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Autonomous Tomato Harvesting With Top—Down
Fusion Network for Limited Data

Xingxu Li?, Yiheng Han®, Nan Ma

Jia Pan

Abstract—Using robotsfor tomato trussharvesting representsa
promising approach to agricultural production. However, incom-
plete acquisition of perception information and clumsy operations
often results in low harvest success rates or crop damage. To
addressthis issue, we designed a new method for tomato truss
per ception, an autonomousharvestingmethod, and anovel circular
rotary cutting end-effector. The robot performs object detection
and keypoint detection on tomato trusses using the proposed top—
down fusion networ k, making decisionson suitabletargetsfor har-
vesting based on phenotyping and pose estimation. The designed
end-effector moves gradually from the bottom up to wrap around
the tomato truss, cutting the peduncle to complete the harvest.
Experimentsconducted in real-world scenariosfor robotic percep-
tion and autonomous harvesting of tomato trusses show that the
proposed method increases accuracy by up to 11.42% and 22.29%
for complete and limited dataset conditions, compared to baseline
models. Furthermore, we have implemented an automatic tomato
harvesting system based on TDFNet, which reaches an average
harvest success rate of 89.58% in the greenhouse.

Index Terms—Agriculture robot, autonomous manipulation,
deep learning, plant phenotyping, pose estimation, precision
agriculture.
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NOMENCLATURE

Related Notations for the Data Structure of Tomato Trusses and
Fruits

Symbol  Description.

£ Represents the ith detected tomato truss target.

b, bf 2-D bounding boxes for the tomato truss target and
the fruit.

Ky, K¢ Represents the keypoint sets, including the peduncle
structure points and the fruit center points.

kp, kt Key points for the peduncle and fruits.

Y vth fruit in the set of fruits contained in a target.

rip;, rips  Ripeness of the tomato truss and the fruit. rip; is
derived during the phenotyping stage by aggregating
the rip¢ values of all fruits (fV)V=1Y associated
with the target.

d Diameter of the fruit.

I. INTRODUCTION

N THE future, agricultural production will increasingly rely
I on automation to address labor shortages caused by aging
populations, urbanization, and other factors, while also ensuring
sustainable development and expanding production scale [1].
Harvesting robots offer a promising solution to supplement labor
in labor-intensive production segments and reduce the physical
burden on workers [2].

In robotic manipulation, accurate perception and autonomous
trajectory setting are the core challenges [3]. Traditional indus-
trial applications, such as robotic palletizing and welding [4],
are performed in static and well-defined environments with
minimal uncertainties. In contrast, agricultural work environ-
ments present dynamic and continuously changing character-
istics. Over long time scales, plant growth continuously alters
the spatial layout. During operation, changes in lighting condi-
tions and the robot’s actions further influence the environment.
Furthermore, the targets in agricultural tasks are fundamentally
different from rigid industrial components. They are soft and
deformable crops with diverse shapes and textures, making
them significantly more challenging to perceive and manipulate
in dynamic environments. These variations in the environment
and target uncertainty introduce challenges to the key steps of
crop perception, trajectory setting, and execution for harvesting
robots.

To achieve autonomous operation in such environments, ro-
bust vision-based systems are essential. However, agricultural
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tasks introduce unique challenges. The diversity in crop mor-
phology and the dynamic nature of the environment significantly
increase the difficulty of accurate perception [3]. Lightweight
models designed to meet real-time performance constraints often
lack the capacity to effectively process complex features. More-
over, the scarcity of high-quality annotated datasets restricts
the ability of models to generalize, particularly when dealing
with diverse tomato trusses and visually similar backgrounds.
Existing studies have primarily employed deep learning meth-
ods [5], [6] for single- or multistage perception tasks. However,
these methods typically require task-specific datasets, further
exacerbating data demands in resource-constrained agricultural
contexts.

Unlike the palletization applications of robotical arms in
traditional industrial scenarios, and single-fruit harvesting crops,
such as strawberries [7], apples [8], [9], tomatoes [10], and
bell peppers [11], cluster-grown crops represented by grape
clusters [12] and tomato trusses cannot be harvested by grabbing
and pulling. Instead, it is necessary to cut the peduncle of the
crop to separate the target from the plant. To avoid damage
to the crop plant or surrounding facilities, which can lead to
loss of commaodity value or production accidents, more accurate
and comprehensive perception methods and reasonable robotic
harvesting methods are needed.

To enhance the success rate and safety of autonomous con-
tinuous harvesting of tomato trusses, we have developed a
comprehensive set of solutions that address key stages in the
process; see Fig. 1.

In the perception stage, we propose top—down fusion network
(TDFNet) for object detection and keypoint detection of tomato
trusses. By integrating features from different processing stages,
the keypoint detection task in the downstream phase directly
utilizes the rich feature representations extracted from the object
detection task in the upstream phase. This approach effectively
enhances fitting ability and learning efficiency by exploiting the
correlations between different tasks. In addition, the upstream
and downstream models can remain independent, allowing for
the replacement or addition of datasets corresponding to the up-
stream and downstream tasks, enhancing scenario adaptability.
This is particularly crucial for achieving high precision and ro-
bustness in intelligent systems within agricultural applications,
where crop morphology is diverse, sample availability is limited,
and annotation costs are high. Postprocessing methods, such as
grouping and matching, are used to generate the feature encoding
of the tomato truss and restore its posture in the 3-D space,
providing input for subsequent decision-making and trajectory
design.

