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Abstract—The robust generalization of deep learning models
in the presence of inherent noise remains a significant challenge,
especially when labels are ambiguous due to their subjective
nature and noise is indiscernible in natural settings. In this
article, we address a specific and important scenario of mon-
itoring suicidal ideation (SI), where time-series data, such as
galvanic skin response (GSR) and photoplethysmography (PPG),
are susceptible to such noise. Current methods predominantly
focus on image and text data or address artificially introduced
noise, neglecting the complexities of natural noise in time-
series analysis. To tackle this, we introduce a novel neural
network model tailored for analyzing noisy physiological time-
series data, named DBN_ConvNet, which integrates advanced
encoding techniques with confidence learning training to enhance
prediction performance. Another main contribution of our work
is the collection of a specialized dataset of GSR and PPG
signals derived from real-world environments for SI prediction.
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By employing this dataset, our DBN_ConvNet achieves a predic-
tion accuracy of 76.67% and an F1 score of 0.74 in a binary
classification task, outperforming state-of-the-art methods. Fur-
thermore, comprehensive evaluations have been conducted on
three other well-known public datasets with artificially intro-
duced noise to test the DBN_ConvNet’s capabilities rigorously.
These tests consistently demonstrated DBN_ConvNet’s superior
performance by achieving an improvement of more than 10% in
both accuracy and F1 score compared to the baseline methods.

Index Terms—Learning with noise, peripheral physiological
signals, suicidal ideation prediction.

I. INTRODUCTION

S
UICIDAL ideation (SI) is a critical public health issue,

affecting diverse demographic groups with notable preva-

lence [1]. Effective detection and timely intervention are crucial

for saving lives, yet accurately identifying at-risk individuals

poses substantial challenges, especially within high-stress envi-

ronments and communities marked by mental health stigma [2].

Such environments include colleges [3], aviation sectors [4],

and correctional facilities [5], where individuals might conceal

their mental states. This concealment significantly complicates

the precision of diagnosis, presenting unique challenges in these

settings.

Traditional methods for detecting SI typically rely on self-

reported data [6] and various behavioral assessments [7], in-

cluding questionnaires [8], interviews [9], facial expressions

[7], vocal patterns [10], and social media activities [11], [12].

However, these methods are significantly compromised by the

aforementioned concealment, as individuals can deliberately

manipulate their responses and hide their true emotions.

Advances in physiological monitoring provide new avenues

for assessing mental health states. Substantial evidence links

physiological responses associated with depressive states to SI,

offering a reliable pathway for intervention. Existing studies

show that depression, anxiety, loneliness, and agitation are key

risk factors for SI [13], [14], with the severity of depressive

symptoms identified as a significant predictor [15], [16]. Unlike

impulsive suicides that can result from sudden stressors, SI

related to chronic depression often presents discernible patterns

that enhance its predictability. Our study focuses on detecting SI

among prisoners arising from such long-term depressive states.
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Beyond behavioral expressions, physiological parameters are

less susceptible to voluntary manipulation [17] and have been

recognized as reliable indicators of specific affective states

[18]. Peripheral physiological signals, which reflect activities

of the autonomic nervous system (ANS), play a crucial role

in emotional responses [19]. Notably, depression is strongly

associated with measurable changes in galvanic skin response

(GSR) and photoplethysmography (PPG) [20], [21], [22], of-

fering objective markers for early detection that are difficult to

camouflage. Additionally, these measures are noninvasive [23],

cost-effective, and easily obtained through portable physiologi-

cal sensors, making them practical for large-scale applications.

Previous research links major depression to reduced emo-

tional responsiveness and altered ANS reactivity [19], [24].

This diminished responsiveness is often observed during emo-

tional tasks, such as viewing film clips [25], [26], with de-

pressed individuals showing less pronounced physiological

reactions. Drawing on these findings, our study employs GSR

and PPG signal analysis to detect subtle variations in ANS

responses triggered by a film clip.

A. Task Definition

Using features extracted from induced GSR and PPG signals,

this article approaches the prediction of SI as a binary classifi-

cation problem, distinguishing between “with SI” and “without

SI” labels.

B. Population Context

In this study, we focus on prisoners, a population where

the tendency of SI is significantly stronger than in the general

population. A Belgian prison survey [27], involving 1203 male

prisoners across 15 Flemish prisons, revealed that 43.1% of

these respondents reported a lifetime history of SI. Comparable

rates of SI were also found in prisons in Australia [28] and

China [29]. This situation is exacerbated by the unique psy-

chological and environmental stressors of prison life [30], [31],

[32], making this population particularly pertinent to our study.

C. Challenges

1) The utility of physiological signals in real-world applica-

tions is often hindered by inherent noise and variability in the

data, leading to credibility issues with labels. Positive labels

(denoted as “with SI”) are assigned to individuals showing

overt suicidal behaviors or who have previous suicide attempts,

while all others are labeled as negative labels (denoted as “with-

out SI”). Although most negative labels accurately reflect the

absence of suicidal ideation, a minority of individuals may

conceal their intentions or exhibit subtle signs, resulting in false

negatives. 2) Another challenge arises from the technical limita-

tions in existing methodologies. Despite recent advancements

in handling noisy time-series data [33], [34], many strategies

are borrowed from domains primarily dealing with image data

[35] or artificially noised series. These methods often fail to

address the unique complexities of noisy physiological time se-

ries, which are typically weakly annotated and characterized by

natural noise, thus complicating the analysis and interpretation.

D. Main Ideas

This study develops DBN_ConvNet, a novel computational

model designed to handle noisy physiological time-series data

of GSR and PPG signals. This model leverages semisupervised

learning and dynamic noise adaptation through confidence-

learning [36], enhancing the reliability of detecting suicidal

ideation (SI). Additionally, we have explored existing alter-

native noisy learning strategies including MentorNet [37] and

Coteaching [38], with EEGNet [39] as the feature extraction

backbone, to handle label noise. These strategies focus on the

loss of individual samples and are implemented in parallel to

assess their efficacy. In comparison, we benchmark our ap-

proaches against state-of-the-art networks tackling noise, such

as CTW [33], SREA [34], and DivideMix [35] to contextual-

ize their performance in noisy environments. To evaluate the

effectiveness of DBN_ConvNet and the noisy learning strate-

gies, we calculate accuracy, F1 score, and Matthews correlation

coefficient (MCC) on a clean test set. Furthermore, we assess

the model’s generalizability by analyzing its performance on

publicly available time-series datasets that have been artificially

noised.

To summarize, this article makes the following contributions.

