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 A B S T R A C T

Current unsupervised reinforcement learning methods often overlook reward nonstationarity during pre-
training and the forgetting of exploratory behavior during fine-tuning. Our study introduces Self-Reference 
(SR), a novel add-on module designed to address both issues. SR stabilizes intrinsic rewards through historical 
referencing in pre-training, mitigating nonstationarity. During fine-tuning, it preserves exploratory behaviors, 
retaining valuable skills. Our approach significantly boosts the performance and sample efficiency of existing 
URL model-free methods on the Unsupervised Reinforcement Learning Benchmark, improving IQM by up to 
17% and reducing the Optimality Gap by 31%. This highlights the general applicability and compatibility of 
our add-on module with existing methods.
1. Introduction

Unsupervised Reinforcement Learning (URL) is an attempt at repli-
cating the success of the pre-train-fine-tune framework used in com-
puter vision (CV) and natural language processing (NLP) (Laskin et al., 
2021). It involves two stages: pre-training (PT) and fine-tuning (FT). 
During PT, the agent explores and understands the environment through 
designed intrinsic rewards. In FT, the agent utilizes extrinsic rewards to 
tackle specific tasks, leveraging the pre-trained policy for efficient adap-
tation to the downstream task. The goal of URL is to gather extensive 
environment transition dynamics knowledge during PT, independent 
of task-specific rewards, and efficiently apply this knowledge during 
FT to tackle downstream tasks. This framework has been studied in 
various existing works (Burda, Edwards, Storkey, & Klimov, 2018; 
Eysenbach, Gupta, Ibarz, & Levine, 2018; Laskin et al., 2022; Liu & 
Abbeel, 2021a, 2021b; Liu, Chen, & Zhao, 2023; Pathak, Agrawal, 
Efros, & Darrell, 2017; Pathak, Gandhi, & Gupta, 2019; Yarats, Fergus, 
Lazaric, & Pinto, 2021; Zhao, Lin, Li, Liu, & Huang, 2022). Existing 
unsupervised reinforcement learning algorithms typically use a mea-
sure of surprise as a reward function to explore the environment during 
pre-training (Zhao et al., 2022). This reward function should decrease 
rewards for frequently visited states and increase rewards for less 
visited states, making it implicitly dependent on the agent’s history. 
However, most popular URL algorithms do not model this dynamic 
change during PT, leading to a nonstationary Markov Decision Process 
(MDP) and potential instability or sub-optimality in learning (Choi, 
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Yeung, & Zhang, 1999; Laskin et al., 2021). Furthermore, the naive 
pre-train-then-fine-tune paradigm can result in unlearning exploratory 
behaviors during fine-tuning, as the gradients from the fine-tuned 
task quickly overwrite the parameters of the pre-trained policy, with 
no incentives to retain the pre-trained behaviors during the naive 
finetuning process (Campos et al., 2021; Wolczyk et al., 2023).

Inspired by the success of retrieval-augmented reinforcement learn-
ing and building on the above observations, we introduce a novel add-
on module called Self-Reference (SR) for unsupervised reinforcement 
learning, specifically designed to harness historical information more 
effectively during training. Our approach enhances both performance 
and efficiency through the pre-training and fine-tuning phases by con-
tinually presenting the agent with historical visited states at every 
decision-making epoch. SR augments the agent’s state with information 
to generate summary statistics of the states visited during pre-training, 
allowing it to explicitly model the dynamic changes in the reward 
function. Additionally, SR also helps preserve the exploratory behav-
iors learned during pre-training by explicitly showing the agent past 
behaviors. Fig.  1 provides a schematic depiction of the Self-Reference 
method.

We evaluate SR on the standard Unsupervised Reinforcement Learn-
ing Benchmark (Laskin et al., 2021) and achieve state-of-the-art results 
for model-free methods by applying Self-Reference to RND (Burda 
et al., 2018). Our module increases the IQM of APS (Liu & Abbeel, 
2021a) and ProtoRL (Yarats et al., 2021) by up to 17% while decreasing 
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Fig. 1. Unsupervised reinforcement learning with self-reference (SR). The schematic illustration of our method. Given a state, Self-Reference forms a query to the buffer and 
receives top 𝑘 neighbors and their subsequent 𝐷 states. Then, SR aggregates the transitions into a reference vector that aids the agent in learning under the URL setting.
the Optimality Gap (OG) by an average of 11% and up to 31% for Pro-
toRL. Additionally, Self-Reference improves sample efficiency, allowing 
the agent to reach asymptotic performance with fewer pre-training 
steps. By addressing key challenges in URL, our method complements 
existing methods and has practical implications for deploying efficient, 
robust robotic systems in real-world scenarios.