In the trajectory setting and execution stages, we designed a
novel circular end-effector and a harvesting method based on
the target posture. The action is similar to catching insects with
a net. The robotic arm guides the end-effector from below the
target, gradually enclosing it before positioning the blade at the
peduncle for precise cutting. After separating the tomato truss
from the vine, it falls into the net, completing the harvest. The
robot calculates collision risks and adjusts its trajectory based on
the target posture, minimizing contact between the end-effector
and the target, thereby improving the success rate of harvesting
and reducing damage to the target.
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Fig. 1. System overview of the tomato harvesting robot. In the perception
stage, a depth camera captures RGB images and depth data from the scene. The
TDFNet extracts essential metadata from the RGB images. The fusion stage
integrates this information to determine the phenotype parameters and spatial
posture of tomato trusses through grouping mechanisms. The harvesting stage
employs a decision-making framework to plan a collision-minimizing trajectory
and utilizes the proposed circular rotary cutting (CRC) end-effector to accurately
sever the peduncle and complete the harvesting process. This integrated system
ensures efficient and minimally damage harvesting in real-world environments.

This article builds upon and significantly extends the robotic
harvesting research [13] presented at International Conference
on Robotics and Automation (ICRA) 2024, introducing the
following key enhancements and expansions.

1) TDFNet is proposed to improve model accuracy while
maintaining a moderate scale of network parameters,
specifically under conditions of lightweight models and
limited datasets.

2) A new harvesting method, along with an end-effector de-
sign based on target posture and volume, has been refined
and detailed.

3) Expanded unit and system experiments in commercial
greenhouse environments have been conducted to further
validate the practicality and robustness of the proposed
methods.

Il. RELATED WORK

Manipulation is a fundamental skill for robots to interact with
the physical world [14]. Agricultural harvesting tasks impose
stricter constraints and more complex motion requirements com-
pared to industrial applications. For tomato clusters, the process
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extends beyond simple grasping to include separating the target
from the plant without causing damage. In addition, entangle-
ment of the robotic arm with vines remains a critical challenge,
as such scenarios are difficult to resolve autonomously, signifi-
cantly impacting efficiency.

This study focuses on designing a robotic system for the
autonomous and continuous harvesting of tomato clusters, ad-
dressing key challenges in perception, end-effector design, and
motion execution under complex agricultural conditions.

A. Crop Perception

Crop detection and maturity estimation are critical initial steps
in robotic harvesting pipelines. Afonso et al. [15] employed the
Mask R-CNN network in greenhouse environments to detect
tomatoes and classify them as mature or immature, outper-
forming traditional image processing methods based on manual
feature extraction, such as color and contour. However, binary
classification of maturity presents challenges due to ambiguous
class boundaries. To address computational constraints, Tian
et al. [16] proposed TF-YOLOVv5s, enabling real-time detection
of tomato flowers and fruits using edge computing platforms
with minimal resources.

Beyond detection, robotic harvesting requires additional in-
formation to support decision-making and motion planning,
mimicking human decision processes. This includes phenotypic
traits, such as growth status used in precision agriculture, and
3-D pose estimation. Weyler et al. [17] introduced a single-
stage model based on CenterNet for instance detection and leaf
counting in field crops, while Marks et al. [18] used unmanned
aerial vehicles (UAVs) to perform high-precision leaf instance
segmentation of plant point clouds for phenotypic analysis.
Although these studies did not target tomatoes or harvesting,
their insights into phenotypic analysis highlight how robots can
evaluate harvestability and quality by assessing traits, such as
fruit count and volume.

Grasp pose estimation is another critical aspect, requiring
spatial localization of key parts of the target for action planning.
Li et al. [19] used a multiview system and a deep convolu-
tional neural network (DCNN) model to detect apple targets,
reconstruct occluded regions using visible point clouds, and
estimate grasp poses. Tafuro et al. [20] applied segmentation
models to extract the point cloud of strawberry targets, esti-
mate their weight, and identify contact points for cutting and
grasping. Yin et al. [21] employed Mask R-CNN to segment
grape cluster regions and used the random sample consensus
(RANSAC) algorithm to fit point clouds into cylindrical shapes,
obtaining 6DOF information for harvesting tasks. For tomatoes,
detecting, segmenting, and locating cutting points is crucial.
Rong et al. [22] used YOLOvV4-Tiny to detect tomato clusters
and peduncles, followed by YOLACT++ for segmentation and
least-squares curve fitting to extract three key points. Zhang
et al. [23] proposed a tomato pose model (TPM) integrating
prior geometric models, a cascaded multitask network, and 3-D
reconstruction to represent relationships between fruits, clusters,
and plants through key points. However, TPM imposes strict
requirements on the number of fruits in a cluster, reducing its
applicability.
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In agricultural robotics, data scarcity and class imbalance
in datasets present additional challenges. Application
requirements, such as semantic segmentation, object detection,
and pose estimation, demand diverse datasets. For instance,
Tafuro et al. [20], [24] used datasets containing 3100 and 1588
samples for strawberry segmentation and keypoint estimation,
respectively. Rong et al. [22] employed datasets with 828 and
700 samples for peduncle detection and segmentation, while
Kim et al. [25] used datasets with 443 and 447 samples for
cherry tomato detection/segmentation and keypoint estimation,
respectively.