1) We introduce DBN_ConvNet, a novel semisupervised

learning model that combines a self-supervised encod-

ing module with a supervised convolutional framework

specifically designed for noisy data environments. It em-

ploys a two-stage training strategy that initially identifies

and mitigates label noise via confidence learning, fol-

lowed by a refinement phase where DBN_ConvNet is re-

trained on a cleaned dataset, enhancing the reliability and

accuracy of SI prediction.

2) We construct a specialized dataset for SI prediction that

includes extracted features from physiological signals

and corresponding labels. Using an affective reactivity

paradigm, we collected GSR and PPG signals from a

cohort of 2190 prisoners. With the constructed dataset,

we address a significant gap in current research method-

ologies by successfully pioneering the prediction of SI

using peripheral physiological signals in a correctional

environment.

Experimental results confirm that our methods outperform

state-of-the-art models in SI prediction. Following a subject-

independent protocol, DBN_ConvNet achieves an average ac-

curacy of 76.67% (14.17% higher than baselines). In addition,

the application of sample-reweighting strategies also proves

effective in denoising, improving accuracy by 7.50% and 6.67%

for MentorNet and Coteaching, respectively compared to base-

lines.

II. RELATED WORK

A. Peripheral Physiological Indicators in Depression and

Suicidal Ideation Prediction

Previous research has shown the potential of peripheral

physiological signals as markers for SI when responding atyp-

ically to affective stimuli [26], [40]. These signals are auto-

matic responses from the autonomic nervous system (ANS) to
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emotional triggers [41], [42]. Specifically, emotional arousal

associated with sympathetic nervous system (SNS) activity can

be noninvasively monitored through peripheral physiological

measures. GSR and PPG are particularly valuable: GSR cap-

tures changes in skin conductance [43], while PPG provides

cardiovascular indices such as heart rate variability [44].

Numerous studies have established a correlation between

blunted SNS reactivity to psychological stressors and depres-

sive states. Individuals with major depressive disorder (MDD)

have demonstrated attenuated heart rate, blood pressure, and

GSR during mental stress, irrespective of their subjective per-

ception of stress [45], [46]. Salomon et al. [47] found dimin-

ished cardiovascular reactivity to stress exclusively in active

MDD cases, suggesting that blunted SNS functioning may be

related to current mood rather than a permanent trait. Similar

blunted responses to affective stimuli have been documented:

emotional films used to induce stress showed reduced phys-

iological reactivity in MDD individuals compared to healthy

controls [48]. These patterns highlight emotional disengage-

ment in MDD, potentially explaining associated interpersonal

difficulties and empathy deficits [49].

Additionally, even after controlling depressive symptom

severity, an inverse correlation between SI and changes in high-

frequency heart rate variability (HF-HRV) during mental stress

remained significant [40]. This correlation was further sup-

ported by studies using sad film clips, where blunted HF-HRV

responses differentiated MDD individuals with SI from those

without [26].

B. Computational Methods Using Physiological Signals

Traditional machine learning algorithms such as support vec-

tor machine (SVM), random forest (RF), naive Bayes (NB),

and nearest neighbor (KNN) have commonly been applied to

analyze GSR or PPG signals [50], [51], [52]. The field has

also seen the development of task-specific deep neural networks

[53], [54], [55], [56]. In contrast, EEG-based architectures have

demonstrated versatile adaptability and robust generalization

across tasks by leveraging central-peripheral nervous system

interrelations and compatible data formats. For instance, EEG-

Net [39] features a combination of standard 2D, depthwise, and

separable convolutions to simulate bilinear discriminant com-

ponent analysis for efficient feature integration. DeepConvNet

[57], designed for general use, incorporates five convolutional

layers to provide a versatile framework for feature analysis.

ShallowConvNet [57] simulates a feature extraction paradigm

(filter bank common space mode [58]) for analyzing EEG sig-

nals and excels in capturing oscillatory signals. FBCNet [59]

employs narrowband filters and non-overlapping convolutional

windows to capture spatial and temporal features across fre-

quency bands. DGCNN [60] and its sparse version [61] dy-

namically model electrode relationships in a graph, adapting

the adjacency matrix for complex multichannel data.

When adapting these for our study, the temporal convolution

layers preserve time-series analysis roles, while the spatial con-

volution layers handle manually extracted features from GSR

and PPG signals.

C. Learning With Noisy Labels

During the labeling process for our suicide ideation pre-

diction dataset (Section III-B), some samples with mid-range

scores indicated ambiguous SI, potentially introducing noisy

labels. To improve data quality and classification reliability,

we employ computational methods to automate noise filtering

during training.

To learn from noisy labels, researchers have developed robust

loss functions [62], [63], utilized regularization techniques [64],

and differentiated noisy from clean data based on sample loss

[65], [66], [67]. Our approach focuses on identifying and using

cleaner samples through effective noise discernment strategies.

Correctly labeled samples generally incur smaller losses early

in training due to class-dependent characteristics, whereas noisy

samples may require multiple training iterations to yield ac-

curate learning. In this context, confidence learning quantifies

the likelihood of label noise by estimating the joint distribution

between provided labels and model predictions, serving as a

filtering mechanism before formal training [36]. MentorNet

introduces a self-adjusting curriculum through a “mentor net”

that modulates sample loss weights, allowing the “student net”

to use these weights for more accurate learning outcomes [37].

Coteaching enhances noise robustness by deploying two classi-

fiers that exchange the least noisy samples for mutual training,

thus minimizing error propagation and enhancing the overall

noise handling [38].

Besides sample loss methods, self-supervised learning

through deep belief networks (DBNs) can also address label

deficiencies. DBNs, constructed from layered restricted

Boltzmann machines (RBMs) [68], train sequentially in an

unsupervised manner. They facilitate bidirectional data flow

between pairs of visible and hidden layers until a specific loss

threshold is met, enabling the reconstruction of contaminated

input data. This architecture minimizes overfitting and

enhances noise resilience, functioning independently of labels.

Moreover, recent efforts have been made to manage label

noise in the field of time-series data analysis. CTW [33] em-

ploys specialized data augmentation to mitigate artificial noise

effects. SREA [34] demonstrates strong capabilities in indus-

trial contexts, suggesting potential adaptations for physiological

data. Additionally, DivideMix [35] treats noisy label learning

as a semisupervised problem, segregating data into presumed

clean and noisy subsets to improve training effectiveness.

Despite the advancements above, these methods often rely on

artificial noise or are unsuitable for physiological serials, inad-

equately addressing the complexities of inherently noisy time-

series data. Our study seeks to bridge this gap by incorporating

advanced noise-handling techniques into our DBN_ConvNet

framework, thus refining the analysis of physiological signals

with noisy labels.

