
Neural Networks 188 (2025) 107448

A
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Full Length Article

Self-Referencing Agents for Unsupervised Reinforcement Learning
Andrew Zhao a ,1, Erle Zhu b,1, Rui Lu a, Matthieu Lin b, Yong-Jin Liu b , Gao Huang a,∗
a Department of Automation, BNRist, Tsinghua University, China
b Department of Computer Science, BNRist, Tsinghua University, China

A R T I C L E I N F O

Keywords:
Reinforcement learning
Unsupervised reinforcement learning
Pretraining
Finetuning

 A B S T R A C T

Current unsupervised reinforcement learning methods often overlook reward nonstationarity during pre-
training and the forgetting of exploratory behavior during fine-tuning. Our study introduces Self-Reference
(SR), a novel add-on module designed to address both issues. SR stabilizes intrinsic rewards through historical
referencing in pre-training, mitigating nonstationarity. During fine-tuning, it preserves exploratory behaviors,
retaining valuable skills. Our approach significantly boosts the performance and sample efficiency of existing
URL model-free methods on the Unsupervised Reinforcement Learning Benchmark, improving IQM by up to
17% and reducing the Optimality Gap by 31%. This highlights the general applicability and compatibility of
our add-on module with existing methods.
1. Introduction

Unsupervised Reinforcement Learning (URL) is an attempt at repli-
cating the success of the pre-train-fine-tune framework used in com-
puter vision (CV) and natural language processing (NLP) (Laskin et al.,
2021). It involves two stages: pre-training (PT) and fine-tuning (FT).
During PT, the agent explores and understands the environment through
designed intrinsic rewards. In FT, the agent utilizes extrinsic rewards to
tackle specific tasks, leveraging the pre-trained policy for efficient adap-
tation to the downstream task. The goal of URL is to gather extensive
environment transition dynamics knowledge during PT, independent
of task-specific rewards, and efficiently apply this knowledge during
FT to tackle downstream tasks. This framework has been studied in
various existing works (Burda, Edwards, Storkey, & Klimov, 2018;
Eysenbach, Gupta, Ibarz, & Levine, 2018; Laskin et al., 2022; Liu &
Abbeel, 2021a, 2021b; Liu, Chen, & Zhao, 2023; Pathak, Agrawal,
Efros, & Darrell, 2017; Pathak, Gandhi, & Gupta, 2019; Yarats, Fergus,
Lazaric, & Pinto, 2021; Zhao, Lin, Li, Liu, & Huang, 2022). Existing
unsupervised reinforcement learning algorithms typically use a mea-
sure of surprise as a reward function to explore the environment during
pre-training (Zhao et al., 2022). This reward function should decrease
rewards for frequently visited states and increase rewards for less
visited states, making it implicitly dependent on the agent’s history.
However, most popular URL algorithms do not model this dynamic
change during PT, leading to a nonstationary Markov Decision Process
(MDP) and potential instability or sub-optimality in learning (Choi,

∗ Corresponding author.
E-mail addresses: zqc21@mails.tsinghua.edu.cn (A. Zhao), zel20@mails.tsinghua.edu.cn (E. Zhu), r-lu21@mails.tsinghua.edu.cn (R. Lu),

lyh21@mails.tsinghua.edu.cn (M. Lin), liuyongjin@tsinghua.edu.cn (Y.-J. Liu), gaohuang@tsinghua.edu.cn (G. Huang).
1 Equal contribution.

Yeung, & Zhang, 1999; Laskin et al., 2021). Furthermore, the naive
pre-train-then-fine-tune paradigm can result in unlearning exploratory
behaviors during fine-tuning, as the gradients from the fine-tuned
task quickly overwrite the parameters of the pre-trained policy, with
no incentives to retain the pre-trained behaviors during the naive
finetuning process (Campos et al., 2021; Wolczyk et al., 2023).

Inspired by the success of retrieval-augmented reinforcement learn-
ing and building on the above observations, we introduce a novel add-
on module called Self-Reference (SR) for unsupervised reinforcement
learning, specifically designed to harness historical information more
effectively during training. Our approach enhances both performance
and efficiency through the pre-training and fine-tuning phases by con-
tinually presenting the agent with historical visited states at every
decision-making epoch. SR augments the agent’s state with information
to generate summary statistics of the states visited during pre-training,
allowing it to explicitly model the dynamic changes in the reward
function. Additionally, SR also helps preserve the exploratory behav-
iors learned during pre-training by explicitly showing the agent past
behaviors. Fig. 1 provides a schematic depiction of the Self-Reference
method.

We evaluate SR on the standard Unsupervised Reinforcement Learn-
ing Benchmark (Laskin et al., 2021) and achieve state-of-the-art results
for model-free methods by applying Self-Reference to RND (Burda
et al., 2018). Our module increases the IQM of APS (Liu & Abbeel,
2021a) and ProtoRL (Yarats et al., 2021) by up to 17% while decreasing
https://doi.org/10.1016/j.neunet.2025.107448
Received 7 August 2024; Received in revised form 15 March 2025; Accepted 27 M
vailable online 5 April 2025
893-6080/© 2025 Elsevier Ltd. All rights are reserved, including those for text and
arch 2025

data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/neunet
https://www.elsevier.com/locate/neunet
https://orcid.org/0000-0003-4891-1308
https://orcid.org/0000-0001-5774-1916
mailto:zqc21@mails.tsinghua.edu.cn
mailto:zel20@mails.tsinghua.edu.cn
mailto:r-lu21@mails.tsinghua.edu.cn
mailto:lyh21@mails.tsinghua.edu.cn
mailto:liuyongjin@tsinghua.edu.cn
mailto:gaohuang@tsinghua.edu.cn
https://doi.org/10.1016/j.neunet.2025.107448
https://doi.org/10.1016/j.neunet.2025.107448
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2025.107448&domain=pdf

A. Zhao et al. Neural Networks 188 (2025) 107448
Fig. 1. Unsupervised reinforcement learning with self-reference (SR). The schematic illustration of our method. Given a state, Self-Reference forms a query to the buffer and
receives top 𝑘 neighbors and their subsequent 𝐷 states. Then, SR aggregates the transitions into a reference vector that aids the agent in learning under the URL setting.
the Optimality Gap (OG) by an average of 11% and up to 31% for Pro-
toRL. Additionally, Self-Reference improves sample efficiency, allowing
the agent to reach asymptotic performance with fewer pre-training
steps. By addressing key challenges in URL, our method complements
existing methods and has practical implications for deploying efficient,
robust robotic systems in real-world scenarios.

2. Related works

2.1. Unsupervised reinforcement learning

Unsupervised reinforcement learning methods consist of pre-
training and fine-tuning phases. During pre-training, the policy lever-
ages intrinsic rewards (Bellemare et al., 2016; Zhao et al., 2025), such
as maximum state entropy methods (Guo et al., 2021; Hazan, Kakade,
Singh, & Soest, 2019; Jain, Lehnert, Rish, & Berseth, 2023; Kim, Shin,
Abbeel, & Seo, 2023; Lee et al., 2019; Mutti, 2023; Mutti, Mancassola
and Restelli, 2022; Mutti, Pratissoli, & Restelli, 2021; Mutti & Restelli,
2020; Mutti, Santi and Restelli, 2022; Nedergaard & Cook, 2022; Seo
et al., 2021; Tiapkin et al., 2023; Yang & Spaan, 2023; Zamboni,
Cirino, Restelli, & Mutti, 2024a, 2024b; Zhang, Cai, Huang, & Li,
2021; Zisselman, Lavie, Soudry, & Tamar, 2023), to learn exploratory
policies and develop generally useful behaviors in the environment.
During fine-tuning, the policy is optimized using extrinsic rewards,
with the pre-trained policy serving as an initialization. This paradigm
accelerates adaptation to new tasks with improved sample efficiency.
Laskin et al. (2021) provide a comprehensive summary and detailed
implementation of mainstream unsupervised reinforcement learning
(URL) algorithms. For a thorough explanation of the baselines used in
this paper, we refer readers to their work.