Maximizing the utility of limited datasets is critical in agricul-
tural applications. Nesteruk et al. [26] proposed an augmentation
framework that generated scene-consistent training samples by
placing image masks on random backgrounds. Riou et al. [27]
introduced a data-carrying strategy to better convey contextual
information during training. While augmentation is a valuable
auxiliary tool [28], it often fails to fully address the challenges
of data scarcity, particularly in improving model generalization
to unseen scenarios. Nuthalapati and Tunga [29] addressed this
limitation by combining feature extractors with transformers and
employing Mahalanobis distance to classify plants and diseases
with limited samples.

The development of deep learning has significantly advanced
perception and harvest pose planning, addressing the complexity
and uncertainty of these tasks. Previous studies laid the foun-
dation for understanding crops with high structural diversity.
However, few studies have combined perception with vision-
based grasping to demonstrate how perception methods directly
support autonomous harvesting. Furthermore, the reliance on in-
dependent datasets for each perception task creates a “bottleneck
effect,” limiting system functionality, increasing the research
burden, and hindering the scalability of agricultural robots.

B. Autonomous Harvesting Systems

In 2017, Bac et al. [30] developed a sweet pepper harvesting
robot with two end-effectors and tested its autonomous harvest-
ing performance in both human-supervised and unsupervised
greenhouse environments. The report identified several reasons
for failures, including perception errors, localization inaccura-
cies, motion planning failures, end-effector deficiencies, and
extreme fruit positions. Although dated, these conclusions re-
main relevant. With the maturity of commercial robotic arms
and depth cameras, localization and motion accuracy have im-
proved. Researchers have shifted their focus to end-effectors
and decision-making systems. Sa et al. [31] proposed a har-
vesting robot using a suction-based end-effector to fix sweet
peppers before cutting the peduncle, but challenges, such as
complex lighting conditions and leaf occlusions, led to grasping
difficulties, cutting failures, and fruit damage. Miao et al. [32]
emphasized the need to detect target orientation for tomatoes, as
occluded peduncles often resulted in harvesting difficulties. Li
etal. [8] designed a three-finger gripper that achieved separation
by quickly rotating the target after grasping, reporting a max-
imum harvesting success rate of 80.46% with failures mainly
attributed to the complexity of target shapes.
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Fig. 2.
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Perception workflow for tomato phenotyping and pose estimation. The leftmost image illustrates the basic biological structure of a tomato truss, where

peduncles extend from the vine and form clusters of fruits (target for harvesting, enclosed by the black dashed box). Object detection identifies tomato clusters
and classifies fruits into four maturity categories, each indicated by a color-bounding box. Keypoint detection locates the structural points of the peduncle. Using
loU-based matching in 2-D images and adaptive DBSCAN clustering in point clouds, target information t is obtained. Fruit diameter d (in meters) and 3-D points
ks and kp are calculated using depth information and camera intrinsics. The cluster is approximated with spheres (fruits) and cylinders (peduncles) to reconstruct

its 3-D pose.

End-effectors tailored to crop-specific biological character-
istics are critical for improving harvesting success rates. How-
ever, the success rate remains a bottleneck limiting large-scale
deployment of harvesting robots. In addition, few studies address
whether end-effectors damage the plant. For crops, such as
tomato clusters, which can be harvested multiple times, damage
is unacceptable. Experimental tests often focus on individual ob-
jectives without demonstrating the continuous, autonomous har-
vesting capabilities needed for large-scale applications. Drawing
on prior research [13], entanglement with plant vines remains
a persistent challenge for robotic harvesting systems, making
it difficult to achieve uninterrupted operations without human
intervention. This inefficiency restricts scalability and practical
deployment.

In summary, this study focuses on three aspects: perception
of tomato clusters with limited data, design of crop-specific
end-effectors, and development of a harvesting process aimed
at achieving autonomous, continuous, and safe operations.

I1l. METHODOLOGY
A. Overview

The core of the proposed autonomous harvesting algorithm
is visual understanding, with its main process illustrated in
Fig. 2. The perception of potential tomato truss targets 7" in the
environment begins with 2-D detection, progressively extracting
bounding box b, ripeness rip, and keypoints Kps as metainforma-
tion. Through grouping and matching, the attribute information
t' of each target is generated, encompassing phenotypic traits
and 3-D pose. The attribute information of a tomato truss target
is summarized as follows:

T — (ti)iZl ..... m (1)
t' = {be, Kp, Kr, (f*)=" Y u, rip ) (2)
Kp = (kp,....kb), K¢ = (ky,.... kS (3)

1Y = {bs,ripg, d}. (4)

Due to the lack of widely verified detection models capable
of outputting an indefinite number of keypoints, the indefinite
number of fruit keypoints in the tomato truss is derived from
the object detection results. The number of keypoints in the
peduncle structure is fixed at 7, which are provided by the
keypoint model. The definition and selection of these seven
peduncle keypoints are closely related to the picking operation
and will be explained in detail in the next section. Commonly
used keypoint detection methods are categorized into top—down
and one-stage approaches. The top—down method first performs
object detection and subsequently estimates keypoints within
the detected bounding boxes. A representative model is Lite-
HRNet [33]. In contrast, the one-stage approach directly outputs
bounding boxes and keypoints. Illustrations of both methods are
shown in Fig. 3.

Autonomous operation in robotic systems requires diverse
sensory information, which can be efficiently achieved by di-
viding the perception system into multiple tasks. Each task is
supported by a dedicated dataset and neural network model. Due
to differences in precision requirements, data collection strate-
gies, and annotation complexity, the dataset sizes for each task
are often uneven. This phenomenon is particularly pronounced
in agricultural applications.

