et al., 2023)
PLA (Ding et al., 2023)

FAC & PLA (Ours)

FAC++ & PLA (Ours)
Fully-supervised

01.6/53.3/00.8
01.2/21.0/0.6

01.9/44.6/01.0
06.4/17.1/03.9

0.6/74.4/0.3 0.0/72.5/0.0

25.5/75.8/15.4 10.7/76.0/05.7
47.7/73.4/35.4 24.3/73.1/14.5
52.8/77.3/46.9 51.6/79.5/26.8

67.7/79.6/51.8
73.7/76.6/71.1

65.9/85.8/47.3
74.8/76.8/72.8

01.1/52.6/00.5
2.61/18.52/03.15
2.66/69.72/0.21
8.95/65.83/6.32
15.63/60.32/12.38
42.5/53.6/58.3
59.6/77.5/68.9
74.6/75.9/72.3

It can be demonstrated that our proposed approach provides very superior open-world recognition performance compared with the diverse SOTAs

Table9 The FAC and FAC++
transfer learning performance
for the task of the semantic
segmentation (Metric: mIOU%)
as well as object detection
(Metric: Average Precision
(AP)), respectively

@ Springer

Case No. Case No. Diverse 3D scene understanding tasks
Sem Seg (mloU%) Obj Det (mAP%)
ProCo (Yin et al., 2022) KITTI — ScNet 59.8 ({ —17.9) 52.8 ({ —16.5)
Waymo — ScNet 61.0 (J —16.7) 53.5({ —15.8)
ScNet — KITTI 60.1 (} —11.5) 45.5 ( —15.3)
ScNet — Waymo 53.1() —17.6) 49.0 ( —14.1)
FAC KITTI — ScNet 71.8 ({ =5.9) 61.8 ( —=7.5)
Waymo — ScNet 72.1 (| =5.6) 59.5({ —9.8)
ScNet — KITTI 67.5 (] —4.1) 555 =5.3)
ScNet — Waymo 63.8 (L —6.9) 55.6 () =17.5)
FAC++ KITTI — ScNet 78.9 (1 +1.2) 72.1 (1 +2.8)
Waymo — ScNet 80.3 (1 +2.6) 70.6 (1 +1.3)
ScNet— KITTI 73.9 (1 +2.3) 62.3 (1 +1.5)
ScNet— Waymo 752 (1 +4.5) 65.4 (1 +2.3)

It can be demonstrated apparently that our proposed FAC++ has superior transfer learning capacity compared
with the previous state-of the art approach (Yin et al., 2022). The phonomenon can be attributed to our
regional contrastive designs, which largely benefit the ultimate domain tranfer learning capacity. It should
also be noted that our proposed vision-language aligned representation will also have a significant boost on
the final domain transfer learning performance. It can also be concluded that our proposed vision-language
aligned representations work well for both within and across the indoor and outdoor circumstances



International Journal of Computer Vision

ically, for the open-world 3D scene understanding, we train
the model with our proposed FAC for pre-training before we
apply the subsequent open-world instance-level 3D scene
understanding of PLA (Ding et al., 2023). It is demonstrated
that our proposed approach has superior performance in
terms of open-world 3D scene understanding. As demon-
strated in Table 8, our proposed approach achieves superior
open-world 3D scene understanding performance. It can
be demonstrated that our proposed FAC provides superior
performance while combined with the previous state-of-
the-art PLA (Ding et al., 2023), which demonstrates that
the foreground-background distinctive representation is also
very fundamental to the final open-world scene understand-
ing performance.