2.2. Retrieval-augmented techniques in machine learning

Information retrieval is common in machine learning, helping to
reduce memorization in parametric weights, as seen in Large Lan-
guage Models (Guu, Lee, Tung, Pasupat, & Chang, 2020), Multi-Modal
Modeling (Chen, Hu, Saharia, & Cohen, 2022), Decision-making (Zhao
et al., 2024), and Time Series Forecasting (Jing et al., 2022). Retrieval-
augmented systems improve neural network performance and gener-
alization while enhancing training efficiency. Beyond reducing memo-
rization, we apply retrieval to address nonstationarity and prevent the
forgetting of exploratory behaviors during pre-training and fine-tuning.

Traditional imitation learning struggles with scalability due to high
data supervision and weak generalization. Leveraging prior task data
enhances robustness and efficiency (Nasiriany, Gao, Mandlekar, & Zhu,
2022). In reinforcement learning, retrieval techniques use a data buffer
(e.g., replay buffer (Goyal et al., 2022), external datasets (Humphreys
2
et al., 2022), or data from other agents (Nasiriany et al., 2022)). These
systems select top-k nearest neighbors using multi-head attention or
specific fusion networks (Humphreys et al., 2022). We introduce a
query module that improves adaptability by using learned queries and
leveraging the agent’s own historical trajectories as queryable data.

2.3. Catastrophic forgetting in transferring policy

Fine-tuning a pre-trained policy can lead to catastrophic forgetting,
where the agent forgets exploratory skills due to new learning sig-
nals (Campos et al., 2021; Wolczyk et al., 2023). Behavior Transfer (BT)
addresses this by using a pre-trained policy for exploration, enhancing
downstream policy performance (Campos et al., 2021). Our approach
mitigates this issue by replaying snapshots of old behaviors at each
decision epoch.

3. Preliminaries and notations

We follow the standard reinforcement learning assumption that the
system can be described by a Markov Decision Process (MDP) (Sutton &
Barto, 2018). An MDP is represented by a tuple ( ,, 𝑝, 𝑟,0, 𝛾), which
has states space , action space , transition dynamics 𝑝(𝐬′|𝐬, 𝐚), reward
function 𝑟(𝐬, 𝐚, 𝐬′), 0 initial state distribution and discount factor 𝛾. At
each time step, an agent observes the current state 𝐒 ∈ , performs an
action 𝐀 ∈ , and then observes a reward and next state 𝐑 = 𝑟(𝐬, 𝐚),𝐒′ ∼
𝑝(𝐬′|𝐬, 𝐚) from the environment. Generally, the reward 𝑟 consists of an
extrinsic component 𝑟ext, provided by the environment, and an intrinsic
component 𝑟int, generated by the agent using URL algorithms. Thus, the
final additive reward can be expressed as 𝑟 = 𝑟ext + 𝑟int, where 𝑟int can
be zero if no intrinsic reward is present.

An RL algorithm aims to train an agent to interact with the environ-
ment and maximize the expected discounted return. Most popular RL
algorithms use the value function 𝑉𝜋 as the optimization objective. It
represents the expected return when following the parameterized policy
𝜋𝜃 starting from a sampled initial state: 𝑉𝜋𝜃 = E𝜋𝜃 ,𝑠∼0 [𝐺|𝐒 = 𝐬], where
𝐺 is the discounted sum of rewards.

Popular deep RL algorithms excel in many decision-making tasks
but struggle with generalization to other tasks. URL approaches train
agents with self-supervised rewards to develop more generalizable
policies for efficient adaptation to downstream tasks (Laskin et al.,
2021). The Unsupervised Reinforcement Learning Benchmark (URLB)
evaluates URL algorithms by splitting training into two phases: pre-
training and fine-tuning. Agents are trained with intrinsic rewards for
𝑁𝑃𝑇 steps during pre-training and evaluated based on performance
after fine-tuning with extrinsic rewards for 𝑁𝐹𝑇 steps.

Suppose we express the history of transitions obtained during train-
ing as 𝛬𝑔 = {𝐬𝜋00 , 𝐚

𝜋0
0 ,… , 𝐬𝜋0𝐻 , 𝐚

𝜋0
𝐻 ,… , 𝐬𝜋𝑔0 , 𝐚

𝜋𝑔
0 ,… 𝐬𝜋𝑔𝐻 , 𝐚

𝜋𝑔
𝐻 }, where 𝜋𝑔 indi-

cates the changing training policy indexed by episode 𝑔 and 𝐻 is the

A. Zhao et al. Neural Networks 188 (2025) 107448
finite number of decision epochs in an episode. We can express the
PT reward as 𝑟(𝐬, 𝐚;𝛬𝑔), which implicitly depends on this history of
transitions produced during pre-training. Current methods largely ig-
nore the dependence on the history 𝛬 and train agents with only states
and actions. Even though these methods obtain satisfactory empirical
results, we posit that URL methods could be further improved if we
address this issue.

4. Self-reference

The unsupervised reinforcement learning (URL) paradigm encom-
passes two distinct phases: pre-training and fine-tuning. During the
pre-training phase, the reward function’s implicit dependence on a his-
tory of transitions results in a non-stationary Markov decision process,
provided the agent does not explicitly account for the evolving reward
structure. Based on this observation, we strategically retrieve relevant
historical data to address the challenges posed by nonstationarity.

Furthermore, works like (Humphreys et al., 2022) have shown that
referencing expert demonstrations benefits learning their behavior. In
the URL setting, we observe that pre-trained agents with exploratory
behaviors can better transfer to downstream tasks during the fine-
tuning phase (Laskin et al., 2021). We posit that retrieving the ex-
ploratory trajectories from the pre-training phase can further enhance
the model’s transfer performance during fine-tuning.

Equipped with the intuition that explicitly showing the agent its
past experiences as references could benefit it in the URL setting both
during pre-training and fine-tuning, we devised a new module for
unsupervised reinforcement learning algorithms called Self-Reference
(SR). We designed this module as an add-on method that can boost
any unsupervised reinforcement learning method’s performance. The
Self-Reference module, featuring a query system and an aggregation
network, augments the agent’s state by integrating essential informa-
tion from past experiences. Readers can find a schematic figure of
Self-Reference in Fig. 1. Next, we outline the details of the query
module system and the aggregation network in detail.

4.1. The query module

In order to query informative trajectories from historical experi-
ences, we need to develop a module that can retrieve appropriate values
that could be useful for the unsupervised reinforcement learning agent.
We argue that the query module should have the flexibility to query the
following trajectories:

• Neighbors. Intuitively, neighbors can show where the agent has been
in close proximity and infer where to explore more.

• Neighbors in partial dimensions. In some cases, we only need to select
reference neighbors with particular features and explore different
parts of the feature space.

• Information on possible future visitations. Since the agent needs to
maximize the state-value function, it needs to be forward-seeking and
have the option to look at other states that the agent might wish to
visit.