Taking the two perception tasks in this study as examples:
object detection and keypoint estimation. The differences in
annotation costs and focuses are evident. Under the same sam-
ple size, the annotation cost for pose estimation using key-
points is significantly higher than for object detection. Ob-
ject detection, as a general-purpose visual task, benefits from
advanced methods and tools, such as segment anyting model
(SAM )[34], which can perform zero-shot preannotation to
reduce labor costs. In contrast, keypoint estimation is often
designed for specific tasks, such as human action recogni-
tion, gesture detection, or the tomato truss pose estimation

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2025 at 02:25:26 UTC from IEEE Xplore. Restrictions apply.



LI etal.: AUTONOMOUS TOMATO HARVESTING WITH TOP-DOWN FUSION NETWORK FOR LIMITED DATA

Fig. 3. Illustrations of different pose estimation methods and their use of
datasets during training. Generally, different tasks have distinct types of datasets
with varying sample sizes, and there may be common samples among them.
(a) Top—down approach: Upstream and downstream tasks use separate datasets.
(b) One-stage approach: Trains with dual-annotated samples. (c) Proposed
TDFNet: Extracts knowledge from upstream, indirectly utilizing upstream
datasets to enhance downstream model learning, especially when downstream
task data samples are limited—Top-down fused.

proposed in this work, and typically requires full manual
annotation.

The focus between these two tasks also differs. Object de-
tection aims to localize targets within scenes, requiring datasets
with images taken at various distances, from close to medium
and long ranges, to cover all growth stages of tomatoes. On the
other hand, keypoint detection emphasizes detailed structural
analysis of mature targets ready for harvesting, favoring close-up
images in both training and application scenarios. To achieve
robust and generalized performance, expanding the training
dataset to cover all potential application scenarios of the robot
is a critical goal for data-driven methods.

As datasets grow, the divergence between object detection
and keypoint estimation datasets becomes more apparent. The
proportion of overlapping samples between the two datasets de-
creases, as each dataset increasingly specializes in its respective
task. The relationship between dataset sizes and the overlap ratio
of samples is illustrated in Fig. 3. The specifics of the dataset
will be elaborated in the subsequent sections.

In this case, the top—down approach is more suitable than
the one-stage approach. The reason is that the two task models
can be independently trained with their corresponding datasets,
making fuller use of the datasets. The one-stage model can only
use overlapping samples from different datasets. Even from the
opposite perspective, the conclusion remains unchanged. If a
one-stage model underperforms in a certain task, increasing the
corresponding annotated dataset would also require expanding
the dataset of the other task. This is difficult to accept in the
field of agricultural robotics, where annotation costs are high
and data volume is limited. On the other hand, top—down ob-
ject detection and keypoint detection can independently replace
datasets or models for enhancement. This modular approach
prevents a single underperforming task from constraining the
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overall functionality of the robotic system, thereby improving
adaptability and robustness.

B. Top—Down Fusion Network

We found that although the top—down approach uses every
sample in the dataset, the utilization efficiency of the dataset
can be further optimized. Given an image 1 containing multiple
targets, the goal of top—down pose estimation is to estimate the
positions of pose keypoints from each cropped target image Z,
which can be represented as

B = {b,b;,....b"} = DET(I) ®)
T' = crop(1,b}) (6)
Ky = (kg k5, ... k) = KPE(Z") 7)

where DET (-) denotes the upstream detection model and KPE(-)
denotes the downstream keypoint estimation model. m and
N represent the number of targets in Z and the number of
pose keypoints for each target, respectively. b} denotes the ith
bounding box of the target and k' denotes the nth peduncle
point of the target.

Only detection results B are transferred between tomato de-
tection and keypoint estimation. The keypoint estimation model
needs to relearn every image of the targets Z' independently.
This limitation hinders its fitting ability and learning efficiency,
thereby reducing accuracy and robustness when applied in
natural scenes. Tasks with limited datasets or lightweight ar-
chitectures face significant challenges due to reduced model
capacity and data availability, which can hinder the robustness
and accuracy of keypoint estimation models. To address this
issue, we aim to improve the performance of keypoint estimation
by leveraging the inherent correlation between object detection
and pose estimation tasks. Specifically, we hypothesize that there
is an overlap in the data domains and features learned between
detection and pose estimation models. In particular, we exploit
intermediate feature maps  generated by the detection model,
which encode abstract knowledge K—including texture, size,
and spatial relationships—as prior information for keypoint pre-
diction. These feature maps provide rich semantic information
that bridges the two tasks, serving as a transferable representa-
tion to accelerate the fitting process, improve predictive accu-
racy, and enhance learning efficiency under few-shot conditions.
This approach, referred to as top—down fusion TDF(-), can be
formally described as follows:

B,K = DET(I) (8)
K} = TDF(Z',K). 9)

To optimize the keypoint estimation process, ground truth
heatmaps are generated for each annotated keypoint using the
MSRA method [35]. This method encodes each keypoint as a
2-D Gaussian distribution centered at its ground truth location,
providing a probabilistic representation to guide the model’s
predictions. During training, the predicted keypoint heatmaps
are supervised using the keypoint mean-squared error loss,
which minimizes the pixelwise squared error between the pre-
dicted heatmaps and their ground truth counterparts. The loss £
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Fig. 4.
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TDFNet network architecture. The object detection model generates feature maps encoding abstract knowledge (e.g., texture, structural relationships)

about the target. These features, along with the detected regions, are mapped and extracted as inputs for the downstream pose estimation model. Through the DBCL
framework, target RGB images and features are transformed, learned, and fused to enhance the prediction of structural information.

function is defined as

1O . 2
L= ﬁ;wn (Hn —Hn)

where N denotes the total number of keypoints, whichis N =7
in our research for tomato peduncle keypoint localization. wp,
represents the weight assigned to the nth keypoint, H,, is the
predicted heatmap for the nth keypoint, and Hy, is the corre-
sponding ground truth heatmap. The loss function averages the
pixelwise mse across all keypoints, weighted by wn,, to optimize
keypoint localization accuracy.