In this Subsection, we further evaluate the performance
of the open-world recognition capacity of our proposed
approach FAC. The results of open-world recognition are
demonstrated in Table 8. We have compared our combined
FAC & PLA pre-training with merely adopting the PLA
(Ding et al., 2023) pre-training for establishing the accurate
point-language associations. It can be demonstrated that our
proposed approach has shown superior performance in terms
of open-world recognition. For example, in the setting of
B15/N4 our proposed FAC++ has outperformed merely using
PLA, which is the previous state-of-the-art by 3.6/2.3/4.4
respectively. The superior performance can be ascribed to
that our proposed FAC has demonstrated remarkable perfor-
mance in establishing foreground-aware feature contrast. We
directly use the settings in the PLA (Ding et al., 2023) and
split the categories on ScanNet (Dai et al., 2017) and Nuscene
(Caesar et al., 2020) into base and novel categories. It can be
demonstrated that our proposed method has superior perfor-
mance in terms of the open-vocabulary few-shot learning for
diverse partitioning of original and novel classes. It can also
be demonstrated in Table 8 that under diverse spliting of base
and novel categories during the data-efficient learning, our
porposed FAC++ provides consistent superior performance
while conducting 3D scene understanding, demonstrating
both its superiority and robustness in terms of open-world 3D
recognition while encountered with diverse novel semantic
categories and classes.

5 Ablation Study and Analysis

We perform extensive ablation studies over several key
technical designs in FAC. Specifically, we examine the effec-
tiveness of the proposed regional sampling, feature matching
network, and the two proposed losses. At the same time, we
evaluate the performance of data-efficient learning of our pro-
posed FAC++ as compared with FAC for diverse tasks Lastly,
we provide t-SNE visualizations to compare the FAC-learnt
feature space with the state-of-the-art. In the ablation studies,

we adopt 5% labels in semantic segmentation experiments,
10% labels in indoor detection experiments on ScanNet, and
20% labels in outdoor object detection experiments on KITTI
with PointRCNN (Shi et al., 2019) as the 3D detector.

5.1 Regional Sampling and Feature Matching

Regional sampling samples points in the foreground regions
as anchors. The ablation experiment without sampling means
that we do not use the foreground sampling and use the ran-
dom sampled point features to acquire the contrast pairs.
Table 6 shows related ablation studies as denoted by Sam-
pling. We can see that both segmentation and detection
deteriorate without Sampling, indicating that the foreground
regions in over-segmentation may provide important object
information while forming contrast. It validates that the pro-
posed regional sampling not only suppresses noises but also
mitigates the learning bias towards the background, leading
to more informative representations in downstream tasks.
In addition, we replace the proposed Siamese correspon-
dence network with Hungarian bipartite matching (Kuhn,
2005) (i.e., H-FAC) as shown in Table 6. We can observe
consistent performance drops, indicating that our Siamese
correspondence framework can achieve better feature match-
ing and provides well-correlated feature contrast pairs for
downstream tasks. More comparisons of matching strategies
are reported in the Appendix.

5.2 FAC Losses

FAC employs a foreground grouping-aware geometric loss
LGeo and afeature loss L p,, that are critical to its learned rep-
resentations in various downstream tasks. The geometric loss
guides foreground-aware contrast to capture local consis-
tency while the feature loss guides foreground-background
distinction. They are complementary and collaborate to
learn discriminative representations for downstream tasks.
As shown in Table 6 cases 4 and 6, including either loss
clearly outperforms the Baseline as well as the state-of-the-
art CSC (Hou et al., 2021) in segmentation and ProCo (Yin
et al., 2022) in detection. For example, only including Lg.,
(Case 6) achieves 67.22% and 18.79% average precision
in object detection on KITTI and ScanNet, outperforming
ProCo (66.20% and 12.64%) by 1.02% and 6.15%, respec-
tively as shown in Table 3 and Table 4. At last, the full FAC
in Table 6 including both losses learn better representations
with the best performance in various downstream tasks.

5.3 FAC++ Ablations
The ablation study results of FAC++ are demonstrated in

Table 7. It is demonstrated that our proposed FAC++ has
generally slightly better performance as compared with FAC.