2. Related works

2.1. Unsupervised reinforcement learning

Unsupervised reinforcement learning methods consist of pre-
training and fine-tuning phases. During pre-training, the policy lever-
ages intrinsic rewards (Bellemare et al., 2016; Zhao et al., 2025), such 
as maximum state entropy methods (Guo et al., 2021; Hazan, Kakade, 
Singh, & Soest, 2019; Jain, Lehnert, Rish, & Berseth, 2023; Kim, Shin, 
Abbeel, & Seo, 2023; Lee et al., 2019; Mutti, 2023; Mutti, Mancassola 
and Restelli, 2022; Mutti, Pratissoli, & Restelli, 2021; Mutti & Restelli, 
2020; Mutti, Santi and Restelli, 2022; Nedergaard & Cook, 2022; Seo 
et al., 2021; Tiapkin et al., 2023; Yang & Spaan, 2023; Zamboni, 
Cirino, Restelli, & Mutti, 2024a, 2024b; Zhang, Cai, Huang, & Li, 
2021; Zisselman, Lavie, Soudry, & Tamar, 2023), to learn exploratory 
policies and develop generally useful behaviors in the environment. 
During fine-tuning, the policy is optimized using extrinsic rewards, 
with the pre-trained policy serving as an initialization. This paradigm 
accelerates adaptation to new tasks with improved sample efficiency. 
Laskin et al. (2021) provide a comprehensive summary and detailed 
implementation of mainstream unsupervised reinforcement learning 
(URL) algorithms. For a thorough explanation of the baselines used in 
this paper, we refer readers to their work.

2.2. Retrieval-augmented techniques in machine learning

Information retrieval is common in machine learning, helping to 
reduce memorization in parametric weights, as seen in Large Lan-
guage Models (Guu, Lee, Tung, Pasupat, & Chang, 2020), Multi-Modal 
Modeling (Chen, Hu, Saharia, & Cohen, 2022), Decision-making (Zhao 
et al., 2024), and Time Series Forecasting (Jing et al., 2022). Retrieval-
augmented systems improve neural network performance and gener-
alization while enhancing training efficiency. Beyond reducing memo-
rization, we apply retrieval to address nonstationarity and prevent the 
forgetting of exploratory behaviors during pre-training and fine-tuning.

Traditional imitation learning struggles with scalability due to high 
data supervision and weak generalization. Leveraging prior task data 
enhances robustness and efficiency (Nasiriany, Gao, Mandlekar, & Zhu, 
2022). In reinforcement learning, retrieval techniques use a data buffer 
(e.g., replay buffer (Goyal et al., 2022), external datasets (Humphreys 
2 
et al., 2022), or data from other agents (Nasiriany et al., 2022)). These 
systems select top-k nearest neighbors using multi-head attention or 
specific fusion networks (Humphreys et al., 2022). We introduce a 
query module that improves adaptability by using learned queries and 
leveraging the agent’s own historical trajectories as queryable data.

2.3. Catastrophic forgetting in transferring policy

Fine-tuning a pre-trained policy can lead to catastrophic forgetting, 
where the agent forgets exploratory skills due to new learning sig-
nals (Campos et al., 2021; Wolczyk et al., 2023). Behavior Transfer (BT) 
addresses this by using a pre-trained policy for exploration, enhancing 
downstream policy performance (Campos et al., 2021). Our approach 
mitigates this issue by replaying snapshots of old behaviors at each 
decision epoch.

3. Preliminaries and notations

We follow the standard reinforcement learning assumption that the 
system can be described by a Markov Decision Process (MDP) (Sutton & 
Barto, 2018). An MDP is represented by a tuple ( ,, 𝑝, 𝑟,0, 𝛾), which 
has states space , action space , transition dynamics 𝑝(𝐬′|𝐬, 𝐚), reward 
function 𝑟(𝐬, 𝐚, 𝐬′), 0 initial state distribution and discount factor 𝛾. At 
each time step, an agent observes the current state 𝐒 ∈ , performs an 
action 𝐀 ∈ , and then observes a reward and next state 𝐑 = 𝑟(𝐬, 𝐚),𝐒′ ∼
𝑝(𝐬′|𝐬, 𝐚) from the environment. Generally, the reward 𝑟 consists of an 
extrinsic component 𝑟ext, provided by the environment, and an intrinsic 
component 𝑟int, generated by the agent using URL algorithms. Thus, the 
final additive reward can be expressed as 𝑟 = 𝑟ext + 𝑟int, where 𝑟int can 
be zero if no intrinsic reward is present.

An RL algorithm aims to train an agent to interact with the environ-
ment and maximize the expected discounted return. Most popular RL 
algorithms use the value function 𝑉𝜋 as the optimization objective. It 
represents the expected return when following the parameterized policy 
𝜋𝜃 starting from a sampled initial state: 𝑉𝜋𝜃 = E𝜋𝜃 ,𝑠∼0 [𝐺|𝐒 = 𝐬], where 
𝐺 is the discounted sum of rewards.

Popular deep RL algorithms excel in many decision-making tasks 
but struggle with generalization to other tasks. URL approaches train 
agents with self-supervised rewards to develop more generalizable 
policies for efficient adaptation to downstream tasks (Laskin et al., 
2021). The Unsupervised Reinforcement Learning Benchmark (URLB) 
evaluates URL algorithms by splitting training into two phases: pre-
training and fine-tuning. Agents are trained with intrinsic rewards for 
𝑁𝑃𝑇  steps during pre-training and evaluated based on performance 
after fine-tuning with extrinsic rewards for 𝑁𝐹𝑇  steps.