Naive TDFNet was built to achieve this goal. To retain the
characteristic that the object detection and keypoint estimation
components in the top—down approach can be independently en-
hanced and trained, TDFNet features a dual-layer network archi-
tecture. The object detection stage utilizes a multitask YOLOvV5
(referred to as MT-YOLO), which includes an additional branch
for determining the maturity of the fruit. This model can detect
tomato trusses and fruits at four different stages of maturity.
Since object detection is not the main focus of this article, it is
only briefly introduced here. For the keypoint estimation stage,
we use the Lite-HRNet [33] backbone due to its advantage of
fewer parameters and faster inference speed.

Convolutional neural networks (CNNSs) predict by progres-
sively extracting hierarchical features from RGB images, a pro-
cess that forms the foundation of their architecture. Lower layers
in a CNN typically capture fundamental visual features, such as
edges and textures, while higher layers represent more complex
and semantic information about objects in the scene [36], [37].
Obiject detection and keypoint estimation, although distinct in
their forms and objectives, both rely on these hierarchical fea-
tures, including edges, contours, colors, and textures. As shown
in Fig. 4, the feature maps generated by the backbone of an
object detection model visually highlight the extracted features
at various levels of abstraction. The abstract knowledge K de-
rived from object detection is materialized through these feature
representations F. In scenarios with limited model capacity or

(10)

sparse annotated data, leveraging or augmenting the features
generated during object detection can effectively alleviate the
learning challenges faced by keypoint estimation models.

We desigh TDFNet not just to relay detection results between
object detection and keypoint estimation but to extract, refine,
and integrate detection-derived knowledge as prior information
to enhance keypoint estimation. Therefore, we incorporate the
detection model’s output features F as a second input to the key-
point estimation model. These features undergo depthwise sep-
arable convolutions to adjust the feature map’s scale and dimen-
sionsand are ultimately concatenated into the first stage output of
Lite-HRNet. The goal is for the network to autonomously fit and
fuse features from both the RGB image and the detection model.

Preliminary experimental results suggest that this method
offers slight improvements over baseline models, although the
enhancements are not substantial. This indicates that the current
downstream network, with its limited number of parameters,
struggles to associate, transform, and deeply fit the two inputs.
Therefore, it is necessary to design additional structures to
reduce the difficulty of the network in transforming and learning
from upstream features, thereby facilitating more effective up-
stream and downstream fusion. The final testing of the optimized
TDFNet is primarily accomplished through the correspondence
feature region (CFR) and the double branch cross-source learn-
ing (DBCL) structure.

CFR precisely extracts target features during preprocess-
ing to remove irrelevant information that may interfere with
downstream tasks. In many cases, the target occupies only a
small portion of the scene image, and regions far from the
target pixels often do not contain useful information for key-
point estimation. Retaining such irrelevant information in the
downstream feature map not only fails to enhance performance
but may also introduce noise, reducing prediction accuracy.
To mitigate this issue, CFR leverages the bounding box b
generated by the detection stage as prior positional knowledge
to crop and extract the corresponding target regions from the
feature map.
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Specifically, based on the receptive field calculations of the
detection model, CFR determines the dimensions of the bound-
ing box within the feature map and crops this segment to retain
only the target features. Common data augmentation techniques,
such as scaling and rotation, are also applied within CFR to
ensure that the extracted features are consistent with the target
regions in the RGB image and maintain the same aspect ratio.
The operations of CFR are mathematically described as follows:

Rt = R(by) (11)
® = C(F,Ry) (12)
7,8 =ST(Z,,6) (13)

where R(-) denotes the receptive field transformation based
on the tomato truss bounding box b¢, and C(F,R¢) denotes
the operation of extracting the target feature ® from the target
region R¢ in the feature map F generated by the detection
stage. ST(-) denotes synchronous transformation Z, ® in similar
transformation method and parameters @ to maintain the same
proportions. For example, if the input of the RGB branch is
H,,, Hy, the model feature map is hy, hn. If use linear resize,
 are the transformation ratios of the image width and height,
denoted as kw, kh. Respectively, the features should also be
scaled accordingly before inputted into the DBCL.

DBCL is designed to enable the effective cross-source learn-
ing and fusion of two distinct input sources: RGB images 7'
and upstream feature maps ®. While CFR eliminates irrelevant
information before input, DBCL focuses on ensuring that fea-
tures from the RGB branch and the knowledge branch (derived
from the detection model) correspond spatially and semantically,
allowing them to enhance each other during fusion rather than
interfere. The core challenge lies in maintaining the correspon-
dence between the two independent feature maps, ensuring that
the learned representations from both sources are compatible
and complementary.