@ Springer
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The foreground grouping-aware geometric loss Lg,, and the
feature loss L., are both very significant for the final scene
understanding performance, and dropping either of them will
result in significant information loss. As shown in Table 7
cases 4 and 6, including either loss clearly outperforms the
Baseline as well as the state-of-the-art CSC (Hou et al., 2021)
in segmentation and ProCo (Yin et al., 2022) in detection. At
the same time, the foreground prompted regional sampling
in FAC++ is also very significant for the final scene under-
standing performance. As validated in Table 7 case 2, 3, 5,
the foreground prompted sampling is of significance to the
final downstream performance and removing the foreground
sampling results in the performance drop. For example, the
performance drops 3.13% while comparing case 5 with the
full FAC. It validates the effectiveness of our proposed fore-
ground prompted sampling in sampling very meaningful and
effective foreground-aware feature representations.

5.4 Feature Visualization with t-SNE (Van der
Maaten & Hinton, 2008)

We employ t-SNE to visualize the feature representations that
are learnt for SemanticKITTI (Behley et al., 2019) seman-
tic segmentation task as illustrated in Fig. 7. Compared with
other contrastive learning approaches such as PCon (Xie et
al., 2020a) and CSC (Hou et al., 2021), FAC learns a more
compact and discriminative feature space that can clearly
separate features of different semantic classes. As Fig. 7
shows, the FAC-learnt features have the smallest intra-class
variance and largest inter-class variance, demonstrating that
the FAC-learnt representations help learn more discrimina-
tive features in the downstream task.

5.5 Detailed Supplementary Experimental Results
about our proposed 3D Vision-language Model

In this supplementary material for experimental details, addi-
tional experimental results and details that are not included in
the main paper due to space limits are provided. We include
further parameter analyses and ablation studies testing the
robustness of our proposed FAC that are not included due to
the space limits. More qualitative and quantitative illustra-
tions are also provided:

— The details of our further experimental settings in pre-
training including data augmentation and hardware set-
tings (see Sect. 6).

— Details of the experimental datasets involved during
the pre-training and testing of our proposed FAC (see
Sect. 7).

— Additional quantitative experimental results and analyses
are provided (see Sect. 8).

@ Springer

— Additional qualitative experimental results and analyses
are provided (see Sect.9.1).

— Details of the further parameter analysis testing the
robustness of the proposed FAC are provided. (see
Sect. 11).

— Future directions of this work (see Sect. 11.1).

6 Further Pre-training Experimental Settings
6.1 Data Augmentation Details

We utilize four common types of data augmentation to gener-
ate augmented two different views in pre-training, including
random rotation ([—180°, 180°]) along an arbitrary axis
(applied independently for both two views), random scal-
ing ([0.8, 1.2]), random flipping along X-axis or Y-axis, and
random point dropout. We follow ProCo (Yin et al., 2022)
in random point dropout and sample 100k points from the
original point cloud for each of the two augmented views.
20k points are chosen from the same indexes to ensure a
20% overlap for the two augmented views, while the other
80k points are randomly sampled from the remaining point
clouds. Our data augmentation strictly follows previous work
ProCo (Yin et al., 2022) and CSC (Hou et al., 2021) for fair
comparisons with them. Concretely, we follow ProCo (Yin
et al., 2022) for outdoor 3D object detection on KITTI and
Waymo (Sun et al., 2020) and follow CSC (Hou et al., 2021)
for other experimental cases for data augmentation.