Suppose we express the history of transitions obtained during train-
ing as 𝛬𝑔 = {𝐬𝜋00 , 𝐚

𝜋0
0 ,… , 𝐬𝜋0𝐻 , 𝐚

𝜋0
𝐻 ,… , 𝐬𝜋𝑔0 , 𝐚

𝜋𝑔
0 ,… 𝐬𝜋𝑔𝐻 , 𝐚

𝜋𝑔
𝐻 }, where 𝜋𝑔 indi-

cates the changing training policy indexed by episode 𝑔 and 𝐻 is the 
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finite number of decision epochs in an episode. We can express the 
PT reward as 𝑟(𝐬, 𝐚;𝛬𝑔), which implicitly depends on this history of 
transitions produced during pre-training. Current methods largely ig-
nore the dependence on the history 𝛬 and train agents with only states 
and actions. Even though these methods obtain satisfactory empirical 
results, we posit that URL methods could be further improved if we 
address this issue.

4. Self-reference

The unsupervised reinforcement learning (URL) paradigm encom-
passes two distinct phases: pre-training and fine-tuning. During the 
pre-training phase, the reward function’s implicit dependence on a his-
tory of transitions results in a non-stationary Markov decision process, 
provided the agent does not explicitly account for the evolving reward 
structure. Based on this observation, we strategically retrieve relevant 
historical data to address the challenges posed by nonstationarity.

Furthermore, works like (Humphreys et al., 2022) have shown that 
referencing expert demonstrations benefits learning their behavior. In 
the URL setting, we observe that pre-trained agents with exploratory 
behaviors can better transfer to downstream tasks during the fine-
tuning phase (Laskin et al., 2021). We posit that retrieving the ex-
ploratory trajectories from the pre-training phase can further enhance 
the model’s transfer performance during fine-tuning.

Equipped with the intuition that explicitly showing the agent its 
past experiences as references could benefit it in the URL setting both 
during pre-training and fine-tuning, we devised a new module for 
unsupervised reinforcement learning algorithms called Self-Reference 
(SR). We designed this module as an add-on method that can boost 
any unsupervised reinforcement learning method’s performance. The 
Self-Reference module, featuring a query system and an aggregation 
network, augments the agent’s state by integrating essential informa-
tion from past experiences. Readers can find a schematic figure of 
Self-Reference in Fig.  1. Next, we outline the details of the query 
module system and the aggregation network in detail.

4.1. The query module

In order to query informative trajectories from historical experi-
ences, we need to develop a module that can retrieve appropriate values 
that could be useful for the unsupervised reinforcement learning agent. 
We argue that the query module should have the flexibility to query the 
following trajectories:

• Neighbors. Intuitively, neighbors can show where the agent has been 
in close proximity and infer where to explore more.

• Neighbors in partial dimensions. In some cases, we only need to select 
reference neighbors with particular features and explore different 
parts of the feature space.

• Information on possible future visitations. Since the agent needs to 
maximize the state-value function, it needs to be forward-seeking and 
have the option to look at other states that the agent might wish to 
visit.

To enhance the system’s adaptability, we developed a module capable 
of determining the optimal queries. This module, denoted as 𝜋query𝜙 ∶
 → , takes the current state as input and queries historical data 
to support the URL agent’s decision-making process during training. 
For optimization, we employed the well-known on-policy algorithm 
PPO (Schulman, Wolski, Dhariwal, Radford, & Klimov, 2017), aiming to 
maximize the task reward shared with actor model. This encompasses 
the intrinsic reward during the pre-training phase and the task reward 
throughout the fine-tuning stage. Our approach keeps the hyperpa-
rameters consistent with those specified in the CleanRL (Huang et al., 
2022) framework. To further refine our system, based on the notion 
that querying for nearest neighbors can serve as a beneficial inductive 
3 
bias (Goyal et al., 2022; Humphreys et al., 2022), we introduced an 
identity loss identity = ‖E𝐪∼𝜋query𝜙 (𝐬)[𝐪] − 𝐬‖2 to the query actor, where 
𝐪 ∼ 𝜋query𝜙 ∈  represents the generated query. The total loss for the 
query actor is 
𝜋query𝜙

= PPO + identity (1)

To further facilitate this inductive bias, we do not use the query 
module for half of the episodes during the PT phase and use the current 
state 𝑠𝑡 as the query. We do not update the query module’s parameters 
on the trajectories that simply use 𝑠𝑡 as the query. The value function 
of the query module, 𝑉 query𝜌  is trained using the standard PPO value 
loss.