To enhance the system’s adaptability, we developed a module capable
of determining the optimal queries. This module, denoted as 𝜋query𝜙 ∶
 → , takes the current state as input and queries historical data
to support the URL agent’s decision-making process during training.
For optimization, we employed the well-known on-policy algorithm
PPO (Schulman, Wolski, Dhariwal, Radford, & Klimov, 2017), aiming to
maximize the task reward shared with actor model. This encompasses
the intrinsic reward during the pre-training phase and the task reward
throughout the fine-tuning stage. Our approach keeps the hyperpa-
rameters consistent with those specified in the CleanRL (Huang et al.,
2022) framework. To further refine our system, based on the notion
that querying for nearest neighbors can serve as a beneficial inductive
3
bias (Goyal et al., 2022; Humphreys et al., 2022), we introduced an
identity loss identity = ‖E𝐪∼𝜋query𝜙 (𝐬)[𝐪] − 𝐬‖2 to the query actor, where
𝐪 ∼ 𝜋query𝜙 ∈  represents the generated query. The total loss for the
query actor is
𝜋query𝜙

= PPO + identity (1)

To further facilitate this inductive bias, we do not use the query
module for half of the episodes during the PT phase and use the current
state 𝑠𝑡 as the query. We do not update the query module’s parameters
on the trajectories that simply use 𝑠𝑡 as the query. The value function
of the query module, 𝑉 query𝜌 is trained using the standard PPO value
loss.

After obtaining the query, we use a vectorstore to find the top 𝑘
nearest neighbors (keys) of that query and retrieve all subsequent states
within 𝐷 timesteps. We hypothesize that expanding the retrieved states
to trajectories provides more information like rolling out in planning
algorithms (See for confirmation). From this retrieval process, we
obtain a set 𝐸 defined as
𝐸 = {(𝐬𝑡1 ∶ 𝐬𝑡1+𝐷−1),… , (𝐬𝑡𝑘 ∶ 𝐬𝑡𝑘+𝐷−1)}, (2)

which contains 𝑘 ordered lists, each containing 𝐷 subsequent states
of respective 𝑘 key states. The subscript under 𝑡 indicates the 𝑘th
neighbor for the query. With this query module trained, we obtained a
viable way to query the historical states for additional knowledge under
appropriate situations. We will leave retrieving the action and reward
from historical trajectories as future work.

Since Self-Reference agents need to retrieve historical states, we
must have a component that maintains historical information. For-
tunately, off-policy reinforcement learning algorithms often already
possess a large experience replay buffer  in order to train the RL agent;
therefore, we can query from this buffer without additional memory
overhead. As the agent needs to query historical information exhaus-
tively at every step, we propose using a subset of the experience replay
buffer as retrievable historical experiences for SR agents: reference ⊂ .
In all of our experiments, the number of retrievable states is set to the
|reference| = 1𝑒5 latest transitions unless stated otherwise (|| = 1𝑒6
for comparison). We keep the context window size |reference| capped
at the agent’s last episode’s experiences, avoiding the possibility of the
agent querying a state from the current episode.

We utilized Faiss (Johnson, Douze, & Jégou, 2019) as our re-
trieval library which is a scalable method to efficiently employ GPUs
when performing similarity searches. We maintained the key-query
space identical to the state space because it already contains all the
information needed for decision-making. Moreover, cosine similarity
was used as a metric when performing a k-NN search, as we found that
it slightly outperformed the norm 𝑙-2 in our experiments.

4.2. Aggregating retrieved experiences

In our model, historical states retrieved from the replay buffer are
integrated into a unified feature vector, which we name as reference
vector. This vector serves as input for the critic and actor networks.
We adopt a multiheaded cross-attention mechanism to dynamically
combine these experiences, leveraging the current state hidden feature
as the query. It is important to note that this query is distinct from the
one utilized to query the replay buffer. The features extracted from the
experiences 𝐸 (referenced in Eq. (2)) are used as keys and values in
this attention framework.

Additionally, we enrich the key and value features with learnable
time step embeddings. These embeddings signify the temporal sequence
of events, suggesting that each transition spanning 𝐷 steps carries
specific temporal information. This aspect is crucial as it allows the
model to update these embeddings through the RL learning objective,
enhancing the model’s temporal awareness.

The computation of the reference vector, which serves as an en-
riched historical context for the agent during training, is detailed

A. Zhao et al. Neural Networks 188 (2025) 107448
below. Here, 𝑈 represents both the embedding dimension of the Multi-
HeadAttention (MHA) (Vaswani et al., 2017) and the dimension of the
reference vector. Query of MHA, where 𝑠𝑡 is the current state:

𝑄 = QEncoder(𝑠𝑡) (3)

Keys and Values from experiences, where {𝑠𝑡𝑗∶𝑡𝑗+𝐷−1
}𝑘𝑗=1 are elements of

𝐸:

𝐾 = KEncoder(𝑠𝑡1 ∶ 𝑠𝑡1+𝐷−1,… , 𝑠𝑡𝑘 ∶ 𝑠𝑡𝑘+𝐷−1) (4)

𝑉 = VEncoder(𝑠𝑡1 ∶ 𝑠𝑡1+𝐷−1,… , 𝑠𝑡𝑘 ∶ 𝑠𝑡𝑘+𝐷−1) (5)

Time Embedding for transitions of 𝐷 steps:
𝑇 = TimeEmbed(𝑡1 ∶ 𝑡1 +𝐷 − 1,… , 𝑡𝑘 ∶ 𝑡𝑘 +𝐷 − 1) (6)

Reference Vector, integrating all components:
𝑢𝑡 = MultiHeadAttention(𝑄,𝐾 + 𝑇 , 𝑉 + 𝑇) (7)

Finally, the reference vector is concatenated with the actor net-
work’s state feature and the critic network’s state and action feature.
With the added computation of the SR module, we noticed a mean
training Frames-Per-Second decrease from 17 to 15, which is relatively
marginal due to efficient implementations. The entire algorithm is
formalized in Algorithm 1.

Algorithm 1 Unsupervised Reinforcement Learning with Self-Reference
Input: Randomly initialized actor 𝜋𝜃 , critic 𝑄𝜙, and encoder 𝑓𝜉
networks, replay buffer .
Input: Intrinsic 𝑟int and extrinsic 𝑟ext reward functions, discount
factor 𝛾.
Input: Environment (env), 𝐻 maximum number of steps in episode,
𝑀 downstream tasks 𝑇𝑘, 𝑘 ∈ [1, ...,𝑀].
Input: pre-train 𝑁PT and fine-tune 𝑁FT steps.
Input: Randomly initialized query actor 𝜋query𝜙 , critic 𝑉 query𝜌 , refer-
ence buffer reference, GetTrajectories, numbers of neighbors to
retrieve 𝐾 and NearestNeighborSearch.
for 𝑡 = 1 to 𝑁PT do
 𝐪𝑡 ∼ 𝜋query𝜙 (𝐨𝐭)
 𝐈𝑡 ← NearestNeighborSearch(𝐪𝑡,reference, 𝐾)
 𝑡 ← GetTrajectories(𝐈𝑡,reference)
 𝑎𝑡 ← 𝜋𝜃(𝑓𝜉 (𝐨𝑡), 𝑡) + 𝜖 and 𝜖 ∼  (0, 𝜎2)
 𝐨𝑡+1 ∼ 𝑃 (⋅|𝐨𝑡, 𝐚𝑡)  ←  ∪ (𝐨𝑡, 𝐚𝑡, 𝐨𝑡+1) if 𝑡 mod 𝐻 = 0 then
 reference ← reference ∪ {𝐨𝑡−𝐻 , ..., 𝐨𝑡+1} end if
 Update 𝜋𝜃 , 𝑄𝜙, and 𝑓𝜉 using minibatches from  and intrinsic
reward 𝑟int using DDPG;
 Update 𝜋query𝜙 , 𝑉 query𝜌 using minibatches from  according to Eqs.
(1).
end for
for 𝑇𝑘 ∈ [𝑇1, ..., 𝑇𝑚] do initialize 𝜃 ← 𝜃PT, 𝜙 ← 𝜙PT, 𝜉 ← 𝜉PT, reset .
 initialize 𝜓 ← 𝜓PT, 𝜌 ← 𝜌PT, reference ← referencePT .
 for 𝑡 = 1 to 𝑁FT do
 𝐪𝑡 ∼ 𝜋query𝜙 (𝐨𝐭)
 𝐈𝑡 ← NearestNeighborSearch(𝐪𝑡,reference, 𝐾)
 𝑡 ← GetTrajectories(𝐈𝑡,reference)
 𝑎𝑡 ← 𝜋𝜃(𝑓𝜉 (𝐨𝑡), 𝑡) + 𝜖 and 𝜖 ∼  (0, 𝜎2)
 𝐨𝑡+1 ∼ 𝑃 (⋅|𝐨𝑡, 𝐚𝑡)
  ←  ∪ (𝐨𝑡, 𝐚𝑡, 𝑟ext𝑡 , 𝐨𝑡+1)
 if 𝑡 mod 𝐻 = 0 then
 reference ← reference ∪ {𝑜𝑡−𝐻 , ..., 𝐨𝑡+1} end if
 Update 𝜋𝜃 , 𝑄𝜙, and 𝑓𝜉 using minibatches from  using DDPG;
 Update 𝜋query𝜙 , 𝑉 query𝜌 using minibatches from  by according
to Eqs. (1).
 end for
 Evaluate performance of RL agent on task 𝑇𝑘
end for
4
5. Experiments