6.2 Hardware Settings

We next report the hardware used in our experiments. The
PCon (Xie et al., 2020a), ProCo (Yin et al., 2022) and CSC
(Hou et al., 2021) use data parallel on eight NVIDIA Tesla
V100 GPUs with at least 16 GB GPU memory per card as
reported in their papers. Limited by computational resources,
we use data parallel on four NVIDIA 2080 Ti GPUs with 11
GB GPU memory per card in all experiments. For experi-
ments in outdoor 3D object detection, we directly report the
results of ProCo (Yin et al., 2022) in Tables 1 and 2 of our
main paper according to its original paper. It can be seen that
FAC still outperforms the state-of-the-art approach ProCo
(Yin et al., 2022) consistently even if much fewer compu-
tational resources are used. For all other experiments, we
reimplement the CSC (Hou et al., 2021), ProCo (Yin et al.,
2022), PCon (Xie et al., 2020a) and use the same hardware
and experimental settings as our proposed FAC in experi-
ments for a fair comparison in Tables 3, 4, and 5 of our main
paper. Specifically, we use data parallel on four NVIDIA
2080 Ti GPUs with 11 GB GPU memory per card.
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Fig.7 t-SNE (Van der Maaten & Hinton, 2008) visualization of feature
embeddings for SemanticKITTI semantic segmentation fine-tuned with
5% percent label (ScanNet Pre-trained). Ten classes with the least num-
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ber of points are shown, where o, .., 0;;,,,, denote intra- and inter-class

7 Dataset Details
7.1 S3DIS

S3DIS is a large indoor point cloud scene understanding
dataset across six large-scale indoor areas. The total number
of scenes is 271. Area 5 is utilized for testing and other areas
are used as the training set. Benefiting from Sparse convolu-
tion of Minkowski engine, we do not partition the 3D scene
into small rooms. The S3DIS dataset has more than 215 mil-
lion points with thirteen semantic classes. It is used to test the
effectiveness of the proposed FAC for both indoor semantic
segmentation and instance segmentation.

7.2 ScanNet-v2 (Sc) (Dai et al., 2017)

ScanNet-v2 is a large-scale and comprehensive 3D indoor
scene understanding dataset consisting of 1,513 3D scans.
The dataset has been adopted for tasks of semantic segmenta-
tion, instance segmentation, and object detection. The dataset
isdivided into 1,201 scans as the training set and 312 scans as
the validation set. The number of the semantic category is 21
for semantic segmentation. The ScanNet-v2 (Daietal.,2017)
benchmark is used to test the effectiveness of the proposed
FAC for indoor semantic segmentation, instance segmenta-
tion as well as indoor object detection. Also, it is used as the
pre-training dataset for indoor scene understanding tasks and
the outdoor semantic segmentation task on SemanticKITTI
(Behley et al., 2019).

7.3 KITTI (K)

KITTI is a large-scale driving-scene dataset that covers
sequential outdoor LiDAR point clouds. The KITTI 3D point
cloud object detection dataset consists of 7481 labeled sam-
ples. The labeled 3D LiDAR scans are split into the training
set with 3,712 scans and the validation set with 3,769 scans.
The mean average precision (mAP) with 40 recall positions

variance. FAC learns a more compact feature space with the smallest
intra-class variance and largest inter-class variance as compared with
state-of-the-art methods PCon (Xie et al., 2020a), CSC (Hou et al.,
2021)

is typically utilized to evaluate the 3D object detection per-
formance. The 3D IoU (Intersection over Union) thresholds
are set as 0.7 for cars and 0.5 for cyclists and pedestrians.
The KITTI is used to test the effectiveness of the proposed
FAC for outdoor 3D object detection.

7.4 SemanticKITTI (SK) (Behley et al., 2019)

SemanticKITTI is derived from the above-mentioned KITTI
dataset and annotated with point-level semantics. It is made
up of more than 43 thousand (43,552) LiDAR scans. It is
annotated with nineteen semantic classes. We follow the
official split and use sequences 00-10 for training except
sequence 08 for validation. The SemanticKITTI (Behley et
al., 2019) is used to test the effectiveness of the proposed
FAC for outdoor semantic segmentation.

7.5 Waymo (Sun et al., 2020)

Waymo (Sun et al.,, 2020) is a large-scale driving-scene
dataset that encompasses 158,361 LiDAR scans from 798
scenes for training and 40,077 LiDAR scans for validation. It
is approximately twenty times larger than KITTI. The whole
training set (without label) is utilized for pre-training dif-
ferent 3D detection backbone networks. The training set of
the Waymo (Sun et al., 2020) benchmark is used as the pre-
training dataset for outdoor 3D object detection. Its validation
set is also utilized to test the effectiveness of the proposed
FAC for downstream fine-tuning in outdoor 3D object detec-
tion.