To address this, DBCL adopts a dual-branch design in which
both branches follow similar convolutional architectures and
learning mechanisms, ensuring spatial and semantic consistency
in the extracted features. Specifically, both branches are de-
signed to maintain consistent convolutional operations, layer
depths, and convolution kernel parameters, ensuring that the
intermediate feature representations are spatially aligned. This
design minimizes the risk of feature misalignment and facilitates
effective pointwise fusion in later stages, all while avoiding a
significant increase in the model’s parameter count.

Both branches share the commonality of having a stem for pre-
extracting input data and generating high- and low-resolution
feature maps for separate learning. The difference lies in that
the RGB branch follows the Lite-HRNet stem [33], which has
been proven effective. In the knowledge branch, the input is first
normalized to minimize the differences caused by the varying
data scales between upstream and downstream features. Batch
normalization layers are used within the network structure to
simplify this operation. Subsequently, shuffle units [38] are used
as a stem module to process the input through two distinct
convolutional paths. The outputs are then merged and channel
shuffling is applied. This method effectively reduces and refines

3615

the number of channels of the upstream features. The gener-
ated multiscale features are summed pointwise across branches,
followed by an additional convolution layer for optimization,
ultimately achieving the fusion of upstream and downstream
features. This process can be represented as follows:

Frp = {Fr%nFr%} = Bfgb(z/)
Feo = {F, Fg} = Buno(®)

(14)
(15)

2 2
Fanel = { Fibel» Fiper } = {@ Fy @ Fg, @Ffﬁ & Fr‘?q}
s=1 s=1
(16)

where Brgy(-) and Bino(-) denote the convolutional operation
sequences in the RGB and knowledge branches, respectively,
generating two-scale feature maps Fy, and Fyp. The fused feature
maps Fynel are obtained through the cross-scale fusion operation
€, which integrates F, and Fi, at both resolution levels,
where s = 1,2 indexes the resolution levels. The operation &
represents pointwise summation, while € includes upsampling
or downsampling to align spatial resolutions before summation.

With the integration of CFR and DBCL, the keypoint esti-
mation (pose estimation) stage effectively utilizes the feature
representations generated by the detection stage. CFR ensures
that only the relevant target features are extracted from the
detection model’s output, preventing unnecessary information
from interfering with the downstream task. DBCL further en-
ables the alignment and fusion of the RGB image features with
the detection features, allowing the pose estimation stage to
leverage these two sources of information in a complementary
manner. Together, these modules allow the downstream model
to better associate, transform, and integrate the knowledge from
the detection stage without significantly increasing the num-
ber of parameters. Compared to the baseline Lite-HRNet, the
network remains lightweight while meeting the computational
complexity requirements of robotics perception systems, achiev-
ing a balance between efficiency and performance in resource-
constrained scenarios.

C. Grouping, Phenotyping, and Pose Estimation

Phenotypic and pose information of target crops is essential
for autonomous robotic decision-making and trajectory setting.
While TDFNet provides preliminary detections of potential
targets, further postprocessing is required to infer complete phe-
notypic characteristics and pose information of tomato trusses.

1) Tomato TrussGrouping: Tomato truss grouping is the pro-
cess of associating detected fruits with their respective trusses,
a step not directly provided by TDFNet’s output. A simple
intersection over union (loU)-based approach is employed in
most cases, where fruit bounding boxes are matched with the
corresponding truss bounding boxes by applying a threshold.
This method is highly effective when fruit bounding boxes are
fully contained within truss bounding boxes.

However, challenges arise in cases where multiple trusses
overlap due to occlusions or reduced detection accuracy from
certain viewpoints. As shown in Fig. 5(a), loU-based grouping
may fail to correctly assign some fruit targets, such as the
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Fig.5. Challenges in grouping certain fruit targets using loU-based grouping.
The algorithm struggles to resolve the ownership of targets located in the
overlapping regions between bounding boxes, as shown by the white target in
(a). (b) Visualization of the depth map, where black circles represent the center
pixel positions of the fruit targets to be grouped. Fruits belonging to the same
tomato truss are expected to exhibit similar depth values. DBSCAN clustering
is applied within the bounding box, using each fruit center as a seed point. (c)
Grouping results based on the clustering output, with bounding boxes displayed
in green and magenta to represent different groups.

white target in the example. To address this, depth informa-
tion is utilized to refine the grouping process. Specifically, a
density-based clustering algorithm, DBSCAN, is applied within
the bounding boxes of detected trusses using fruit centers as
clustering seeds. This approach effectively resolves ambiguities
by leveraging spatial information, as demonstrated in Fig. 5(b),
where overlapping fruits are assigned to distinct groups (green
for one group and magenta for another).

To ensure real-time performance, the input point cloud is
trimmed to include only regions within detected truss bounding
boxes, significantly reducing the computational load of proxim-
ity searches. In addition, clustering thresholds are adaptively
adjusted based on the prior structural knowledge of tomato
trusses. This pipeline ensures accurate grouping even in complex
scenarios, providing a robust foundation for subsequent pose
estimation and phenotyping tasks.

2) Phenotyping and Pose Estimation: Phenotyping in agri-
cultural robotics involves characterizing biological traits of
crops to support decision-making, such as growth assessment
or trait selection. For tomato trusses, this includes determining
overall maturity, fruit count, and spatial arrangement. Unlike
prior studies relying on simple color thresholds or deep learning
for maturity estimation, we propose a hybrid approach com-
bining individual fruit maturity and truss-level aggregation to
enhance explainability and adaptability.