In this section, we present the benchmarks, evaluation metrics, and
main results, along with the results from pre-training.

5.1. Benchmark and evaluation

We apply our method to existing unsupervised reinforcement learn-
ing algorithms and evaluate these new methods on tasks from the URL
Benchmark (URLB) (Laskin et al., 2021), a standard evaluation suite in
URL research.
Evaluation. For our main results, we follow the URLB’s training proce-
dure by pre-training the agent for two million steps in each domain
with intrinsic rewards and fine-tuning the pre-trained agent for one
hundred thousand steps with downstream task rewards. All baseline
experiments were conducted for eight seeds (0–7) per downstream
task for each algorithm using the code from the URL Benchmark.
Furthermore, SR applied to vanilla URL algorithms are also evaluated
for eight seeds per task. A total of 1920 = 2 (use SR or not) ×10
algorithms ×12 tasks ×8 seeds experiments were conducted for the main
results. All methods use the DDPG (Lillicrap et al., 2016) agent as their
backbone. DDPG is an off-policy, model-free reinforcement learning
algorithm designed for continuous action spaces. It leverages an actor–
critic architecture, where the actor 𝜋𝜃 maps states to deterministic
actions, and the critic 𝑄𝜙 estimates the action-value function using the
Bellman equation:
𝑄𝜙(𝑠𝑡, 𝑎𝑡) = 𝑟𝑡 + 𝛾𝑄𝜙′(𝑠𝑡+1, 𝜋𝜃′(𝑠𝑡+1))

where 𝜙′ and 𝜃′ are target network parameters that stabilize training.
The policy is updated via the deterministic policy gradient.

We use the scores of a DDPG agent trained from scratch for two mil-
lion steps as the expert scores and normalize the original task scores. To
make the main results more convincing, we use statistical-based metrics
interquartile mean (IQM) and Optimality Gap (OG) of normalized scores
as our main evaluation criteria, with mean values and median values as
references respectively. IQM is more unbiased than the median, while
Optimality Gap is the distance between a method’s score and expert
scores. We present all results with error bars using standard error.

5.2. Main results

The main results in URLB are presented in Fig. 3; we separate
the URL algorithms into three categories and present their before and
after performance using SR. All URL algorithms have obtained a 5%
improvement in IQM and an 11% reduction in OG on average. To
our surprise, APS+SR achieves a 17% higher IQM than vanilla APS,
and ProtoRL+SR obtains a 31% lower OG than vanilla ProtoRL. We
found that after using SR, data-based methods achieved an 8.5% higher
IQM and a 19% lower OG than before on average, representing the
best progress among the three categories. We did notice that DIAYN
and SMM dropped in performance after adding Self-Reference. We hy-
pothesize that since DIAYN suffers from a lack of exploration (Strouse,
Baumli, Warde-Farley, Mnih, & Hansen, 2021), and SR tends to ac-
celerate convergence due to alleviating the nonstationarity problem,
in the case of DIAYN, SR could impede exploration even more, re-
sulting in worse performance. While we observe a compelling distri-
butional improvement across tasks within any given domain and for
most algorithms, certain algorithm-domain-task combinations remain
comparable to the baselines. Lastly, since our method includes a newly
trained module that is updated alongside the main policy, stability
is often a concern in systems with many moving parts and modules
trained end-to-end (Glasmachers, 2017). Fortunately, we have closely
examined stability by comparing SR with its vanilla counterpart and
observed minimal differences in gradient norms, as well as the variance
of intrinsic and extrinsic rewards across seeds. This suggests that the
additional training modules introduced by SR do not have a significant
negative impact on stability during training.

A. Zhao et al. Neural Networks 188 (2025) 107448
Fig. 2. Visitation jointplot. A plot of visitations as density points as PT steps increase, with margin histograms labeled with normalized probability. APT+SR (red) was able to
cover the 𝑌 -axis in 25k steps and the whole X–Y plane in only 50k steps, while Vanilla APT (green) lags behind and only starts to cover the X–Y plane at 100k PT steps. Note
that the empty cross-shape in the middle is formed due to an impenetrable wall that the agent cannot pass through.
Fig. 3. Main results of self-reference on unsupervised reinforcement learning benchmark. We showcase our main results, reported using RLiable with statistically robust metrics.
Our main results emphasize on the IQM and Optimality Gap metrics and provide Median and Mean for reference purposes.
5.3. Pre-train phase results

To better understand how our method behaves differently in the
pre-training phase alone, we conducted experiments in the point mass
maze environment to demonstrate that obtaining information from the
history of transitions helps agents learn more efficiently. The point mass
maze environment lets the agent control a ball in a 2D plane with a
cross-shaped wall in the center where the ball cannot go through. We
choose the APT method in this experiment since the intrinsic reward
is the entropy of the state visitation, which is greatest when the state
visitation is uniformly distributed and can be more intuitively visual-
ized. We train APT and APT+SR for 100k steps and plot the visitation
joint-plot in Fig. 2. The plot shows that the APT agent struggles to get
out of the left top quadrant pre-25k steps while APT+SR already covers
the 𝑌 -axis evenly. Then, at 50k steps, the APT+SR agent covers the X–Y
plane while the APT agent struggles to visit the lower half of the plane.
5
Finally, at 100k steps, APT+SR achieves a relatively uniform coverage
while vanilla APT only started exploring the lower half of the plane.
Overall, this result demonstrates that the APT+SR agent covers the X–Y
plane much faster than vanilla APT, demonstrating the Self-Reference
module’s efficacy in learning from the nonstationary task reward of
changing state-space coverage.

6. Ablation and empirical analysis

PT-FT sample efficiency. First, we demonstrate how our method can
boost sample efficiency under the PT/FT framework. Since RND+SR
achieved SOTA performance on URLB, we will use RND as the in-
trinsic reward and Quadruped as the test domain for the remainder
of this Section 6 with three seeds to account for variability. For this
experiment, we constrain the pre-training steps RND and RND+SR
to fewer steps and show the FT performance in Fig. 4. The plot at

A. Zhao et al. Neural Networks 188 (2025) 107448
Fig. 4. Pre-training steps vs. performance. To illustrate the efficiency of our method,
we pre-train agents with fewer steps and plot the FT performances in the Quadruped
domain. We observe that RND+SR quickly rises in performance while vanilla RND
struggles to perform high in fewer pre-training steps scenarios.

Fig. 5. Ablation on reference vector. We compare SR’s query module to different
hand-crafted ways of constructing the reference vector. Noticeably, if we only retrieve
neighbors based on the current state or randomly, it performs worse than with our
query module on the downstream task.