8 More Quantitative Experiment Results
In this Section, we include further quantitative experiments

that are not included in the main paper due to space limits
for the following three experimental cases:

@ Springer
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Table 12 Comparison of the FAC and FAC++ training time compared with the other state-of-the-art 3D pre-training approaches PCon (Xie et al.,
2020a) and CSC (Hou et al., 2021) on different pre-training datasets including ScanNet (Dai et al., 2017) and Waymo (Sun et al., 2020)

Pre-training dataset Method

Epoch training time Total training time

ScanNet (Dai et al., 2017) PCon (Xie et al., 2020a)
CSC (Hou et al., 2021)
ProCo (Yin et al., 2022)
FAC (Ours)

FAC++ (Ours)

PCon (Xie et al., 2020a)
CSC (Hou et al., 2021)
ProCo (Yin et al., 2022)
FAC (Ours)

FAC++ (Ours)

Waymo (Sun et al., 2020)

15.25 3965.3
16.13 4193.8
21.65 5629.6
14.59 1750.8 (| 126.49%)
14.78 1773.6 (| 123.57%)
20.63 5363.8
21.22 5517.2
25.39 6601.5
17.69 2299.7 (| 133.24%)
18.21 2367.3 (| 126.58%)

The unit of the training time is (Miniutes per Epoch). Our proposed framework converges at 130 epoch, while the previous approaches converge at 260
epoch approximately. It can be demonstrated that our proposed approach has comparatively less training time, which reveals the training efficiency
of our proposed approaches. Compared with the previous most efficient approaches in 3D pre-training, our proposed approach has relatively much
less training time. The training time reduces by 123.57% and 126.58% for ScanNet and Waymo, respectively. It further demonstrates the efficiency
of our proposed regional contrastive design compared with the point-level contrastive approaches

8.1 KITTI 3D Object Detection

We enrich the experiments of Table 1 in the main paper as
shown in Table 10 in this supplementary material. We add
the fine-tuning results of data-efficient 3D object detection
on KITTT with 50% labeled training data. From Table 10, we
can see that although the increments are not as significant
as the case when fine-tuned with 20% labeled training data,
FAC can still have a notable boost on data-efficient learning
performance when fine-tuned with 50% labeled training data.
It can also be observed that the improvement is generally
more significant as compared with the fine-tuned results with
full supervision (100% labeled training data).

8.2 Waymo 3D Object Detection

We enrich the experimental results of Table 2 of the main
paper as shown in Table 1 in this supplementary material.
We have added the fine-tuning results of data-efficient 3D
object detection on Waymo (Sun et al., 2020) with more
labeled training data including cases with 50% and 100%
labeled training data (compared with 1% and 10% cases). It
can be seen that FAC consistently improves the performance
with more labeled training data, which further demonstrates
the effectiveness of FAC when fine-tuned with the abundant
labeled training data.

8.3 Performance of FAC with Other State-of-the-art
3D Object Detection Backbone Networks

We also test the performance of FAC with two state-of-the-art
3D object detection backbone networks including PV-RCNN

@ Springer

and Centerpoint as shown in Table 11. We add fine-tuning
results of data-efficient 3D object detection on Waymo (Sun
et al., 2020) with 20% labeled training data. We implement
and configure diverse backbone networks with the codebase
OpenPCDet. It can be seen that apart from the 3D back-
bone network that has been tested in Table 1, our proposed
FAC also has consistent improvement when pre-trained and
fine-tuned with different backbone networks including the
state-of-the-art PV-RCNN and CenterPoint, demonstrating
the compatibility of FAC while integrated with different 3D
object detection backbone networks (Table 12).