After obtaining the query, we use a vectorstore to find the top 𝑘
nearest neighbors (keys) of that query and retrieve all subsequent states 
within 𝐷 timesteps. We hypothesize that expanding the retrieved states 
to trajectories provides more information like rolling out in planning 
algorithms (See  for confirmation). From this retrieval process, we 
obtain a set 𝐸 defined as 
𝐸 = {(𝐬𝑡1 ∶ 𝐬𝑡1+𝐷−1),… , (𝐬𝑡𝑘 ∶ 𝐬𝑡𝑘+𝐷−1)}, (2)

which contains 𝑘 ordered lists, each containing 𝐷 subsequent states 
of respective 𝑘 key states. The subscript under 𝑡 indicates the 𝑘th 
neighbor for the query. With this query module trained, we obtained a 
viable way to query the historical states for additional knowledge under 
appropriate situations. We will leave retrieving the action and reward 
from historical trajectories as future work.

Since Self-Reference agents need to retrieve historical states, we 
must have a component that maintains historical information. For-
tunately, off-policy reinforcement learning algorithms often already 
possess a large experience replay buffer  in order to train the RL agent; 
therefore, we can query from this buffer without additional memory 
overhead. As the agent needs to query historical information exhaus-
tively at every step, we propose using a subset of the experience replay 
buffer as retrievable historical experiences for SR agents: reference ⊂ . 
In all of our experiments, the number of retrievable states is set to the 
|reference| = 1𝑒5 latest transitions unless stated otherwise (|| = 1𝑒6
for comparison). We keep the context window size |reference| capped 
at the agent’s last episode’s experiences, avoiding the possibility of the 
agent querying a state from the current episode.

We utilized Faiss (Johnson, Douze, & Jégou, 2019) as our re-
trieval library which is a scalable method to efficiently employ GPUs 
when performing similarity searches. We maintained the key-query 
space identical to the state space because it already contains all the 
information needed for decision-making. Moreover, cosine similarity 
was used as a metric when performing a k-NN search, as we found that 
it slightly outperformed the norm 𝑙-2 in our experiments.

4.2. Aggregating retrieved experiences

In our model, historical states retrieved from the replay buffer are 
integrated into a unified feature vector, which we name as reference 
vector. This vector serves as input for the critic and actor networks. 
We adopt a multiheaded cross-attention mechanism to dynamically 
combine these experiences, leveraging the current state hidden feature 
as the query. It is important to note that this query is distinct from the 
one utilized to query the replay buffer. The features extracted from the 
experiences 𝐸 (referenced in Eq.  (2)) are used as keys and values in 
this attention framework.

Additionally, we enrich the key and value features with learnable 
time step embeddings. These embeddings signify the temporal sequence 
of events, suggesting that each transition spanning 𝐷 steps carries 
specific temporal information. This aspect is crucial as it allows the 
model to update these embeddings through the RL learning objective, 
enhancing the model’s temporal awareness.

The computation of the reference vector, which serves as an en-
riched historical context for the agent during training, is detailed 
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below. Here, 𝑈 represents both the embedding dimension of the Multi-
HeadAttention (MHA) (Vaswani et al., 2017) and the dimension of the 
reference vector. Query of MHA, where 𝑠𝑡 is the current state:

𝑄 = QEncoder(𝑠𝑡) (3)

Keys and Values from experiences, where {𝑠𝑡𝑗∶𝑡𝑗+𝐷−1
}𝑘𝑗=1 are elements of 

𝐸:

𝐾 = KEncoder(𝑠𝑡1 ∶ 𝑠𝑡1+𝐷−1,… , 𝑠𝑡𝑘 ∶ 𝑠𝑡𝑘+𝐷−1) (4)

𝑉 = VEncoder(𝑠𝑡1 ∶ 𝑠𝑡1+𝐷−1,… , 𝑠𝑡𝑘 ∶ 𝑠𝑡𝑘+𝐷−1) (5)

Time Embedding for transitions of 𝐷 steps:
𝑇 = TimeEmbed(𝑡1 ∶ 𝑡1 +𝐷 − 1,… , 𝑡𝑘 ∶ 𝑡𝑘 +𝐷 − 1) (6)

Reference Vector, integrating all components:
𝑢𝑡 = MultiHeadAttention(𝑄,𝐾 + 𝑇 , 𝑉 + 𝑇 ) (7)

Finally, the reference vector is concatenated with the actor net-
work’s state feature and the critic network’s state and action feature. 
With the added computation of the SR module, we noticed a mean 
training Frames-Per-Second decrease from 17 to 15, which is relatively 
marginal due to efficient implementations. The entire algorithm is 
formalized in Algorithm 1.