Pose estimation involves reconstructing the 3-D structure of a
tomato truss, including its curved peduncle and spherical fruits
(see Figs. 2and 6). The truss structure is modeled using fruit cen-
ters and seven keypoints along the peduncle. Fruit contours are
approximated as circles in 2-D images, with diameters calculated
as the mean of bounding box dimensions. Depth information is
then used to obtain the 3-D center and diameter of each fruit.

Traditional methods often simplify the truss as a rectangu-
lar cuboid or cylindrical model, providing only 6DOF pose
information. While sufficient for basic grasping tasks, these
models fail to represent irregularly shaped trusses, limiting
their effectiveness in precision harvesting. To address this, we
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Fig. 6. Comparison of tomato truss posture representations. (a) Traditional
methods simplify the truss as a rectangular cuboid or cylindrical model, provid-
ing 6DOF pose information but failing to capture irregular shapes. (b) Model
with three keypoints approximates the peduncle as piecewise linear segments,
losing smooth curvature and prone to generalization issues, such as undetectable
keypoints in real-world scenarios. (c) Our proposed method with seven keypoints
enables quadratic curve fitting, accurately representing the peduncle’s 3-D
curvature and supporting precise trajectory planning.

explicitly model the peduncle’s 3-D curvature using keypoints.
As shown in Fig. 6, the choice of keypoint quantity significantly
impacts representation accuracy. Using only three keypoints
results in a piecewise linear approximation of the peduncle,
failing to capture its smooth curvature accurately. In real-world
scenarios, generalization issues further degrade accuracy due
to potential keypoint detection failures. In contrast, our method
[see Fig. 6(c)] employs seven keypoints to enable quadratic curve
fitting, accurately capturing the peduncle’s curvature. This en-
sures precise pose estimation, robust performance, and reliable
trajectory planning for robotic harvesting.

IV. ROBOT SYSTEM
A. System Overview

After completing the perception phase, which involves iden-
tifying, phenotyping, and estimating the pose of potential crops,
the next critical challenge is how the robot makes decisions,
plans actions, and executes harvesting based on the percep-
tion results. Building upon the analysis of related work and
our previous research [13], we identified two major causes of
harvesting failures: incorrect harvesting trajectory setting and
unintended displacement of the target caused by end-effector
contact during motion. Furthermore, attempts to harvest tomato
trusses in extreme positions often result in the end-effector
becoming entangled with vines, requiring human intervention to
disentangle the robotic arm. This significantly limits the robot’s
ability to perform continuous autonomous operations. In fact,
enabling the robotic arm to autonomously escape from entangle-
ment in dense vines proves to be an even greater challenge than
the harvesting process itself. Rather than attempting to harvest
every target in the environment, we emphasize enabling the
robot to achieve multiple successful harvests efficiently. Once
the robot demonstrates the capability to replace part of human
labor, it could pave the way for large-scale industrial adoption.
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Fig. 7. Robots designed and utilized in this research. Left: The initial ver-
sion [13] with SCARA robotic arm. Right: The extended version with a 6-DOF
robotic arm.

We propose that improving the robot’s autonomy, efficiency,
and operational continuity requires two primary strategies: dur-
ing the decision-making phase, excluding targets that are unfa-
vorable for the robotic arm to harvest can enhance motion safety
and consistency, and during the action planning and execution
phases, minimizing contact with the target during cutting can
increase the success rate of truss separation while reducing
potential risks. To address these challenges, we designed an
autonomous harvesting pipeline and corresponding robotic plat-
form, as shown in Fig. 1. This process consists of three key
stages: “top—down fusion perception,” “fusion of information,”
and “harvesting.”

B. Hardware Design

1) Basic Architecture: Our robotic system comprises five
primary hardware components: a depth camera, a robotic arm,
an end-effector, a computing unit, and a mobile chassis. In
addition to the previously developed AHPPEBOT [13], this
study introduces a second robotic system, with the key dis-
tinction being the use of different robotic arms, as illustrated
in Fig. 7. The earlier version uses a 4-DOF SCARA robotic
arm from Huiling-tech Robotic Co., Ltd., while the new version
employs a 6-DOF robotic arm from Aubo Robotics and a lifting
platform. Since this research does not involve joint-level motion
planning or control of the robotic arms, the difference in robotic
arm configurations does not affect the autonomous system’s
perception, decision-making, or path planning processes. Both
robotic platforms are used in this study, and all systems and
algorithms proposed here are applied to both; therefore, we do
not distinguish between them in the subsequent discussions.

The depth camera used is an Intel RealSense D405 stereo
camera. Its compact baseline enables it to achieve high-precision
depth acquisition (error + 1 c¢cm) for fine structures, such as
tomato truss peduncles, within a range of 25-75 cm. The com-
puting unitisan industrial PC running Ubuntu 20.04 with an Intel
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Fig. 8. Illustration of the robot’s operational scene and manipulable area.
White boxes represent unharvestable targets, while blue boxes indicate suitable
targets. Target (1) is not ripe, with an unsuitable pose (facing left). Targets (2) and
(@) are also unharvestable due to their poses (facing away, facing left). Targets (3)
and (5) meet ripeness and pose requirements, allowing collision-free harvesting
based on the robot’s heuristic strategy.

i7-10700E CPU and an Nvidia 3050 GPU. The robotic arm’s end
is equipped with an end-of-arm tool specifically designed for
harvesting. This includes an additional rotary motor to provide
greater degrees of freedom and a novel CRC end-effector.