III. DATA COLLECTION

To tackle the issue of predicting SI using peripheral phys-

iological signals with noisy labels, a significant contribution

of this study is the creation of a dataset comprising features

extracted from GSR and PPG signals obtained via portable
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devices during an affective reactivity paradigm, along with

corresponding labels.

A. Participants

Participants in this study were male prisoners from a prison

in Hunan Province, China, who volunteered following research

advertisements within the prison. We excluded individuals who

were hospitalized or housed in high-security sectors. The final

sample comprised 2190 right-handed prisoners (mean age =
40.96 ± 12.59 years). Among them, nine were serving life sen-

tences, while the remaining participants had sentence lengths

ranging from 6 months to 24 years (mean length = 7.47 ±
4.35 years). The majority of participants were convicted of theft

(9.05%), robbery (9.09%), fraud (12.95%), bribery (15.29%),

and drug trafficking (15.42%).

Ethical clearance was obtained from the Institutional Review

Board of the Institute of Psychology, Chinese Academy of Sci-

ences. Participants voluntarily joined the study, fully informed

about its nature, procedures, and their rights, including confi-

dentiality and the option to withdraw at any time.

B. Labels

Participants were labeled as “with SI” (positive, coded as 1)

or “without SI” (negative, coded as 0) based on three types of

assessments: prisoners’ histories of attempted suicide or self-

harm, observations made by prison guards, and face-to-face

interviews conducted with licensed psychologists. SI ratings

were collected from the prison guards responsible for each

participant using a one-question survey, which asked: “To what

extent do you believe this prisoner is likely to engage in suicidal

behavior?” Guards provided their responses on a 10-point Lik-

ert scale, ranging from 1 (not at all) to 10 (very likely), based

on the prisoner’s daily behaviors.

1) Positive Samples: The participants were required to sat-

isfy the following three conditions simultaneously to be as-

signed a positive label.

(P1) History of attempted suicide or self-harm, or proactive

expression of suicidal thoughts.

(P2) Guard’s rating score ≥ 6.

(P3) Clinical judgment made by professionals. Participants

meeting the first two conditions underwent a face-to-face

semistructured interview with pretrained correctional po-

lice officers from the Department of Educational Reform

and Psychological Correction. The interview further as-

sessed factors contributing to an individual’s SI, including

will-to-life, degrees of emotional immersion, and despair

levels.

Using the above procedure, 30 participants were identified as

positive samples and labeled as 1, while all others were labeled

as 0 (negative).

2) Negative Samples: While the above conditions ensure

the reliability of positive samples, some participants scored in

the mid-range or exhibited behavioral camouflage, contributing

noise to the 0-labeled group. To address this, 0-labeled samples

were split into two subgroups: purified true negatives and those

with lower credibility. The purified subgroup had to meet these

three conditions simultaneously.

(N1) Participants with no history of attempted suicide or self-

harm, and who have never proactively expressed suicidal

thoughts.

(N2) Participants who received the lowest rating score (1 on

a 10-point Likert scale) concurrently from at least three

guards.

(N3) Verification conducted by psychologists. Similar to the

true positive samples, participants who met the first two

conditions were also subjected to face-to-face semistruc-

tured interviews. During these interviews, trained cor-

rectional officers provided additional validation of their

nonsuicidal states.

This procedure selected a total of 21 true negative samples.

Given the relatively low prevalence of suicide in prisons, the

larger subgroup, though labeled as “uncertain negative,” likely

consists predominantly of non-SI cases. This separation helps

balance the numbers between true positives and true negatives.

Ultimately, the labels are distributed into three groups.

1) True Positive (TP): participants with SI, totaling 30

samples.

2) True Negative (TN): participants without SI, totaling 21

samples.

3) Uncertain Negative (UN): participants with ambiguous

assessments or mid-range scores, predominantly without

SI, totaling 2139 samples.

C. Stimuli and Apparatus

A 5-min. video clip related to family affection was utilized

as the evocative stimulus. The video depicted the reactions of a

group of young adults upon witnessing their parents, who were

artificially aged by 20 years through special effect makeup.

It was selected based on preliminary interviews with correc-

tional officers and a thorough review of the literature, which

emphasized the influence of family support on depressive mood

and suicidal ideation among incarcerated individuals [69], [70].

A prior validation study with 2805 incarcerated males further

confirmed that this video effectively induced sadness and high

emotional arousal in most participants. The video clip is avail-

able upon request.

Prisoners watched this video during the study, while we con-

currently recorded their GSR and PPG signals using a custom

wristband (Ergosensing, China). All prisoners wore the wrist-

band on their non-dominant hand. GSR signals were recorded at

a sampling rate of 4 Hz and a resolution of 0.01 µS, while PPG

signals were obtained at a sampling rate of 100 Hz, utilizing

the reflected green light with a wavelength of 532 nm.

D. Procedure

Participants were briefed on the study’s purpose, proce-

dures, and their rights—including voluntary participation and

confidentiality—before giving informed consent to proceed.

Grouped by cellblocks, after taking seats and wearing wrist-

bands, they underwent two distinct phases: an initial 3-min.

quiet sitting period for baseline data collection (“static” phase),
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Fig. 1. Proposed DBN_ConvNet model, composed of one DBN module, one convolution module, and one classification module. The input layer of the
model is composed of Dm vectors, where Dm denotes the number of extracted features and T represents the dimensionality of each feature vector. H2 is
the number of units in the hidden layer of RBM-2, F is the number of filters (set to 16), P =min(H2//4, 8) is a pooling size in the second block of the
convolution module, and Y ∗ is the predicted label.

followed by the “stimulation” phase where they watched the

selected video clip.

This setup was crucial for capturing and contrasting baseline

electrophysiological responses with those elicited during emo-

tional stimulation, vital for the development of our predictive

algorithms. To address this, the amplitude of each timestamp in

the “stimulation” phase was adjusted by subtracting the mean

value of the “static” phase.

E. Preprocessing

In the preprocessing stage, personal identifiers were replaced

by unique codes for access.

1) Feature Extraction and Normalization: GSR signals

were filtered using a 2nd-order low-pass Butterworth filter with

a cutoff frequency of 0.8 Hz. The signals were then cleaned and

decomposed into tonic (SCL) and phasic (SCR) components

using a Python toolbox [71] and a convex optimization method

[72], respectively. Following the decomposition, GSR signals

and their components were segmented into 10-s windows with

60% overlap (4-s intervals). Within these windows, 35 time-

domain and frequency-domain features were extracted for anal-

ysis. PPG signals were filtered using a 3rd-order band-pass

Butterworth filter with a lower cutoff frequency of 0.6 Hz and a

higher cutoff frequency of 5 Hz. These filtered signals were seg-

mented into 20-s windows, each overlapping 80% with the next.