Algorithm 1 Unsupervised Reinforcement Learning with Self-Reference
Input: Randomly initialized actor 𝜋𝜃 , critic 𝑄𝜙, and encoder 𝑓𝜉
networks, replay buffer .
Input: Intrinsic 𝑟int and extrinsic 𝑟ext reward functions, discount 
factor 𝛾.
Input: Environment (env), 𝐻 maximum number of steps in episode, 
𝑀 downstream tasks 𝑇𝑘, 𝑘 ∈ [1, ...,𝑀].
Input: pre-train 𝑁PT and fine-tune 𝑁FT steps.
Input: Randomly initialized query actor 𝜋query𝜙 , critic 𝑉 query𝜌 , refer-
ence buffer reference, GetTrajectories, numbers of neighbors to 
retrieve 𝐾 and NearestNeighborSearch.
for 𝑡 = 1 to 𝑁PT do
 𝐪𝑡 ∼ 𝜋query𝜙 (𝐨𝐭 )
 𝐈𝑡 ← NearestNeighborSearch(𝐪𝑡,reference, 𝐾)
 𝑡 ← GetTrajectories(𝐈𝑡,reference)
 𝑎𝑡 ← 𝜋𝜃(𝑓𝜉 (𝐨𝑡), 𝑡) + 𝜖 and 𝜖 ∼  (0, 𝜎2)
 𝐨𝑡+1 ∼ 𝑃 (⋅|𝐨𝑡, 𝐚𝑡)  ←  ∪ (𝐨𝑡, 𝐚𝑡, 𝐨𝑡+1) if 𝑡 mod 𝐻 = 0 then
 reference ← reference ∪ {𝐨𝑡−𝐻 , ..., 𝐨𝑡+1} end if
 Update 𝜋𝜃 , 𝑄𝜙, and 𝑓𝜉 using minibatches from  and intrinsic 
reward 𝑟int using DDPG;
 Update 𝜋query𝜙 , 𝑉 query𝜌  using minibatches from  according to Eqs. 
(1).
end for
for 𝑇𝑘 ∈ [𝑇1, ..., 𝑇𝑚] do initialize 𝜃 ← 𝜃PT, 𝜙 ← 𝜙PT, 𝜉 ← 𝜉PT, reset .
 initialize 𝜓 ← 𝜓PT, 𝜌 ← 𝜌PT, reference ← referencePT .
 for 𝑡 = 1 to 𝑁FT do
 𝐪𝑡 ∼ 𝜋query𝜙 (𝐨𝐭 )
 𝐈𝑡 ← NearestNeighborSearch(𝐪𝑡,reference, 𝐾)
 𝑡 ← GetTrajectories(𝐈𝑡,reference)
 𝑎𝑡 ← 𝜋𝜃(𝑓𝜉 (𝐨𝑡), 𝑡) + 𝜖 and 𝜖 ∼  (0, 𝜎2)
 𝐨𝑡+1 ∼ 𝑃 (⋅|𝐨𝑡, 𝐚𝑡)
  ←  ∪ (𝐨𝑡, 𝐚𝑡, 𝑟ext𝑡 , 𝐨𝑡+1)
 if 𝑡 mod 𝐻 = 0 then
 reference ← reference ∪ {𝑜𝑡−𝐻 , ..., 𝐨𝑡+1} end if
 Update 𝜋𝜃 , 𝑄𝜙, and 𝑓𝜉 using minibatches from  using DDPG;
 Update 𝜋query𝜙 , 𝑉 query𝜌  using minibatches from  by according 
to Eqs. (1).
 end for
 Evaluate performance of RL agent on task 𝑇𝑘
end for
4 
5. Experiments

In this section, we present the benchmarks, evaluation metrics, and 
main results, along with the results from pre-training.

5.1. Benchmark and evaluation

We apply our method to existing unsupervised reinforcement learn-
ing algorithms and evaluate these new methods on tasks from the URL 
Benchmark (URLB) (Laskin et al., 2021), a standard evaluation suite in 
URL research.
Evaluation. For our main results, we follow the URLB’s training proce-
dure by pre-training the agent for two million steps in each domain 
with intrinsic rewards and fine-tuning the pre-trained agent for one 
hundred thousand steps with downstream task rewards. All baseline 
experiments were conducted for eight seeds (0–7) per downstream 
task for each algorithm using the code from the URL Benchmark. 
Furthermore, SR applied to vanilla URL algorithms are also evaluated 
for eight seeds per task. A total of 1920 = 2 (use SR or not) ×10
algorithms ×12 tasks ×8 seeds experiments were conducted for the main 
results. All methods use the DDPG (Lillicrap et al., 2016) agent as their 
backbone. DDPG is an off-policy, model-free reinforcement learning 
algorithm designed for continuous action spaces. It leverages an actor–
critic architecture, where the actor 𝜋𝜃 maps states to deterministic 
actions, and the critic 𝑄𝜙 estimates the action-value function using the 
Bellman equation:
𝑄𝜙(𝑠𝑡, 𝑎𝑡) = 𝑟𝑡 + 𝛾𝑄𝜙′(𝑠𝑡+1, 𝜋𝜃′(𝑠𝑡+1))

where 𝜙′ and 𝜃′ are target network parameters that stabilize training. 
The policy is updated via the deterministic policy gradient.

We use the scores of a DDPG agent trained from scratch for two mil-
lion steps as the expert scores and normalize the original task scores. To 
make the main results more convincing, we use statistical-based metrics
interquartile mean (IQM) and Optimality Gap (OG) of normalized scores 
as our main evaluation criteria, with mean values and median values as 
references respectively. IQM is more unbiased than the median, while
Optimality Gap is the distance between a method’s score and expert 
scores. We present all results with error bars using standard error.