0k steps shows DDPG vs. DDPG with Self-Reference, essentially rel-
egating to a supervised RL scenario. It is evident that training from
scratch (pre-train steps = 0k) with the Self-Reference module yields
no significant gains. This suggests that the incorporation of a retrieval
mechanism alone does not substantially aid in the supervised rein-
forcement learning scenario. However, the development of a robust
exploratory policy from PT, coupled with the prevention of forgetting,
is essential for achieving performance improvements. Furthermore, in
the 50k and 100k pre-train steps scenarios, vanilla RND increased its
performance slowly (even decreased in performance with 50k PT steps).
At the same time, RND with Self-Reference quickly achieved a high
score across Quadruped tasks with a normalized IQM of 0.83 in just
100k pre-training steps. We believe the increase in sample efficiency
with the Self-Reference module stems from its ability to mitigate the
non-stationary reward problem, which enables the model to learn
exploration rewards more effectively, thereby improving the agent’s
ability to explore the state space more efficiently.
Efficacy and analysis of query module. We additionally demonstrate
how different types of reference vectors affect agent performance and
the effectiveness of our query module. Besides our method of us-
ing a query actor to select references, we devised three hand-crafted
approaches for selecting references: (1) combining features from the
nearest neighbors of the current state 𝑠𝑡 and their subsequent 𝐷 states,
(2) combining features from uniformly sampled states and their sub-
sequent 𝐷 states, and (3) setting the reference vector ∼  (0, 1). We
present the aggregated results for the Quadruped domain in Fig. 5.
6
Table 1
Comparison with (Campos et al., 2021) and freezing SR module. We
compare with the baseline method (Campos et al., 2021) (BT) and also
investigate the disentangled efficacy of SR during pre-training and fine-
tuning.

Method Flip Run Stand Walk

RND 698 ± 23 369 ± 19 946 ± 13 𝟖𝟓𝟒 ± 𝟐𝟗
RND+BT 563 ± 16 452 ± 8 907 ± 47 821 ± 11
RND+Freeze SR PT 672 ± 22 453 ± 22 946 ± 4 828 ± 2
RND+Freeze FT SR 700 ± 19 442 ± 20 948 ± 4 824 ± 21
RND+SR 𝟕𝟏𝟕 ± 𝟐𝟗 𝟒𝟕𝟔 ± 𝟐𝟑 𝟗𝟓𝟓 ± 𝟏𝟎 832 ± 40

Utilizing the nearest neighbor of the current state or retrieving random
trajectories proves somewhat helpful, illustrating how explicitly pro-
viding the agent with the history of transitions is beneficial. Moreover,
concatenating random noise to the agent features, essentially denoising
does not significantly impact performance. Overall, SR achieves the
best result, emphasizing the query module’s flexibility, which can either
mimic the nearest neighbor queries by learning an identity function,
attempt to match random sampling by outputting high entropy queries
or query the replay buffer in any other manner beneficial for enhancing
the agent’s performance.

To further investigate the query module’s functionality, we visualize
the query module outputs during PT and FT phases in point mass
maze environment. Current observations (i.e., current state), query
observations (i.e., outputs of query module), and neighbor trajectories
(sampled from the buffer) are plotted in blue, red, and green, respec-
tively. To better visualize the agent’s behaviors, we increased the color
gradient of the state/query as a linear function of time. In the PT phase,
since the agent needs to explore the space, we plot the density of all
retrievable states as the intensity of the blue background color. We
find that during pre-training, the query module tends to learn to guide
the agent’s future occupancy and lets it avoid local highly dense areas
created by nearest neighbors in the buffer. In Fig. 6(a), the agent wishes
to go to less dense areas to collect more rewards, e.g., the right bottom.
The query module creates a ‘‘boundary’’ and guides the main agent to
avoid densely populated areas, e.g., the right corner near the cross-
shaped wall. For the FT case, we observe that the query module tends
to create a ‘‘target’’ where the agent tends to somewhat go towards the
queried states. Fig. 6(b) shows the reach bottom left task where the
query module learns to create a ‘‘destination of point(s)’’.
Freezing SR during PT or FT. We conducted an additional experiment to
evaluate the effectiveness of the SR module during both the pre-training
and fine-tuning phases. Specifically, we set the reference vector to
all zeros during pre-training and fine-tuning, respectively. The results,
presented in Table 1, clearly demonstrate that the SR module enhances
performance in each phase individually. Furthermore, employing the
SR module in both pre-training and fine-tuning yields superior results,
as it addresses distinct challenges inherent to each stage of the training
process.

Scaling hyperparameters ablation. In our methodology, we have iden-
tified three critical hyperparameters for SR: the number of nearest
neighbors (𝑘), the length of neighbor sequences (𝐷), and the context
window size for retrievable states. These are set at 10, 5, and 100k, re-
spectively. To understand how these hyperparameters affect the agent’s
performance, we conducted experiments using RND+SR with varying
values. The experimental results, as illustrated in Fig. 7, reveal that
an increase in these hyperparameters leads to higher scores for the
agent, alongside a greater acquisition of reference information. This
suggests that scaling up is beneficial for our method. However, it is
important to note that increasing the context window size, the number
of nearest neighbors, and the length of neighbor sequences all require
additional computational resources. Thus, an optimal balance between
computational demands and performance efficiency was established for
all three pivotal hyperparameters of SR.

A. Zhao et al. Neural Networks 188 (2025) 107448
Fig. 6. Visualization of Query Module in Point Mass Env. (a) query module’s output during PT: the blue background represents visited states, and the query output helps the
agent to explore. (b) query module’s output during fine-tuning: query outputs guide the agent to the target position.
Fig. 7. Experiments of representative hyperparameters of Self-Reference. We use RND+SR and quadruped to evaluate the relationship between the agent’s performance and three
representative hyperparameters of SR: The number of nearest neighbors 𝑘, the length of neighbor sequences 𝐷, and the context window of retrievable states. We noticed a general
trend of increasing reference capacity also increases performance.
Table 2
Policy change during fine-tuning. We compare the policy change during fine-tuning at
10k training steps to the policy at the end of pre-training in Quadruped.
 Task RND (KL/Norm. Intr.) RND + SR (KL/Norm. Intr.)
 Walk 18.9/0.46 16.9/0.59
 Jump 17.5/0.55 17.1/0.66
 Run 18.9/0.59 15.9/0.64
 Stand 18.3/0.74 18.3/0.68

Alleviation of unlearning of PT policy. Works such as Campos et al.
(2021) and Wolczyk et al. (2023) argue that naively fine-tuning an
agent can exhibit varying degrees of catastrophic forgetting. Since the
PT agent behaviors are often purely exploratory, quickly forgetting
these exploratory properties might decrease the efficiency during FT
in finding the optimal policy. As we explicitly show the agent its old
behavior, we hypothesize that this explicit behavior could alleviate the
unlearning of helpful exploratory behaviors. To determine if this is the
case, we measure the extent of change from the PT behavior to the FT
behavior by computing the distance of policy output distributions at
every step. Specifically, inspired by KL-control (Stengel, 1986), we use
the KL divergence from the policy during FT compared to its frozen PT
policy as a proxy for the similarity between policies. Furthermore, we
also use the drop in intrinsic reward of the FT policy as a proxy for how
much the FT policy forgot. Since all FT policies experience the most
significant drop in performance of the intrinsic reward at the 10k step,
7
we report the normalized intrinsic return at this step with the average
PT intrinsic return as the normalizer. Table 2 showcases the average KL
divergence over fine-tuning and the normalized intrinsic return at 10k
steps. We observe that RND + SR found ‘‘closer solutions’’ to the strong
exploratory PT policy, confirming our intuition that explicitly showing
old behaviors to the agent resulted in less unlearning of the PT policy.