Using the HeartPy [73] Python package, features like peak-

to-peak interval, root-mean-square of successive differences,

pulse width, pulse area, and Shannon entropy were extracted,

resulting in 38 distinct features per window. The full details

of GSR and PPG features are listed in Appendix A (see the

supplementary material).

Signal durations, approximately 300 s, were divided into

segments by an interval of 4 s, each yielding 75 samples for

GSR and PPG features. Due to minor recording discrepancies,

the number of windows varied around 75 ± 5. For consistency,

sequences were standardized to 70 windows, resulting in 35 ×

70 and 38 × 70 feature matrices for GSR and PPG, respec-

tively. These matrices were concatenated to form a 73 × 70

“FUSE” matrix. Features within each window were normalized

using min–max normalization to ensure uniform scale across

dimensions.

2) Notations: After normalization, feature sequences and

corresponding labels were structured for network processing.

Feature sequences for each individual’s GSR and PPG, and their

fusion are denoted as VGSR[D
GSR
(35) , 70], VPPG[D

PPG
(38) , 70], and

VFUSE[D
FUSE
(73) , 70], respectively. Labels ỹi ∈ {0, 1} represent

the initial label for sample i, potentially incorrect for some

UN samples. ~y∗i ∈ R
2 denotes the output probabilities, where

~y∗i [0] and ~y∗i [1] indicate probabilities of negative and positive

labels, respectively. The predicted label y∗i ∈ {0, 1} matches the

coding described in Section III-B

y∗i =

{

0, ~y∗i [0]≥
~y∗i [1]

1, others
(1)

IV. DBN_CONVNET MODEL

Addressing the technical challenge of robust SI predic-

tion with noisy label data, we introduce DBN_ConvNet, an

innovative neural network architecture. This section details

DBN_ConvNet, which merges DBN with convolutional mod-

ules for noise-aware classification. We also incorporate confi-

dence learning [36] to train DBN_ConvNet effectively in two

stages. The subsequent subsections elaborate on the network’s

structure and training methodology.

A. Architecture

As shown in Fig. 1, DBN_ConvNet consists of three parts:

a DBN module, a convolution module, and a classification

module.

For the DBN module, each feature channel is independently

processed by a corresponding DBN instance. As a result, for

modality m ∈ {GSR,PPG,FUSE}, there are Dm = 35, 38,
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Fig. 2. Architecture of the DBN module of the proposed DBN_ConvNet. RBM-1 and RBM-2 constitute the module, consisting of one 70-unit input layer

(V [1]), one 50-unit hidden layer (H[1]), and one 25-unit output layer (H[2]). For each feature extracted from the preprocessed PPG (or GSR) data, the windows
are formatted into a 70-dim vector as the DBN input X .

and 73 DBN instances, respectively. Specifically, the input

matrix is divided into Dm subsequences based on the feature

dimension, with each sequence forming a T -dimensional vector

~vf for the fth feature (f = 1, 2, ..., Dm). These vectors are then

transformed into encoded vectors ~hf , as defined in (2), using

the weight matrices (Wf1, Wf2) and biases (bf1, bf2) of the

RBMs

~hf =Wf2(Wf1 ~vf + bf1) + bf2. (2)

Fig. 2 presents the details of each DBN instance: two cascad-

ing RBMs with T = 70 input units (consistent with the number

of windows), 50 units in the first hidden layer, and 25 units in

the last embedding layer.

This encoding process not only compresses the input data

but also minimizes reconstruction loss [see (5)], ensuring the

retention of critical time-series data components and effectively

handling the variations among the features.

The convolution module concatenates ~hf back into a matrix

H of size [Dm, 25], aggregating the compact representations

from different feature channels. Subsequently, a set of 2-D

filters (with dimensions Dm × 1) are applied to these features

to learn feature weights and reduce the feature dimension.

The classification module, consisting of a fully connected

layer and a softmax layer, outputs two probabilities, one for

each label type. The final label for a sample is assigned based

on the higher probability between these two outputs.

The detailed data dimensionality for each module is listed in

Appendix C (Table A2) (available online).

B. Semisupervised Training With Confidence Learning

We employ a two-stage training approach integrated with

confidence learning (CL) (see the purple arrows in Fig. 3).

The first stage involves generating rough predictions for label

confidence assessment and noise identification. In the second

Fig. 3. Validation pipeline of DBN_ConvNet. The pink semicircuit repre-
sents a cross-validation stage, which contains ten folds (see Fig. 4 for one
fold). The purple arrows draw the whole circuit of our CL-aided procedure.

stage, the training dataset is refined by filtering out the noise

identified through CL, thereby enhancing DBN_ConvNet’s pre-

diction accuracy. For both of these stages, the DBN_ConvNet

is independently initialized and trained with the same hyper-

parameters and validation protocols, with the only difference

lying in the database used.

The pseudocode of the entire two-stage training process

is summarized in Algorithm 1, where steps 5 constitute the
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Fig. 4. Visualization of the partition of each fold in cross-validation.

Algorithm 1: Training and Predicting Process of

DBN_ConvNet.

Require:

The set of true positive samples, TP;

The set of true negative samples, TN;

The set of original uncertain negative samples, UN1;

DBN_ConvNet with parameter θ;

Ensure:

Likelihood of being with suicidal ideation for each sample,
~y∗i.

1: while not all ~y∗
1

i are calculated do

2: Initialize θ randomly;

3: Select samples from TP,TN, and UN1 to build current

dataset as Table I;

4: Unsupervised training of the DBN module;

5: Supervised training of the entire network until con-

verged;

6: Credit ~y∗
1

i of samples in the current test set to the total

accumulated average.

7: end while

8: Calculate the joint distribution matrix Qy∗,ỹ and filer noisy

samples from UN1 according to PBNR method to get UN2

with higher purity.

9: Repeat step 1-7 and replace UN1 and ~y∗
1

i by UN2 and

~y∗
2

i .

10: return ~y∗
1

i and ~y∗
2

i ;

training process and step 6 makes the prediction for each stage.

Step 8 involves confidence learning, where ~H1
i represents the

inferred result in the first stage, and ~H2
i represents the inferred

results in the second stage for sample i.

1) Training Process: DBN_ConvNet’s training integrates a

self-supervised phase followed by a supervised phase in both

of its stages.

During the self-supervised phase, data undergoes bidirec-

tional processing in each RBM unit of the DBN module across

three epochs, and the parameters are updated using the recon-

struction loss Lcon [see (5)], defined as follows:

~hfj

k
=Wfj ~vfj

k + bfj (3)

~vfj
k+1 =Wfj

T ~hfj

k
+ b∗fj (4)

TABLE I
SAMPLE COMPOSITION OF THE DATASET IN EACH FOLD

# of TP # of TN # of UN

Training dataset 21 15 6

Test dataset 6 6 0

Note: “#” Denotes the number of samples.