5.2. Main results

The main results in URLB are presented in Fig.  3; we separate 
the URL algorithms into three categories and present their before and 
after performance using SR. All URL algorithms have obtained a 5% 
improvement in IQM and an 11% reduction in OG on average. To 
our surprise, APS+SR achieves a 17% higher IQM than vanilla APS, 
and ProtoRL+SR obtains a 31% lower OG than vanilla ProtoRL. We 
found that after using SR, data-based methods achieved an 8.5% higher
IQM and a 19% lower OG than before on average, representing the 
best progress among the three categories. We did notice that DIAYN 
and SMM dropped in performance after adding Self-Reference. We hy-
pothesize that since DIAYN suffers from a lack of exploration (Strouse, 
Baumli, Warde-Farley, Mnih, & Hansen, 2021), and SR tends to ac-
celerate convergence due to alleviating the nonstationarity problem, 
in the case of DIAYN, SR could impede exploration even more, re-
sulting in worse performance. While we observe a compelling distri-
butional improvement across tasks within any given domain and for 
most algorithms, certain algorithm-domain-task combinations remain 
comparable to the baselines. Lastly, since our method includes a newly 
trained module that is updated alongside the main policy, stability 
is often a concern in systems with many moving parts and modules 
trained end-to-end (Glasmachers, 2017). Fortunately, we have closely 
examined stability by comparing SR with its vanilla counterpart and 
observed minimal differences in gradient norms, as well as the variance 
of intrinsic and extrinsic rewards across seeds. This suggests that the 
additional training modules introduced by SR do not have a significant 
negative impact on stability during training.
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Fig. 2. Visitation jointplot. A plot of visitations as density points as PT steps increase, with margin histograms labeled with normalized probability. APT+SR (red) was able to 
cover the 𝑌 -axis in 25k steps and the whole X–Y plane in only 50k steps, while Vanilla APT (green) lags behind and only starts to cover the X–Y plane at 100k PT steps. Note 
that the empty cross-shape in the middle is formed due to an impenetrable wall that the agent cannot pass through.
Fig. 3. Main results of self-reference on unsupervised reinforcement learning benchmark. We showcase our main results, reported using RLiable with statistically robust metrics. 
Our main results emphasize on the IQM and Optimality Gap metrics and provide Median and Mean for reference purposes.
5.3. Pre-train phase results

To better understand how our method behaves differently in the 
pre-training phase alone, we conducted experiments in the point mass 
maze environment to demonstrate that obtaining information from the 
history of transitions helps agents learn more efficiently. The point mass 
maze environment lets the agent control a ball in a 2D plane with a 
cross-shaped wall in the center where the ball cannot go through. We 
choose the APT method in this experiment since the intrinsic reward 
is the entropy of the state visitation, which is greatest when the state 
visitation is uniformly distributed and can be more intuitively visual-
ized. We train APT and APT+SR for 100k steps and plot the visitation 
joint-plot in Fig.  2. The plot shows that the APT agent struggles to get 
out of the left top quadrant pre-25k steps while APT+SR already covers 
the 𝑌 -axis evenly. Then, at 50k steps, the APT+SR agent covers the X–Y 
plane while the APT agent struggles to visit the lower half of the plane. 
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Finally, at 100k steps, APT+SR achieves a relatively uniform coverage 
while vanilla APT only started exploring the lower half of the plane. 
Overall, this result demonstrates that the APT+SR agent covers the X–Y 
plane much faster than vanilla APT, demonstrating the Self-Reference 
module’s efficacy in learning from the nonstationary task reward of 
changing state-space coverage.

6. Ablation and empirical analysis

PT-FT sample efficiency. First, we demonstrate how our method can 
boost sample efficiency under the PT/FT framework. Since RND+SR 
achieved SOTA performance on URLB, we will use RND as the in-
trinsic reward and Quadruped as the test domain for the remainder 
of this Section 6 with three seeds to account for variability. For this 
experiment, we constrain the pre-training steps RND and RND+SR 
to fewer steps and show the FT performance in Fig.  4. The plot at 
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Fig. 4. Pre-training steps vs. performance. To illustrate the efficiency of our method, 
we pre-train agents with fewer steps and plot the FT performances in the Quadruped 
domain. We observe that RND+SR quickly rises in performance while vanilla RND 
struggles to perform high in fewer pre-training steps scenarios.

Fig. 5. Ablation on reference vector. We compare SR’s query module to different 
hand-crafted ways of constructing the reference vector. Noticeably, if we only retrieve 
neighbors based on the current state or randomly, it performs worse than with our 
query module on the downstream task.