9 More Qualitative Experiment Results

In this Section, we provide more qualitative experiment
results. First, we provide more visualizations of the point
activation maps to test the learnt representation of our pro-
posed FAC. Concretely, like Fig. 3 in the main paper,
visualizations of projected point correlation maps over the
indoor ScanNet (Dai et al., 2017) and the outdoor KITTI
with respect to the query points are provided in Fig. 8.

Second, we visualize qualitative data-efficient experimen-
tal results on various 3D scene understanding tasks with
diverse labeling percentages when fine-tuned on downstream
tasks including 3D instance segmentation on ScanNet-v2
(Dai et al., 2017) as illustrated in Figs.9 and 10, 3D seman-
tic segmentation on SemanticKITTI (Behley et al., 2019) as
illustrated in Figs. 11 and 12, and 3D object detection on
KITTT as illustrated in Figs. 13 and 14, respectively.
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Fig.8 Visualizations of projected point activation maps over the indoor
ScanNet (Dai et al., 2017) (Above the purple dash line) and the outdoor
KITTI (Below the purple dash line) with respect to the query points
highlighted by yellow crosses. The View I and View 2 in each sam-
ple show the intra-view and cross-view correlations, respectively. We
compare our proposed FAC++ with the state-of-the-art CSC (Hou et

al., 2021) on instance segmentation (Above the purple dash line) and
ProCo (Yin et al., 2022) on detection (Below the purple dash line).
FAC++ clearly captures better feature correlations within and across
views as shown in columns 3—4 and columns 7-8 compared with the
state-of-the-art approaches CSC (Hou et al., 2021) and ProCo (Yin et

al., 2022), respectively
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Original Scene FAC++ (Ours) Ground Truth

Fig.9 Visualizations of indoor 3D instance segmentation over ScanNet (Dai et al., 2017) as fine-tuned with /0% labeled training data. Different
segmented instances are indicated by different colours. Differences in prediction are highlighted by yellow ellipses
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Original Scene FAC++ (Ours) CSC Ground Truth

G

Fig. 10 Visualizations of indoor 3D instance segmentation over Scan- ferences in prediction are highlighted by yellow ellipses. It can be
Net (Dai et al., 2017) as fine-tuned with 20% labeled training data. demonstrated that our proposed FAC++ has gained superior perfor-
Different segmented instances are indicated by different colours. Dif- mance increment compared with the previous SOTA approaches
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Fig. 11 Comparisons of outdoor Ground Truth
3D Semantic Segmentation
Results on SemanticKITTI
(Behley et al., 2019) benchmark
fine-tuned with 10% labeled
training data (ScanNet Dai et al.
2017 pre-trained). Note that the
SemanticKITTI (Behley et al.,
2019) has no color channel as
input for the task of semantic
segmentation. Therefore, we
visualize the ground truth
without visualizing the original
scene (no color channel).
Differences in prediction are
highlighted by the red ellipses

B car
parking

motorcyclist [l road

person

9.1 Point Correlation Maps Visualization

As illustrated in Fig. 3, it is clear that our proposed FAC can
effectively find both intra- and inter-view feature correlations
of the same semantics compared with the state-of-the-art
CSC (Hou et al., 2021) and ProCo (Yin et al., 2022). For
example, as illustrated in Fig. 3, FAC has clearly larger
activation for the inter- and intra-view objects of the same
semantics as the query point, such as the vehicle, pedestrian,
and road. It further demonstrates that FAC learns informa-
tive and discriminative representations which capture similar
features while suppressing distinct ones (Table 13).
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9.2 Data-Efficient Instance Segmentation