Lfjk
con = ‖ ~vfj

k − ~vfj
k+1‖1 (5)

where k ∈ {0, 1, 2} is the iteration index, f = 1, 2, ..., Dm is the

DBN index for the fth feature, j ∈ {1, 2} is the RBM index,

Wfj is the weight matrix of RBM-j of the fth DBN (Wfj
T is

its transpose), and bfj , b∗fj are the forward and backward biases

of RBM-j of the fth DBN.

During the supervised phase, the network switches to a uni-

directional training mode. Data sequentially passes through

the DBN, convolution, and classification modules. The cross-

entropy loss [defined in (6)] is computed right after the softmax

layer

L=− ~y∗i [ỹi] + log

1
∑

c=0

e
~y∗

i
[c]. (6)

2) Noise Filtering by Confidence Learning: DBN_ConvNet

incorporates confidence learning (CL) [36] as a crucial step in

its training process, encompassing probability prediction, joint

distribution computation, and noise filtering.

Each training stage begins with a selection of samples, in-

cluding TP, TN, and approximately 2000 UN samples (as

defined in Section III-B). After the ten-fold cross-validation,

model-inferred probabilities are used to gauge label confidence

( ~y∗i [ỹi]) for each sample, aiding in identifying potential noise.

The process employs the PBNR method [36] to quantify the

amount of noise (Nnoise) in the UN sample set. Samples with

the lowest label confidence scores are then excluded, refining

the training set for the subsequent stage. This CL-based ap-

proach is anticipated to enhance DBN_ConvNet’s performance,

especially in the second training stage with a more purified

dataset. The experimental results in Section VI-C validate this

point.

Readers are referred to Appendix B (available online) for full

implementation details about CL.

V. SUICIDAL IDEATION PREDICTION SYSTEM

Our system assesses the probability of suicidal ideation (SI)

in prisoners, using feature matrices detailed in Section III-E.

To address label uncertainty, we employ two strategies: sample-

reweighting with MentorNet [37] and Coteaching [38] us-

ing EEGNet [39], and direct noise management through

DBN_ConvNet (Section IV) with confidence learning (CL)

[36]. These approaches lead to three classification methods,

whose training and operational details will be further elaborated

in the following sections.
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A. Implementation of the Classification Methods

The implementation details of the three models in the pre-

diction system are as follows.

1) MentorNet-EEGNet: This model employs EEGNet as the

StudentNet and retains the original structure of Mentor-

Net described in [37]. During the training phase, the

sample loss and iteration-related elements are structured

and fed into MentorNet.

2) Coteaching-EEGNet: This model utilizes two instances

of EEGNet as the subnets, following the approach in [38].

During the testing phase, the instance that performs better

on the training set is selected as the classifier.

3) DBN_ConvNet: This is the deep neural network model

proposed in Section IV. It performs the classification task

in two stages, utilizing the CL method.

The classification modules for all methods employ a 2-unit

output layer as described in Section IV-A, which outputs the

probability vector ~y∗i . Each classifier is trained with the Adam

optimizer using cross-entropy loss L [see (6)].

Specifically, MentorNet employs an LSTM architecture to

calculate the loss weight ω = G(L, ~z, θ) based on sample loss

L and iteration variables ~z, where θ denotes its parameters.

The weighted loss LM is computed as (7)

LM = ωL. (7)

Therefore, the MentorNet subnet functions as a dynamic

weighting module and utilizes a separate Adam optimizer to

update its parameters.

Additionally, EEGNet without sample-reweighting serves as

an independent baseline for comparison.

B. System Settings

The proposed system utilizes the following settings for pre-

diction.

1) Evaluation Metrics: Classification accuracies, F1-scores,

and Matthews Correlation Coefficient (MCC-scores) are calcu-

lated for each model to ensure the consistency between model

outputs and given labels on clean data.

2) Validation Protocol: A subject-independent protocol with

ten-fold cross-validation ensures comprehensive coverage of all

2190 samples, with mean evaluation metrics computed across

the folds.

3) Dataset Splitting: As shown in Table I, for each validation

fold, 12 samples (i.e. six from the TP set and six from the

TN set) are randomly selected to form a test set1 For further

validation in Section VI-C, 3 TP samples are randomly selected

from the TP set. Consequently, the remaining 21 TP and 15 TN

samples form the training set. To enhance data diversity and

address label imbalance, six UN samples with negative labels

are also included. While most UN samples likely do not exhibit

SI, they contribute to category representation. For UN samples

potentially containing SI, employed antinoise techniques help

mitigate their influence through weighted filtering.

1To ensure accurate evaluation metric values, samples with label uncertainty
(UN) are excluded from the test set.

TABLE II
ACCURACIES OF FOUR MODELS ON THE PREDICTION TASK

PPG GSR FUSE

Baseline [39] 0.5750 ± 0.0970 0.5167 ± 0.0311 0.6250 ± 0.1219

MentorNet [37] 0.6167 ± 0.1011 0.5833 ± 0.0865 0.7000 ± 0.1083

Co-teaching [38] 0.6333 ± 0.1243 0.6000 ± 0.0970 0.6917 ± 0.1145

DBN_ConvNet 0.6833 ± 0.1185 0.7083 ± 0.1049 0.7667 ± 0.0865

Average 0.6417 0.6083 0.6933

Note: The bold entries indicate the optimal value for each respective column.

TABLE III
F1 SCORES OF FOUR MODELS ON THE PREDICTION TASK

PPG GSR FUSE

Baseline [39] 0.5895 ± 0.2979 0.2706 ± 0.3367 0.5540 ± 0.2860

MentorNet [37] 0.5342 ± 0.0875 0.6074 ± 0.1495 0.7120 ± 0.1680

Co-teaching [38] * * *

DBN_ConvNet 0.6215 ± 0.0868 0.6518 ± 0.1557 0.7435 ± 0.0997

Average 0.5817 0.5099 0.6698

Note: * Indicates that the value is very close to 0. The bold entries indicate
the optimal value for each respective column.

TABLE IV
MCC SCORES OF FOUR MODELS ON THE PREDICTION TASK

PPG GSR FUSE

Baseline [39] 0.2231 ± 0.2133 0.0302 ± 0.1125 0.2918 ± 0.2614

MentorNet [37] 0.2970 ± 0.0275 0.2400 ± 0.0179 0.4424 ± 0.0152

Coteaching [38] * * *

DBN_ConvNet 0.4265 ± 0.1990 0.4520 ± 0.2169 0.5758 ± 0.1634

Average 0.3155 0.2407 0.4367

Note: * Indicates that the value is very close to 0. The bold entries indicate
the optimal value for each respective column.