0k steps shows DDPG vs. DDPG with Self-Reference, essentially rel-
egating to a supervised RL scenario. It is evident that training from 
scratch (pre-train steps = 0k) with the Self-Reference module yields 
no significant gains. This suggests that the incorporation of a retrieval 
mechanism alone does not substantially aid in the supervised rein-
forcement learning scenario. However, the development of a robust 
exploratory policy from PT, coupled with the prevention of forgetting, 
is essential for achieving performance improvements. Furthermore, in 
the 50k and 100k pre-train steps scenarios, vanilla RND increased its 
performance slowly (even decreased in performance with 50k PT steps). 
At the same time, RND with Self-Reference quickly achieved a high 
score across Quadruped tasks with a normalized IQM of 0.83 in just 
100k pre-training steps. We believe the increase in sample efficiency 
with the Self-Reference module stems from its ability to mitigate the 
non-stationary reward problem, which enables the model to learn 
exploration rewards more effectively, thereby improving the agent’s 
ability to explore the state space more efficiently.
Efficacy and analysis of query module. We additionally demonstrate 
how different types of reference vectors affect agent performance and 
the effectiveness of our query module. Besides our method of us-
ing a query actor to select references, we devised three hand-crafted
approaches for selecting references: (1) combining features from the 
nearest neighbors of the current state 𝑠𝑡 and their subsequent 𝐷 states, 
(2) combining features from uniformly sampled states and their sub-
sequent 𝐷 states, and (3) setting the reference vector ∼  (0, 1). We 
present the aggregated results for the Quadruped domain in Fig.  5. 
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Table 1
Comparison with (Campos et al., 2021) and freezing SR module. We 
compare with the baseline method (Campos et al., 2021) (BT) and also 
investigate the disentangled efficacy of SR during pre-training and fine-
tuning.

Method Flip Run Stand Walk

RND 698 ± 23 369 ± 19 946 ± 13 𝟖𝟓𝟒 ± 𝟐𝟗
RND+BT 563 ± 16 452 ± 8 907 ± 47 821 ± 11
RND+Freeze SR PT 672 ± 22 453 ± 22 946 ± 4 828 ± 2
RND+Freeze FT SR 700 ± 19 442 ± 20 948 ± 4 824 ± 21
RND+SR 𝟕𝟏𝟕 ± 𝟐𝟗 𝟒𝟕𝟔 ± 𝟐𝟑 𝟗𝟓𝟓 ± 𝟏𝟎 832 ± 40

Utilizing the nearest neighbor of the current state or retrieving random 
trajectories proves somewhat helpful, illustrating how explicitly pro-
viding the agent with the history of transitions is beneficial. Moreover, 
concatenating random noise to the agent features, essentially denoising 
does not significantly impact performance. Overall, SR achieves the 
best result, emphasizing the query module’s flexibility, which can either 
mimic the nearest neighbor queries by learning an identity function, 
attempt to match random sampling by outputting high entropy queries 
or query the replay buffer in any other manner beneficial for enhancing 
the agent’s performance.

To further investigate the query module’s functionality, we visualize 
the query module outputs during PT and FT phases in point mass 
maze environment. Current observations (i.e., current state), query 
observations (i.e., outputs of query module), and neighbor trajectories 
(sampled from the buffer) are plotted in blue, red, and green, respec-
tively. To better visualize the agent’s behaviors, we increased the color 
gradient of the state/query as a linear function of time. In the PT phase, 
since the agent needs to explore the space, we plot the density of all 
retrievable states as the intensity of the blue background color. We 
find that during pre-training, the query module tends to learn to guide 
the agent’s future occupancy and lets it avoid local highly dense areas 
created by nearest neighbors in the buffer. In Fig.  6(a), the agent wishes 
to go to less dense areas to collect more rewards, e.g., the right bottom. 
The query module creates a ‘‘boundary’’ and guides the main agent to 
avoid densely populated areas, e.g., the right corner near the cross-
shaped wall. For the FT case, we observe that the query module tends 
to create a ‘‘target’’ where the agent tends to somewhat go towards the 
queried states. Fig.  6(b) shows the reach bottom left task where the 
query module learns to create a ‘‘destination of point(s)’’.
Freezing SR during PT or FT. We conducted an additional experiment to 
evaluate the effectiveness of the SR module during both the pre-training 
and fine-tuning phases. Specifically, we set the reference vector to 
all zeros during pre-training and fine-tuning, respectively. The results, 
presented in Table  1, clearly demonstrate that the SR module enhances 
performance in each phase individually. Furthermore, employing the 
SR module in both pre-training and fine-tuning yields superior results, 
as it addresses distinct challenges inherent to each stage of the training 
process.