We also conducted a comparison with the baseline method proposed
by Campos et al. (2021), which addresses the issue of forgetting in
unsupervised reinforcement learning. Following their approach, we
employed a zeta distribution to sample the flight steps as described
in their paper. The results, presented in Table 1, demonstrate that, at
least within the domains we investigated, their method did not achieve
superior performance compared to SR.

7. Conclusion and future work

In this paper, we present the Self-Reference (SR) method, an en-
hancement that significantly improves the effectiveness and efficiency
of existing unsupervised reinforcement learning algorithms. Our
method successfully mitigates the challenges of nonstationarity in the
pre-training phase and prevents the unlearning of beneficial behav-
iors during fine-tuning. By explicitly integrating historical behaviors
into current decision-making processes, SR not only preserves essen-
tial exploratory actions but also streamlines the learning process, as
evidenced by our state-of-the-art results on the Unsupervised Rein-
forcement Learning Benchmark. These improvements were quantified

A. Zhao et al. Neural Networks 188 (2025) 107448
as a 5% average increase in IQM and an 11% average reduction in
the Optimality Gap, highlighting the method’s capability to enhance
performance robustly.
Limitations and future work. In our work, we only explored retrieving
references using a single query, therefore a natural way to enhance our
method is to provide more than one query, which allows the agent
to access multi-modal distributed information. Additionally, we used
the state space as the key and query space for querying. This query
space works well when we have the actual state of the world, but
it could be inefficient if the environment is observational, e.g., im-
ages. Querying in a compact and meaningful space should significantly
extend our method under these circumstances. Moreover, the non-
stationarity of intrinsic rewards remains an ongoing challenge. SR is the
first to address this issue in unsupervised RL scenarios while also being
designed as an adaptive add-on for any intrinsic reward, which is an
extremely challenging task. While SR makes significant progress, fully
resolving this issue remains an exciting direction for future research
and improvement. Furthermore, we only evaluated SR with model-
free URL methods, and applying SR to model-based methods could
be valuable for future work. Additionally, since SR requires a re-
trieval and aggregation step during PT-FT stages, there is an additional
computation cost during training. Works can explore retrieving not
at every step to reduce training computation. Lastly, another way to
extend our approach is to augment the buffer of references with expert
demonstrations or any other information that could be useful in helping
the agent learn about the environment and task better. Despite some
progress in the field, inherent problems in the URL paradigm still need
to be addressed. We believe that coherent solutions are more effective
in continuing to advance this area of research.

CRediT authorship contribution statement

Andrew Zhao: Writing – review & editing, Writing – original draft,
Visualization, Validation, Software, Resources, Project administration,
Methodology, Investigation, Formal analysis, Data curation, Conceptu-
alization. Erle Zhu: Writing – review & editing, Writing – original draft,
Visualization, Validation, Software, Resources, Project administration,
Methodology, Investigation, Formal analysis, Data curation, Concep-
tualization. Rui Lu: Resources, Project administration, Investigation,
Formal analysis. Matthieu Lin: Methodology, Investigation, Conceptu-
alization. Yong-Jin Liu: Writing – review & editing, Supervision. Gao
Huang: Writing – review & editing, Supervision, Funding acquisition.

Declaration of Generative AI and AI-assisted technologies in the
writing process

Statement: During the preparation of this work the author(s) used
chatgpt (https://chatgpt.com/) in order to fix sentence level grammar
and spelling mistakes. After using this tool/service, the author(s) re-
viewed and edited the content as needed and take(s) full responsibility
for the content of the publication.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Gao Huang reports financial support, administrative support, and arti-
cle publishing charges were provided by National Key R&D Program of
China. Gao Huang reports financial support was provided by Natural
Science Foundation of China. Andrew Zhao reports a relationship with
BIG AI that includes: employment. Andrew Zhao reports a relationship
with Microsoft Research that includes: employment. If there are other
authors, they declare that they have no known competing financial in-
terests or personal relationships that could have appeared to influence
the work reported in this paper.
8
Acknowledgments

This work is supported in part by the National Key R&D Program of
China under Grant 2024YFB4708200 and the National Natural Science
Foundation of China under Grants U24B20173.

Data availability

Data will be made available on request.

References

Bellemare, Marc, Srinivasan, Sriram, Ostrovski, Georg, Schaul, Tom, Saxton, David, &
Munos, Remi (2016). Unifying count-based exploration and intrinsic motivation.
NeurIPS.

Burda, Yuri, Edwards, Harrison, Storkey, Amos, & Klimov, Oleg (2018). Exploration by
random network distillation. In ICLR.

Campos, Víctor, Sprechmann, Pablo, Hansen, Steven Stenberg, Barreto, Andre, Kap-
turowski, Steven, Vitvitskyi, Alex, et al. (2021). Beyond fine-tuning: Transferring
behavior in reinforcement learning. In ICML 2021 workshop on unsupervised
reinforcement learning.

Chen, Wenhu, Hu, Hexiang, Saharia, Chitwan, & Cohen, William W (2022). Re-imagen:
Retrieval-augmented text-to-image generator. arXiv preprint arXiv:2209.14491.

Choi, Samuel, Yeung, Dit-Yan, & Zhang, Nevin (1999). An environment model for
nonstationary reinforcement learning. NeurIPS.

Eysenbach, Benjamin, Gupta, Abhishek, Ibarz, Julian, & Levine, Sergey (2018). Diversity
is all you need: Learning skills without a reward function. In ICLR.

Glasmachers, Tobias (2017). Limits of end-to-end learning. In Asian conference on
machine learning (pp. 17–32). PMLR.

Goyal, Anirudh, Friesen, Abram, Banino, Andrea, Weber, Theophane, Ke, Nan Rose-
mary, Badia, Adria Puigdomenech, et al. (2022). Retrieval-augmented reinforce-
ment learning. In ICML. PMLR.

Guo, Zhaohan Daniel, Azar, Mohammad Gheshlaghi, Saade, Alaa, Thakoor, Shantanu,
Piot, Bilal, Pires, Bernardo Ávila, et al. (2021). Geometric entropic exploration.
CoRR, abs/2101.02055. URL https://arxiv.org/abs/2101.02055.

Guu, Kelvin, Lee, Kenton, Tung, Zora, Pasupat, Panupong, & Chang, Mingwei (2020).
Retrieval augmented language model pre-training. In ICML. PMLR.

Hazan, Elad, Kakade, Sham M., Singh, Karan, & Soest, Abby Van (2019). Provably
efficient maximum entropy exploration. In Kamalika Chaudhuri, & Ruslan Salakhut-
dinov (Eds.), Proceedings of machine learning research: vol. 97, Proceedings of the
36th international conference on machine learning, ICML 2019, 9-15 June 2019, long
beach, california, USA (pp. 2681–2691). PMLR, URL http://proceedings.mlr.press/
v97/hazan19a.html.

Huang, Shengyi, Dossa, Rousslan Fernand Julien, Ye, Chang, Braga, Jeff,
Chakraborty, Dipam, Mehta, Kinal, et al. (2022). CleanRL: High-quality single-file
implementations of deep reinforcement learning algorithms. JMLR.

Humphreys, Peter Conway, Guez, Arthur, Tieleman, Olivier, Sifre, Laurent, We-
ber, Theophane, & Lillicrap, Timothy P (2022). Large-scale retrieval for
reinforcement learning. In NeurIPS.

Jain, Arnav Kumar, Lehnert, Lucas, Rish, Irina, & Berseth, Glen (2023). Maximum state
entropy exploration using predecessor and successor representations. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, & Sergey Levine
(Eds.), Advances in neural information processing systems 36: annual conference on
neural information processing systems 2023, neurIPS 2023, new orleans, la, USA,
December 10 - 16, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
9c7900fac04a701cbed83256b76dbaa3-Abstract-Conference.html.