4) Generating Prediction Results: In each fold of the cross-

validation, the trained model is used to evaluate not only the

samples in the test set but also all UN samples (approximately

2000) not included in the training set, to obtain their SI proba-

bility scores. The average score for each participant across all

folds is calculated as their final prediction result.

VI. EXPERIMENT

This section summarizes the results obtained from three

classification models employed in the prediction system

(Section VI-A). Furthermore, a comparison of these results

with state-of-the-art approaches is presented (Section VI-B),

followed by an in-depth analysis of the key components

of DBN_ConvNet through ablation studies (Section VI-C).

We also examine misclassified cases and the underlying reasons

for these errors further in Appendix G (available online).
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A. Classification Results

In Tables II–IV, the average values and corresponding stan-

dard deviations of accuracy, F1 score, and MCC score are re-

ported for four models: the three classification models presented

in Section V-A and the EEGNet model [39] as the baseline.

The proposed DBN_ConvNet achieves the best performance

in all these three modalities (i.e., PPG, GSR, and FUSE).

Specifically, in the FUSE modality, DBN_ConvNet achieves an

accuracy of 76.67% (which is 14.17% higher than baseline), an

F1 score of 74.35% (which is 18.95% higher than baseline),

and an MCC score of 57.58% (which is 28.40% higher than

baseline).

The integration of loss reweighting strategies into EEGNet

markedly improves noise mitigation, with MentorNet [37] and

Coteaching [38] increasing accuracy by 7.50% and 6.67%,

respectively. Despite these gains, Coteaching records lower

scores in Tables III to IV, likely due to overfitting caused by

small mini-batch sizes used for sample exchange [74].

Furthermore, integrating GSR and PPG features (FUSE

modality) enhances the classification performance for most of

the evaluated models. Consequently, subsequent investigations

mainly concentrate on exploring the potential of the FUSE

modality.

B. Comparison With State-of-the-Arts

To demonstrate the efficacy of the proposed methods in

handling noise, they are compared with three established ma-

chine learning algorithms, four predominant deep learning

methods designed for physiological signals, and three state-

of-the-art noisy learning architectures, all using the FUSE

modality.

1) Machine Learning (ML) Methods: Support Vector Ma-

chines (SVM), K-Nearest Neighbors (KNN), and Random For-

est (RF) from the Scikit-learn library [75] handle our 2-D

time-series data, which is flattened into 1-D vectors. Each par-

ticipant’s data is segmented into 70 input vectors, each of di-

mensionality DFUSE
(73) , ensuring minimal information loss while

preserving feature correlations.

2) Deep Learning (DL) Methods: FBCNet [59], DeepCon-

vNet [57], ShallowConvNet [57], DGCNN [60], and LSTM [76]

are selected as state-of-the-arts. The first four models, along

with the baseline EEGNet model, utilize convolution layers and

fully connected layers for the classification task.

3) Noisy Learning (NL) Methods: CTW [33], SREA [34],

and DivideMix [35] are employed as recent advancements in

handling noisy labels, utilizing techniques that segregate clean

and noisy data or adaptively reweight training samples to im-

prove robustness in learning from noisy datasets.

Implementation details of ML, DL, and NL methods are

detailed in Appendix D (available online). A Mann–Whitney U

Test is conducted to assess statistical significance between the

results of DBN_ConvNet and of other methods, further detailed

in Appendix F (available online).

The results, including accuracies, F1 scores, and MCC scores

of these comparative classifiers, together with the p-values, are

TABLE V
ACCURACIES, F1-SCORES, MCC-SCORES, AND p-VALUES OF

COMPARATIVE METHODS

Accuracy F1 MCC p

KNN 0.5690 ± 0.0709 0.6027 ± 0.0633 0.1388 ± 0.1438 0.0034**

RF 0.5833 ± 0.0978 0.6009 ± 0.0965 0.1706 ± 0.2008 0.0012**

SVM 0.5976 ± 0.0621 0.6441 ± 0.1632 0.2070 ± 0.1440 0.0001**

FBCNet [59] 0.6250 ± 0.0822 0.5761 ± 0.2909 0.2802 ± 0.2180 0.0001**

EEGNet [39] 0.6250 ± 0.1219 0.5540 ± 0.2860 0.2918 ± 0.2614 0.0001**

DeepConvNet [57] 0.5750 ± 0.0990 0.6091 ± 0.2822 0.1891 ± 0.2309 0.0054**

ShallowConvNet [57] 0.6250 ± 0.1219 0.6108 ± 0.1857 0.2988 ± 0.2572 0.0001**

DGCNN [60] 0.6083 ± 0.1039 0.5832 ± 0.2798 0.2463 ± 0.2166 0.0004**

LSTM 0.6000 ± 0.1233 0.4516 ± 0.1018 0.2410 ± 0.2553 0.0001**

CTW [33] 0.5076 ± 0.1134 0.5015 ± 0.1200 0.0174 ± 0.2450 0.0980

SREA [34] 0.5606 ± 0.1180 0.5525 ± 0.1211 0.1435 ± 0.2406 0.0020**

DivideMix [35] 0.5727 ± 0.1531 0.5473 ± 0.1893 0.1457 ± 0.3299 0.0660

DBN_ConvNet 0.7667 ± 0.0865 0.7435 ± 0.0997 0.5758 ± 0.1634 ———

Note: * p < 0.05 ** p < 0.01. The bold entries indicate the optimal value
for each respective column.

TABLE VI
ACCURACIES, F1-SCORES, AND MCC-SCORES OF DIFFERENT CONDITIONS

FOR THE SELFSUPERVISED TRAINING PHASE

Condition Accuracy F1 MCC

Without DBN Pretraining 0.7251 ± 0.1025 0.6669 ± 0.1200 0.4830 ± 0.2064

With UN Samples 0.7500 ± 0.0795 0.7084 ± 0.1505 0.5336 ± 0.1507

With Entire Training Set 0.7667 ± 0.0865 0.7435 ± 0.0997 0.5758 ± 0.1634

Note: The bold entries indicate the optimal value for each respective column.

presented in Table V, clearly demonstrating the superiority of

the proposed DBN_ConvNet model.

C. Ablation Study

To demonstrate the effectiveness of the design principles

sustaining DBN_ConvNet, specifically the integration of self-

supervised DBN training as outlined in Section IV-B1 and the

implementation of confidence learning (CL) for noise filtering

detailed in Section IV-B2, we conduct a comprehensive series

of five ablation experiments.