Scaling hyperparameters ablation. In our methodology, we have iden-
tified three critical hyperparameters for SR: the number of nearest 
neighbors (𝑘), the length of neighbor sequences (𝐷), and the context 
window size for retrievable states. These are set at 10, 5, and 100k, re-
spectively. To understand how these hyperparameters affect the agent’s 
performance, we conducted experiments using RND+SR with varying 
values. The experimental results, as illustrated in Fig.  7, reveal that 
an increase in these hyperparameters leads to higher scores for the 
agent, alongside a greater acquisition of reference information. This 
suggests that scaling up is beneficial for our method. However, it is 
important to note that increasing the context window size, the number 
of nearest neighbors, and the length of neighbor sequences all require 
additional computational resources. Thus, an optimal balance between 
computational demands and performance efficiency was established for 
all three pivotal hyperparameters of SR.
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Fig. 6. Visualization of Query Module in Point Mass Env. (a) query module’s output during PT: the blue background represents visited states, and the query output helps the 
agent to explore. (b) query module’s output during fine-tuning: query outputs guide the agent to the target position.
Fig. 7. Experiments of representative hyperparameters of Self-Reference. We use RND+SR and quadruped to evaluate the relationship between the agent’s performance and three 
representative hyperparameters of SR: The number of nearest neighbors 𝑘, the length of neighbor sequences 𝐷, and the context window of retrievable states. We noticed a general 
trend of increasing reference capacity also increases performance.
Table 2
Policy change during fine-tuning. We compare the policy change during fine-tuning at 
10k training steps to the policy at the end of pre-training in Quadruped.
 Task RND (KL/Norm. Intr.) RND + SR (KL/Norm. Intr.) 
 Walk 18.9/0.46 16.9/0.59  
 Jump 17.5/0.55 17.1/0.66  
 Run 18.9/0.59 15.9/0.64  
 Stand 18.3/0.74 18.3/0.68  

Alleviation of unlearning of PT policy. Works such as Campos et al. 
(2021) and Wolczyk et al. (2023) argue that naively fine-tuning an 
agent can exhibit varying degrees of catastrophic forgetting. Since the 
PT agent behaviors are often purely exploratory, quickly forgetting 
these exploratory properties might decrease the efficiency during FT 
in finding the optimal policy. As we explicitly show the agent its old 
behavior, we hypothesize that this explicit behavior could alleviate the 
unlearning of helpful exploratory behaviors. To determine if this is the 
case, we measure the extent of change from the PT behavior to the FT 
behavior by computing the distance of policy output distributions at 
every step. Specifically, inspired by KL-control (Stengel, 1986), we use 
the KL divergence from the policy during FT compared to its frozen PT 
policy as a proxy for the similarity between policies. Furthermore, we 
also use the drop in intrinsic reward of the FT policy as a proxy for how 
much the FT policy forgot. Since all FT policies experience the most 
significant drop in performance of the intrinsic reward at the 10k step, 
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we report the normalized intrinsic return at this step with the average 
PT intrinsic return as the normalizer. Table  2 showcases the average KL 
divergence over fine-tuning and the normalized intrinsic return at 10k 
steps. We observe that RND + SR found ‘‘closer solutions’’ to the strong 
exploratory PT policy, confirming our intuition that explicitly showing 
old behaviors to the agent resulted in less unlearning of the PT policy.

We also conducted a comparison with the baseline method proposed 
by Campos et al. (2021), which addresses the issue of forgetting in 
unsupervised reinforcement learning. Following their approach, we 
employed a zeta distribution to sample the flight steps as described 
in their paper. The results, presented in Table  1, demonstrate that, at 
least within the domains we investigated, their method did not achieve 
superior performance compared to SR.

7. Conclusion and future work

In this paper, we present the Self-Reference (SR) method, an en-
hancement that significantly improves the effectiveness and efficiency 
of existing unsupervised reinforcement learning algorithms. Our
method successfully mitigates the challenges of nonstationarity in the 
pre-training phase and prevents the unlearning of beneficial behav-
iors during fine-tuning. By explicitly integrating historical behaviors 
into current decision-making processes, SR not only preserves essen-
tial exploratory actions but also streamlines the learning process, as 
evidenced by our state-of-the-art results on the Unsupervised Rein-
forcement Learning Benchmark. These improvements were quantified 
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as a 5% average increase in IQM and an 11% average reduction in 
the Optimality Gap, highlighting the method’s capability to enhance 
performance robustly.
Limitations and future work. In our work, we only explored retrieving 
references using a single query, therefore a natural way to enhance our 
method is to provide more than one query, which allows the agent 
to access multi-modal distributed information. Additionally, we used 
the state space as the key and query space for querying. This query 
space works well when we have the actual state of the world, but 
it could be inefficient if the environment is observational, e.g., im-
ages. Querying in a compact and meaningful space should significantly 
extend our method under these circumstances. Moreover, the non-
stationarity of intrinsic rewards remains an ongoing challenge. SR is the 
first to address this issue in unsupervised RL scenarios while also being 
designed as an adaptive add-on for any intrinsic reward, which is an 
extremely challenging task. While SR makes significant progress, fully 
resolving this issue remains an exciting direction for future research 
and improvement. Furthermore, we only evaluated SR with model-
free URL methods, and applying SR to model-based methods could 
be valuable for future work. Additionally, since SR requires a re-
trieval and aggregation step during PT-FT stages, there is an additional 
computation cost during training. Works can explore retrieving not 
at every step to reduce training computation. Lastly, another way to 
extend our approach is to augment the buffer of references with expert 
demonstrations or any other information that could be useful in helping 
the agent learn about the environment and task better. Despite some 
progress in the field, inherent problems in the URL paradigm still need 
to be addressed. We believe that coherent solutions are more effective 
in continuing to advance this area of research.
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