Jing, Baoyu, Zhang, Si, Zhu, Yada, Peng, Bin, Guan, Kaiyu, Margenot, Andrew, et al.
(2022). Retrieval based time series forecasting. arXiv preprint arXiv:2209.13525.

Johnson, Jeff, Douze, Matthijs, & Jégou, Hervé (2019). Billion-scale similarity search
with GPUs. IEEE Transactions on Big Data.

Kim, Dongyoung, Shin, Jinwoo, Abbeel, Pieter, & Seo, Younggyo (2023). Acceler-
ating reinforcement learning with value-conditional state entropy exploration.
In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, &
Sergey Levine (Eds.), Advances in neural information processing systems 36: annual
conference on neural information processing systems 2023, neurIPS 2023, new orleans,
la, USA, December 10 - 16, 2023. URL http://papers.nips.cc/paper_files/paper/
2023/hash/6530db249c161fe9254db2667453952c-Abstract-Conference.html.

Laskin, Michael, Liu, Hao, Peng, Xue Bin, Yarats, Denis, Rajeswaran, Aravind, &
Abbeel, Pieter (2022). CIC: Contrastive intrinsic control for unsupervised skill
discovery. In NeurIPS.

Laskin, Michael, Yarats, Denis, Liu, Hao, Lee, Kimin, Zhan, Albert, Lu, Kevin, et al.
(2021). URLB: Unsupervised reinforcement learning benchmark. In NeurIPS datasets
and benchmarks track (round 2).

Lee, Lisa, Eysenbach, Benjamin, Parisotto, Emilio, Xing, Eric P., Levine, Sergey, &
Salakhutdinov, Ruslan (2019). Efficient exploration via state marginal matching.
CoRR, abs/1906.05274. URL http://arxiv.org/abs/1906.05274.

https://chatgpt.com/
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb1
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb1
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb1
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb1
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb1
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb2
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb2
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb2
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb3
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb3
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb3
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb3
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb3
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb3
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb3
http://arxiv.org/abs/2209.14491
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb5
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb5
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb5
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb6
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb6
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb6
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb7
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb7
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb7
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb8
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb8
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb8
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb8
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb8
http://arxiv.org/abs/2101.02055
https://arxiv.org/abs/2101.02055
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb10
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb10
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb10
http://proceedings.mlr.press/v97/hazan19a.html
http://proceedings.mlr.press/v97/hazan19a.html
http://proceedings.mlr.press/v97/hazan19a.html
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb12
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb12
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb12
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb12
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb12
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb13
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb13
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb13
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb13
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb13
http://papers.nips.cc/paper_files/paper/2023/hash/9c7900fac04a701cbed83256b76dbaa3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/9c7900fac04a701cbed83256b76dbaa3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/9c7900fac04a701cbed83256b76dbaa3-Abstract-Conference.html
http://arxiv.org/abs/2209.13525
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb16
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb16
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb16
http://papers.nips.cc/paper_files/paper/2023/hash/6530db249c161fe9254db2667453952c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6530db249c161fe9254db2667453952c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6530db249c161fe9254db2667453952c-Abstract-Conference.html
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb18
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb18
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb18
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb18
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb18
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb19
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb19
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb19
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb19
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb19
http://arxiv.org/abs/1906.05274
http://arxiv.org/abs/1906.05274

A. Zhao et al. Neural Networks 188 (2025) 107448
Lillicrap, Timothy P, Hunt, Jonathan J, Pritzel, Alexander, Heess, Nicolas, Erez, Tom,
Tassa, Yuval, et al. (2016). Continuous control with deep reinforcement learning..
In ICLR.

Liu, Hao, & Abbeel, Pieter (2021a). Aps: Active pretraining with successor features. In
ICML. PMLR.

Liu, Hao, & Abbeel, Pieter (2021b). Behavior from the void: Unsupervised active
pre-training. In NeurIPS.

Liu, Xin, Chen, Yaran, & Zhao, Dongbin (2023). ComSD: Balancing behavioral quality
and diversity in unsupervised skill discovery. arXiv preprint arXiv:2309.17203.

Mutti, Mirco (2023). Unsupervised reinforcement learning via state entropy maximization
(Ph.D. thesis), Italy: University of Bologna, URL http://amsdottorato.unibo.it/
10588/.

Mutti, Mirco, Mancassola, Mattia, & Restelli, Marcello (2022). Unsupervised reinforce-
ment learning in multiple environments. In Thirty-sixth AAAI conference on artificial
intelligence, AAAI 2022, thirty-fourth conference on innovative applications of artificial
intelligence, IAAI 2022, the twelveth symposium on educational advances in artificial
intelligence, EAAI 2022 virtual event, February 22 - March 1, 2022 (pp. 7850–7858).
AAAI Press, http://dx.doi.org/10.1609/AAAI.V36I7.20754.

Mutti, Mirco, Pratissoli, Lorenzo, & Restelli, Marcello (2021). Task-agnostic exploration
via policy gradient of a non-parametric state entropy estimate. In Thirty-fifth AAAI
conference on artificial intelligence, AAAI 2021, thirty-third conference on innovative
applications of artificial intelligence, IAAI 2021, the eleventh symposium on educational
advances in artificial intelligence, EAAI 2021, virtual event, February 2-9, 2021 (pp.
9028–9036). AAAI Press, http://dx.doi.org/10.1609/AAAI.V35I10.17091.

Mutti, Mirco, & Restelli, Marcello (2020). An intrinsically-motivated approach for
learning highly exploring and fast mixing policies. In The thirty-fourth AAAI
conference on artificial intelligence, AAAI 2020, the thirty-second innovative applications
of artificial intelligence conference, IAAI 2020, the tenth AAAI symposium on educational
advances in artificial intelligence, EAAI 2020, new york, NY, USA, February 7-12, 2020
(pp. 5232–5239). AAAI Press, http://dx.doi.org/10.1609/AAAI.V34I04.5968.

Mutti, Mirco, Santi, Riccardo De, & Restelli, Marcello (2022). The importance of
non-Markovianity in maximum state entropy exploration. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, & Sivan Sabato (Eds.),
Proceedings of machine learning research: 162, International conference on machine
learning, ICML 2022, 17-23 July 2022, baltimore, maryland, USA (pp. 16223–16239).
PMLR, URL https://proceedings.mlr.press/v162/mutti22a.html.

Nasiriany, Soroush, Gao, Tian, Mandlekar, Ajay, & Zhu, Yuke (2022). Learning and
retrieval from prior data for skill-based imitation learning. In CoRL.

Nedergaard, Alexander, & Cook, Matthew (2022). K-means maximum entropy ex-
ploration. http://dx.doi.org/10.48550/ARXIV.2205.15623, CoRR, abs/2205.15623.
URL https://doi.org/10.48550/arXiv.2205.15623.

Pathak, Deepak, Agrawal, Pulkit, Efros, Alexei A, & Darrell, Trevor (2017).
Curiosity-driven exploration by self-supervised prediction. In ICML. PMLR.

Pathak, Deepak, Gandhi, Dhiraj, & Gupta, Abhinav (2019). Self-supervised exploration
via disagreement. In ICML. PMLR.

Schulman, John, Wolski, Filip, Dhariwal, Prafulla, Radford, Alec, & Klimov, Oleg
(2017). Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Seo, Younggyo, Chen, Lili, Shin, Jinwoo, Lee, Honglak, Abbeel, Pieter, & Lee, Kimin
(2021). State entropy maximization with random encoders for efficient exploration.
In Marina Meila, & Tong Zhang (Eds.), Proceedings of machine learning research: 139,
Proceedings of the 38th international conference on machine learning, ICML 2021, 18-24
July 2021, virtual event (pp. 9443–9454). PMLR, URL http://proceedings.mlr.press/
v139/seo21a.html.
9
Stengel, Robert F. (1986). Stochastic Optimal Control: Theory and Application. John Wiley
& Sons, Inc..