1) Self-Supervised Training of DBN: The DBN_ConvNet

model significantly outperforms other methods in the FUSE

modality, as evident in Tables II and V. This superior perfor-

mance may be attributed to the self-supervised training phase

of the DBN module, which effectively reduces redundancy in

the feature sequences while preserving essential components to

minimize reconstruction loss.

To verify the analysis of the self-supervised training process

above, two additional experiments are designed. First, the self-

supervised phase is entirely removed, resulting in a unidirec-

tional data flow through the DBN module, the convolution

module, and the classification module of DBN_ConvNet in se-

quence, and the model is trained with full supervision. Second,

only UN samples are used in the self-supervised phase to test

the data purity’s influence on the DBN module’s reconstruction

function. This experiment is conducted with the same validation

protocols as the original process in Section IV-B2, and the

results are summarized in Table VI, which shows that with
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TABLE VII
ACCURACIES, F1-SCORES, AND MCC-SCORES IN CROSS-VALIDATION

BEFORE AND AFTER CL METHOD

Stage Accuracy F1 MCC

Before CL 0.6833 ± 0.0900 0.6491 ± 0.1023 0.4169 ± 0.1872

After CL 0.7667 ± 0.0865 0.7435 ± 0.0997 0.5758 ± 0.1634

Note: The bold entries indicate the optimal value for each respective column.

TABLE VIII
RANKS OF THE 3-MIXED TP SAMPLES

No. Validation Prisoner ID Rank Average Overall Average

1
A 0

39.33

41.33

B 17
C 101

2
D 9

58.33E 59
F 107

3
G 0

26.33H 28
I 51

Note: The bold entries indicate the optimal value for each respective
column.

self-supervised training, DBN_ConvNet performs much better.

When trained with only UN samples, the DBN module shows

slightly inferior reconstruction ability compared to training with

the entire training set but still outperforms the nonreconstruc-

tion condition. This suggests that the features extracted from

UN samples are exploitable, although the decrease in data pu-

rity may introduce challenges for self-supervised learning via

reconstruction.

2) Effectiveness of CL Method: The DBN_ConvNet train-

ing process consists of two stages, as outlined in Section IV-B,

with the CL method serving as an intermediate noise-filtering

step. To evaluate its impact, performances before and after

applying the CL method are compared. Table VII demonstrates

an improvement in classification results after discarding UN

samples identified as noisy by the CL method, confirming the

mismatch between their given labels and ground truth.

3) Validation of the Detected Noise: As detailed in

Section V-B, 3 TP samples are excluded from both training and

testing in each cross-validation fold. These samples, along with

UN samples not used for training, are assessed by the trained

models to predict SI probabilities. The effectiveness of noise

detection is evaluated by analyzing whether these TP samples

rank within the top 200 of approximately 2000 UN samples.

This ratio, reflective of the typical prison suicide rate, suggests a

manageable scope for further diagnosis. This validation process

is repeated three times, each time with a different set of 3 TP

samples, resulting in nine individuals being tested. The ranking

outcomes, detailed in Table VIII, support the accomplishment

of the task as defined in Section I.

4) Impact of Dataset Size: The relatively small number

of TP and TN labels necessitated splitting feature sequences

TABLE IX
PERFORMANCE OF DBN_CONVNET WITH DIFFERENT WINDOW LENGTHS

Accuracy F1 MCC

CUT 0.7158 ± 0.0472 0.6975 ± 0.0716 0.4385 ± 0.0903

ALL 0.7667 ± 0.0865 0.7435 ± 0.0997 0.5758 ± 0.1634

Note: “ALL” stands for the original length 70, “CUT” for the sliced length 7.
The bold entries indicate the optimal value for each respective column.

into smaller temporal segments to enlarge the test set. As

shown in Table IX, dividing the original feature sequence of

the FUSE modality into ten segments with DBN_ConvNet

reduces the length from 70 to 7. Although this results in a slight

performance drop, it remains satisfactory. The diminished met-

rics likely stem from the reduced capacity of the model to

leverage complete temporal contexts, essential for capturing

comprehensive dynamics within the data.

5) Validation on Public Datasets: To assess the generaliz-

ability of DBN_ConvNet, we test on three binary-classification

EEG datasets from the UEA repository—EyesOpenShut, Fin-

gerMovements, and SelfRegulationSCP1 [77]. These datasets

were chosen for their task relevance and similar sample sizes to

our study. We introduce symmetrical artificial noise at a ratio of

0.3 to each dataset. For DBN_ConvNet, hyperparameters Dm

and T are adjusted to fit the dimensionality and time length

of these datasets. As shown in Table X, our DBN_ConvNet

achieves the highest accuracy on all these three datasets, further

underscoring its robustness and adaptability.

VII. DISCUSSION

In this section, we aim to provide a comprehensive anal-

ysis of the insights gained from our model, which has been

instrumental in unraveling the intricate relationship between

physiological indicators and the prediction of SI. Additionally,

we discuss the limitations of our study and provide suggestions

for future research.

A. Unveiling Potential Physiological Indicators: Insights

From the Model

Analysis of DBN_ConvNet’s parameters in the FUSE modal-

ity, which achieved the best prediction performance, reveals key

physiological indicators of SI. Specifically, we calculate the

average of absolute values of the convolutional weights from

the first convolutional block of DBN_ConvNet [refer to Ap-

pendix C, Table A2 for detailed information (available online)]

across the filters, resulting in a set of Dm = 73 values that

represent the weight assigned to each feature. These values are

then sorted in descending order and provided in Appendix E,

Table A3 (available online). These statistical findings obtained

through deep learning are consistent with previous empirical

observations and support their relevance in understanding SI.