The qualitative experimental results of instance segmentation
when fine-tuned with 10% and 20% labeled training data are
shown in Figs.9 and 10. It can be seen that in both the above
two cases, the state-of-the-art CSC tends to fail to distinguish
adjacentinstances such as chairs, desks, and sofas, while FAC
can handle these challenging cases successfully.
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Fig. 12 Comparisons of outdoor
3D Semantic Segmentation
Results on SemanticKITTI
(Behley et al., 2019) benchmark
fine-tuned with 20% labeled
training data (ScanNet Dai et al.
2017 pre-trained). Note that the
SemanticKITTI (Behley et al.,
2019) has no color channel as
input for the task of semantic
segmentation. Therefore, we
visualize the ground truth
without visualizing the original
scene (no color channel).
Differences in prediction are
highlighted by red ellipses

Ground Truth

B car
parking

motorcyclist [l road
I bicyclist

person

9.3 Data-Efficient Semantic Segmentation

The qualitative experimental results of semantic segmenta-
tion when fine-tuned with 10% and 20% labeled training data
are shown in Figs. 11 and 12, respectively. It can be seen that
CSC produces many false predictions, while FAC can pro-
vide more accurate semantic predictions as compared with
the ground truth. It indicates more informative representation
is learnt with FAC, which ultimately benefits the downstream
semantic segmentation tasks. Also, it demonstrates that the
model obtained from indoor pre-training on indoor Scan-
Net (Dai et al., 2017) can successfully generalize to outdoor
SemanticKITTI (Behley et al., 2019) with data-efficient fine-

[l bicycle [ motorcycle

FAC++ (Ours)

{

I truck

I other vehicles
I sidewalk [ other ground M buildings [ fence

I traffic sign

[ terrain pole
[ vegetation [ trunk

tuning, which also manifests the generalization capacity of
the learnt representation by FAC.

9.4 Data-Efficient Object Detection

The qualitative experimental results of object detection when
fine-tuned with 20% and 50% labeled training data are shown
in Figs. 13 and 14, respectively. It can be observed that com-
pared with ProCo (Yin et al., 2022), our proposed FAC has
clear more accurate predictions in detecting vehicles for
outdoor sparse LiDAR point clouds in both 20% and 50%
labeled training data cases. It further verifies that FAC learns
generalized representations that can be applied for both seg-
mentation and detection.

@ Springer
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(a) Proposal Contrast (b) FAC++ (Ours) (c) Ground Truth

(d] The lmage View

J

Fig. 13 Comparison of 3D Object detection fine-tuned with 20%
labeled training data on KITTI benchmark (pre-trained on Waymo Sun
et al. 2020) compared with the state-of-the-art approach ProCo (Yin et
al., 2022). It can be seen that we can provide more accurate detection

10 Parameter Analysis of the Proposed GFC

First, as shown in Table 14, we examine the influence about
the percentage of the foreground ratio on the downstream
3D scene understanding fine-tuning performance. It can be
seen that too few and too large number of selected fore-
ground region will both results in a performance drop for
downstream tasks. It can be explained that selecting too few

@ Springer

results as compared with the state-of-the-art approach ProCo (Yin et
al., 2022). Different detected objects are indicated by different colors.
Differences in prediction are also highlighted by red rectangles

regions will overlook some smaller objects within the scene,
and selecting a large number of selected regions will result
in less foreground and more background regions being sam-
pled, both impairing learning informative and meaningful
representations. According to our parameter analysis, select-
ing within an appropriate range for the number of regions
in each scene can all achieve satisfactory overall results for
different downstream tasks. We obtain the range by the rig-
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Fig. 14 Comparison of 3D Object detection fine-tuned with 50%
labeled training data on KITTI benchmark (pre-trained on Waymo Sun
et al. 2020) compared with the state-of-the-art approach ProCo (Yin et
al., 2022). It can be seen that we can provide more accurate detection

results as compared with the state-of-the-art approach ProCo (Yin et
al., 2022). Different detected objects are indicated by different colors.
Differences in prediction are also highlighted by red rectangles

@ Springer



International Journal of Computer Vision

Table 13 Comparison of the
FAC and FAC++ training time
with the other state-of-the-art