Strouse, DJ, Baumli, Kate, Warde-Farley, David, Mnih, Vlad, & Hansen, Steven (2021).
Learning more skills through optimistic exploration. arXiv preprint arXiv:2107.
14226.

Sutton, Richard S., & Barto, Andrew G. (2018). Reinforcement Learning: An Introduction.
MIT Press.

Tiapkin, Daniil, Belomestny, Denis, Calandriello, Daniele, Moulines, Eric, Munos, Rémi,
Naumov, Alexey, et al. (2023). Fast rates for maximum entropy exploration. In An-
dreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
Jonathan Scarlett (Eds.), Proceedings of machine learning research: 202, International
conference on machine learning, ICML 2023, 23-29 July 2023, honolulu, hawaii, USA
(pp. 34161–34221). PMLR, URL https://proceedings.mlr.press/v202/tiapkin23a.
html.

Vaswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit, Jakob, Jones, Llion,
Gomez, Aidan N, et al. (2017). Attention is all you need. NeurIPS.

Wolczyk, Maciej, Cupiał, Bartłomiej, Zając, Michał, Pascanu, Razvan, Kuciński, Łukasz,
& Miłoś, Piotr (2023). On the role of forgetting in fine-tuning reinforcement
learning models. In Workshop on reincarnating reinforcement learning at ICLR 2023.

Yang, Qisong, & Spaan, Matthijs T. J. (2023). CEM: constrained entropy maximization
for task-agnostic safe exploration. In Brian Williams, Yiling Chen, & Jennifer Neville
(Eds.), Thirty-seventh AAAI conference on artificial intelligence, AAAI 2023, thirty-fifth
conference on innovative applications of artificial intelligence, IAAI 2023, thirteenth
symposium on educational advances in artificial intelligence, EAAI 2023, washington,
DC, USA, February 7-14, 2023 (pp. 10798–10806). AAAI Press, http://dx.doi.org/
10.1609/AAAI.V37I9.26281.

Yarats, Denis, Fergus, Rob, Lazaric, Alessandro, & Pinto, Lerrel (2021). Reinforcement
learning with prototypical representations. In ICML. PMLR.

Zamboni, Riccardo, Cirino, Duilio, Restelli, Marcello, & Mutti, Mirco (2024a). How
to explore with belief: State entropy maximization in POMDPs. In Forty-first
international conference on machine learning, ICML 2024, vienna, Austria, July 21-27,
2024. OpenReview.net, URL https://openreview.net/forum?id=LbcNAIgNnB.

Zamboni, Riccardo, Cirino, Duilio, Restelli, Marcello, & Mutti, Mirco (2024b). The limits
of pure exploration in POMDPs: When the observation entropy is enough. RLJ, 2,
676–692.

Zhang, Chuheng, Cai, Yuanying, Huang, Longbo, & Li, Jian (2021). Exploration by
maximizing renyi entropy for reward-free RL framework. In Thirty-fifth AAAI
conference on artificial intelligence, AAAI 2021, thirty-third conference on innovative
applications of artificial intelligence, IAAI 2021, the eleventh symposium on educational
advances in artificial intelligence, EAAI 2021, virtual event, February 2-9, 2021 (pp.
10859–10867). AAAI Press, http://dx.doi.org/10.1609/AAAI.V35I12.17297.

Zhao, Andrew, Huang, Daniel, Xu, Quentin, Lin, Matthieu Gaetan, Liu, Y., & Huang, Gao
(2024). Expel: LLM agents are experiential learners. In AAAI conference on artificial
intelligence.

Zhao, Andrew, Lin, Matthieu Gaetan, Li, Yangguang, Liu, Yong-Jin, & Huang, Gao
(2022). A mixture of surprises for unsupervised reinforcement learning. In NeurIPS.

Zhao, Andrew, Xu, Quentin, Lin, Matthieu Gaetan, Wang, Shenzhi, Liu, Yong-Jin,
Zheng, Zilong, et al. (2025). Diver-CT: Diversity-enhanced red teaming large
language model assistants with relaxing constraints. In AAAI conference on artificial
intelligence.

Zisselman, Ev, Lavie, Itai, Soudry, Daniel, & Tamar, Aviv (2023). Explore to
generalize in zero-shot RL. In Alice Oh, Tristan Naumann, Amir Glober-
son, Kate Saenko, Moritz Hardt, & Sergey Levine (Eds.), Advances in neu-
ral information processing systems 36: annual conference on neural informa-
tion processing systems 2023, neurIPS 2023, new orleans, la, USA, Decem-
ber 10 - 16, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
c793577b644268259b1416464a6cdb8c-Abstract-Conference.html.

http://refhub.elsevier.com/S0893-6080(25)00327-2/sb21
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb21
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb21
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb21
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb21
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb22
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb22
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb22
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb23
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb23
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb23
http://arxiv.org/abs/2309.17203
http://amsdottorato.unibo.it/10588/
http://amsdottorato.unibo.it/10588/
http://amsdottorato.unibo.it/10588/
http://dx.doi.org/10.1609/AAAI.V36I7.20754
http://dx.doi.org/10.1609/AAAI.V35I10.17091
http://dx.doi.org/10.1609/AAAI.V34I04.5968
https://proceedings.mlr.press/v162/mutti22a.html
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb30
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb30
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb30
http://dx.doi.org/10.48550/ARXIV.2205.15623
http://arxiv.org/abs/2205.15623
https://doi.org/10.48550/arXiv.2205.15623
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb32
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb32
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb32
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb33
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb33
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb33
http://arxiv.org/abs/1707.06347
http://proceedings.mlr.press/v139/seo21a.html
http://proceedings.mlr.press/v139/seo21a.html
http://proceedings.mlr.press/v139/seo21a.html
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb36
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb36
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb36
http://arxiv.org/abs/2107.14226
http://arxiv.org/abs/2107.14226
http://arxiv.org/abs/2107.14226
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb38
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb38
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb38
https://proceedings.mlr.press/v202/tiapkin23a.html
https://proceedings.mlr.press/v202/tiapkin23a.html
https://proceedings.mlr.press/v202/tiapkin23a.html
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb40
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb40
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb40
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb41
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb41
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb41
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb41
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb41
http://dx.doi.org/10.1609/AAAI.V37I9.26281
http://dx.doi.org/10.1609/AAAI.V37I9.26281
http://dx.doi.org/10.1609/AAAI.V37I9.26281
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb43
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb43
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb43
https://openreview.net/forum?id=LbcNAIgNnB
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb45
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb45
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb45
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb45
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb45
http://dx.doi.org/10.1609/AAAI.V35I12.17297
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb47
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb47
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb47
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb47
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb47
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb48
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb48
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb48
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb49
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb49
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb49
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb49
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb49
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb49
http://refhub.elsevier.com/S0893-6080(25)00327-2/sb49
http://papers.nips.cc/paper_files/paper/2023/hash/c793577b644268259b1416464a6cdb8c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/c793577b644268259b1416464a6cdb8c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/c793577b644268259b1416464a6cdb8c-Abstract-Conference.html

	Self-Referencing Agents for Unsupervised Reinforcement Learning
	Introduction
	Related Works
	Unsupervised Reinforcement Learning
	Retrieval-augmented Techniques in Machine Learning
	Catastrophic Forgetting in Transferring Policy

	Preliminaries and Notations
	Self-Reference
	The Query Module
	Aggregating Retrieved Experiences

	Experiments
	Benchmark and Evaluation
	Main Results
	Pre-train Phase Results

	Ablation and Empirical Analysis
	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of Generative AI and AI-assisted technologies in the writing process
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