Significant heart rate variability (HRV) indicators from the

PPG modality, including pNN20, S, SDNN, and SD1 [de-

tailed in Appendix A, Table A1 (available online)], rank
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TABLE X
ACCURACIES, F1-SCORES AND MCC SCORES OF COMPARATIVE METHODS ON NOISED PUBLIC SERIAL DATASETS

Model_Name
Eyes Open Shut Finger Movements Selfregulation SCP1

Accuracy F1 MCC Accuracy F1 MCC Accuracy F1 MCC

FBCNet [59] 0.5286 ± 0.0797 0.5414 ± 0.2955 0.0706 ± 0.1677 0.5111 ± 0.0387 0.5934 ± 0.1588 0.0291 ± 0.0899 0.5148 ± 0.0406 0.3241 ± 0.3169 0.0445 ± 0.0922

EEGNet [39] 0.6643 ± 0.1249 0.6484 ± 0.1362 0.3341 ± 0.2510 0.5444 ± 0.0548 0.6271 ± 0.0829 0.1082 ± 0.1243 0.8389 ± 0.0284 0.8397 ± 0.0230 0.6813 ± 0.0552

DeepConvNet [57] 0.6786 ± 0.0684 0.6843 ± 0.1128 0.4373 ± 0.1225 0.5028 ± 0.0060 0.5459 ± 0.2690 0.0097 ± 0.0221 0.6074 ± 0.0450 0.6800 ± 0.0267 0.2505 ± 0.0806

ShallowConvNet [57] 0.6929 ± 0.1015 0.7035 ± 0.1059 0.4050 ± 0.2123 0.5264 ± 0.0266 0.6042 ± 0.0819 0.0657 ± 0.0733 0.6463 ± 0.0791 0.6323 ± 0.1051 0.3195 ± 0.1740

DGCNN [60] 0.6357 ± 0.1266 0.6108 ± 0.1842 0.2875 ± 0.2617 0.5625 ± 0.0441 0.6042 ± 0.0484 0.1298 ± 0.0931 0.8519 ± 0.0283 0.8540 ± 0.0244 0.7061 ± 0.0580

LSTM 0.5643 ± 0.0616 0.4566 ± 0.2461 0.1706 ± 0.1684 0.5375 ± 0.0571 0.5625 ± 0.2242 0.0972 ± 0.1236 0.5648 ± 0.1201 0.5627 ± 0.2851 0.1620 ± 0.2512

CTW [33] 0.5418 ± 0.1986 0.5366 ± 0.1982 0.0774 ± 0.4044 0.5092 ± 0.0275 0.5072 ± 0.0281 0.0188 ± 0.0534 0.7686 ± 0.0397 0.7678 ± 0.0408 0.5412 ± 0.0739

SREA [34] 0.3934 ± 0.1470 0.3708 ± 0.1506 0.0041 ± 0.4002 0.4538 ± 0.0235 0.4465 ± 0.0279 0.0045 ± 0.4435 0.7629 ± 0.0440 0.7627 ± 0.0440 0.0076 ± 0.7644

DivideMix [35] 0.3769 ± 0.0985 0.3747 ± 0.0991 -0.2544 ± 0.2050 0.4652 ± 0.0507 0.4506 ± 0.0404 -0.0713 ± 0.1019 0.6885 ± 0.0557 0.6647 ± 0.0906 0.4092 ± 0.0756

Co-teaching [38] 0.6500 ± 0.0542 0.5157 ± 0.0910 0.1584 ± 0.0822 0.5653 ± 0.0413 0.6124 ± 0.0495 0.0440 ± 0.0714 0.8519 ± 0.0428 0.6907 ± 0.0338 0.3921 ± 0.0664

Mentor [37] 0.6286 ± 0.1160 0.6166 ± 0.1418 0.2624 ± 0.2326 0.5542 ± 0.0434 0.6499 ± 0.0324 0.1327 ± 0.1014 0.8148 ± 0.0600 0.8089 ± 0.0577 0.6359 ± 0.1202

DBN_ConvNet (ours) 0.7071 ± 0.0943 0.6819 ± 0.1144 0.4321 ± 0.1985 0.6097 ± 0.0608 0.6476 ± 0.0627 0.2284 ± 0.1244 0.8537 ± 0.0550 0.8563 ± 0.0544 0.7105 ± 0.1097

MeanBaselines 0.5777 ± 0.1070 0.5509 ± 0.1601 0.1775 ± 0.2280 0.5211 ± 0.0376 0.5640 ± 0.0949 0.0517 ± 0.1180 0.7192 ± 0.0531 0.6898 ± 0.0953 0.3773 ± 0.1647

Mean 0.5885 ± 0.1059 0.5618 ± 0.1563 0.1988 ± 0.2255 0.5285 ± 0.0395 0.5710 ± 0.0922 0.0664 ± 0.1185 0.7304 ± 0.0532 0.7037 ± 0.0919 0.4050 ± 0.1601

Note: “Mean-Baselines” represents the average performance of all models excluding DBN_ConvNet, while “Mean” reflects the overall average including DBN_ConvNet.

The “Average” column presents each model’s average performance across the four datasets. The bold entries indicate the optimal value for each respective column.

among the top 30 discriminative features. Previous research has

highlighted that individuals with SI or historical suicide at-

tempts exhibit significantly lower HRV measures such as

SDNN and RMSSD, both during resting states and emotional

exposures, underscoring their potential as reliable markers for

SI compared to control groups [26], [78], [79], [80], [81].

In the GSR modality, key features such as the maximum,

median, and standard deviation of skin conductance response

(SCR) rank among the top 20 indicators. SCR, reflecting the

phasic activity of GSR, is sensitive to rapid changes triggered

by stimuli. Research indicates that individuals with depression

or suicidal behavior exhibit faster SCR habituation to acoustic

stimuli, suggesting SCR’s potential as a marker for acute suicide

risk [82].

Moreover, deep-learning models have identified additional

crucial features, like GSR derivative and PPG signal amplitude.

The ability of neural networks to detect these subtle fluctuations

enhances our understanding of the physiological manifestations

associated with the emergence and development of SI, shedding

light on the complex interplay between physiological responses

and mental health.

B. Limitations and Future Work

While our current research focuses on physiological sig-

nals for predicting suicidal ideation, future studies will em-

ploy a multimodal framework incorporating demographic data,

criminal histories, and offense categories, which are signifi-

cant risk factors in correctional environments [83]. To enhance

the generalizability and robustness of our model, we plan to

adapt our methods across diverse age and gender groups for

improved label accuracy. Furthermore, we aim to incorporate

comprehensive datasets such as the Adolescent Brain Cognitive

Developmentr (ABCD, https://abcdstudy.org), enriched with

extensive demographic and behavioral data. Additionally, we

will explore using EEG and other physiological data modalities

to address hardware variability and enhance data precision.

VIII. CONCLUSION

In this study, we have developed models robust against label

noise for predicting suicidal ideation. Our novel DBN_ConvNet

architecture, integrating confidence learning [36], is designed

to handle physiological data effectively. Additionally, we en-

hanced the widely adopted EEGNet [39] by incorporating

noise-resilient reweighting strategies, namely MentorNet [37]

and Coteaching [38], thereby developing a dual solution system

for SI prediction.

Experimental results confirm that our approaches signifi-

cantly improve prediction accuracy and F1 score compared

to traditional machine learning methods, state-of-the-art deep

learning, and noisy learning models. The DBN_ConvNet ar-

chitecture, in particular, demonstrates superior performance by

leveraging the integrated analysis of GSR and PPG signals, thus

emerging as the most effective model in our evaluations.
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