3D pre-training approaches
PCon (Xie et al., 2020a) and
CSC (Hou et al., 2021) on
different pre-training datasets
including ScanNet (Dai et al.,
2017) and Waymo (Sun et al.,
2020)

Pre-training dataset Method Inference time per 10 Million cloud
Sem Ins Obj
ScanNet (Dai et al., 2017) PCon (Xie et al., 2020a) 1.987s 2.126s 1.238s
CSC (Hou et al., 2021) 2.178s 2.356s 1.387s
ProCo (Yin et al., 2022) 2.328s 2.521s 1.418s
FAC (Ours) 0.312s 0.386s 0.298s (| 315.44%)
FAC++ (Ours) 0.365s 0.416s 0.322s (| 294.89%)
Waymo (Sun et al., 2020) PCon (Xie et al., 2020a) 2.897s 3.126 s 2.626s
CSC (Hou et al., 2021) 3.218s 3.529s 2.729s
ProCo (Yin et al., 2022) 3.238s 3.529s 2.839s
FAC (Ours) 0.729s 0.989s 0.665s (| 294.89%)
FAC++ (Ours) 0.767 s 0.728's 0.605s (| 334.05%)

We have examined the tasks extensively for semantic segmentation, instance segmentation, as well as object
detection, respectively. The efficiency boost mainly comes from the It can be demonstrated that our pro-
posed approach has comparatively superior efficiency as well as effectiveness compared with the previous
approaches. It can be proved clearly that due to our proposed regional contrastive designs which substitute
the point-level contrast, our proposed approach has superior increment in its efficiency

orous parameter analysis as demonstrated in Table 14. It can
be seen clearly that the performance can be well guaranteed
if the foreground ratio is kept within the range of 20-80%.

11 Efficiency Analysis of the Proposed FAC

To test the efficiency of FAC, we reported the training time
of diverse 3D pre-training approaches in Table 12. Specif-
ically, we compare with state-of-the-art 3D pre-training
approach PCon (Xie et al., 2020a) and CSC (Hou et al.,
2021). It can be seen that compared with CSC (Hou et al.,
2021), FAC introduces less than 1% training overhead on
SemanticKITTI (Behley et al., 2019), and the fine-tuning
time merely increases by approximately 9s every epoch.
The computational overhead mainly comes from the Siamese
Correspondence network and the top-k operation. The SCN
is light-weighted while the top-k operation has also been
implemented with optimal transport in an efficient manner
(Xie et al., 2020b) as illustrated in the main paper. In sum-
mary, the efficiency analysis with training time validates that
our proposed FAC merely adds subtle extra computational
overhead in pre-training.

11.1 Future Direction

In the future, we believe two directions deserve to be further
explored to better unleash the potential of 3D unsupervised
representation learning. The first is constructing large-scale
3D datasets with motion and spatio-temporal statistics for
pre-training. The second is designing more advanced self-
supervised learning techniques leveraging both geometry-

@ Springer

aware and semantics-correlated features considering motion
and spatio-temporal statistical cues (Tables 15, 16).

12 Conclusion

We propose a foreground-aware feature contrast framework
(FAC) for unsupervised 3D pre-training in robot 3D vision-
based scene parsing. The proposed framework has been
proven very effective in constructing a generalized robotic
vision-language learning model leveraging linguistic fore-
ground aware contrast. FAC builds better contrastive pairs
to produce more geometrically informative and semanti-
cally meaningful 3D representations. Specifically, we design
a regional sampling technique to promote balanced learn-
ing of over-segmented foreground regions and eliminate
noisy ones, which facilitates building foreground-aware con-
trast pairs based on regional correspondence. Moreover, we
enhance foreground-background distinction and propose a
plug-in-play Siamese correspondence network to find the
well-correlated feature contrast pairs within and across views
for both the foreground and background segments. Exten-
sive experiments demonstrate the effectiveness as well as the
superiority of FAC in terms of both the knowledge transfer
and the data efficiency.
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