2) CRC End-Effector Design: End-effectors are typically
crop-specific and are difficult to generalize across different
crops [39]. In previous studies on harvesting robots, end-
effectors can be broadly categorized into two types: scissor-
based end-effectors, as represented in [10] and [40], which
achieve separation by cutting the peduncle, and rotation-and-
traction-based end-effectors, as represented in [30], which rely
on gripping and applying rotational force to break the peduncle.

Scissor-based end-effectors are advantageous due to their
simple actuation, typically achieved through motors or pneu-
matic systems, resulting in short operation times. However, these
end-effectors require precise localization of the cutting point
and accurate pose alignment, which can be challenging when
the peduncle is occluded, the viewpoint is suboptimal, or the
cutting point is misaligned. In addition, foreign objects, such as
leaves, vines, or structural elements, can obstruct the opening,
leading to failures.

Rotation-and-traction-based end-effectors are unsuitable for
tomato truss harvesting. Unlike apples, where gripping and
pulling may suffice, tomatoes require precise cutting to separate
the truss from the plant. Furthermore, these end-effectors are
sensitive to the physical characteristics of the fruit, such as
moisture content and skin hardness, making it difficult to control
grip force, rotational torque, and speed precisely. This often
results in damage to the fruit’s surface, leading to harvesting
failures.

To address these challenges, we propose a CRC end-effector,
which offers efficient cutting performance while maintaining
high fault tolerance and safety. The structure of the CRC, as
shown in Figs. 7 and 9, features a circular outer frame with
multiple sharp guiding slots. These slots are precisely sized
based on the typical widths of tomato vines and peduncles,
ensuring that only peduncles can pass through for cutting while
preventing foreign objects, such as vines or debris, from enter-
ing. This design effectively resolves the issue of scissor-based
end-effectors being obstructed by foreign objects, significantly
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Fig. 9.
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“Bottom-up wrapping” harvesting process involves the following steps. (a) Robotic arm’s end-effector positions itself below the target truss, vertically

beneath the end point (EP). (b) End-effector gradually ascends, adjusting its position based on the tomato’s volume and key points, including the third quarter point
(TQP), midpoint (MP), quarter point (QP), first point (FP), and cut point (CP), to avoid contact. (c) End-effector wraps around the truss, positioning its cutting tool
near the start point (SP). (d) and (e) End-effector rotates, guiding the peduncle into the cutting slot. (f) Saw blade cuts through the peduncle, and the tomato cluster
is held in the net. (g) Robotic arm follows a predefined lifting path to return to its original position.

enhancing operational safety. The CRC has 17 guiding slots
evenly distributed around its frame, enabling it to cut the tar-
get peduncle from multiple angles. This reduces the precision
requirements for the end-effector’s pose adjustment, making
it suitable for use with lower DOF robotic arms, such as the
SCARA arm. This multiangle cutting capability is particularly
advantageous for harvesting in complex planting environments,
improving the robot’s flexibility and operational efficiency.

Inside the frame, a motor-driven circular saw blade performs
the cutting task, separating the peduncle from the plant. The
rotation speed of the blade is monitored in real time by an
independent encoder and controlled using a PID algorithm to
maintain a constant speed under varying loads. This design
prevents jamming during cutting, enhancing system reliability.
Once the peduncle is cut, the tomato truss naturally falls into a
soft net positioned below the end-effector, which cushions the
impact and prevents damage to the fruit’s surface caused by
hard gripping. When the robotic arm moves to the designated
unloading position, a servo mechanism opens the net, allowing
the tomato truss to slide out under gravity into the collection
container. This process eliminates the need for additional me-
chanical gripping, simplifying the harvesting mechanism and
improving overall efficiency.

C. Harvesting Strategy and Trajectory Design

Automated harvesting in greenhouse environments presents
unique challenges due to the structural intricacies of tomato
vines and the delicate nature of the crops. Potential risks, such as
entanglement of the robotic arm with vines, unintended contact
with fruits or peduncles, and inaccurate cutting, can disrupt
the process, causing crop damage and necessitating manual
intervention. These challenges reduce efficiency, increase labor
costs, and compromise task success. To address these issues, we
propose an integrated risk-minimization strategy that combines
heuristic decision-making and trajectory design. This combined
strategy ensures operational safety and efficiency by prioritiz-
ing low-risk targets and generating trajectories that minimize
entanglement and contact.

1) Decision-Making Phase: The decision-making phase fo-
cuses on identifying harvesting targets that minimize opera-
tional risks while ensuring efficiency. Fig. 8 illustrates a typ-
ical greenhouse scenario, where tomato vines grow on trel-
lises with limited operational space. Despite manual adjust-
ments to plant spacing and pruning, tangled vines and con-
strained environments pose significant challenges for robotic
harvesting.

To evaluate and prioritize targets, we employ a heuristic
approach that incorporates key spatial and positional character-
istics of each truss. This approach rapidly eliminates high-risk
targets based on the following factors.

1) Entanglement risks: Overlapping trusses or obstructed
peduncles increase the likelihood of the robotic arm be-
coming entangled, potentially causing vine breakage or
manual intervention.

2) Proximity toinfrastructure: Trusses near heating pipes or
planting troughs pose risks to both the robot and green-
house infrastructure.

3) Target displacement: Contact with nontarget trusses or
fruits during harvesting can cause positional shifts, reduc-
ing success rates.

Trusses located in extreme positions, such as those oriented
inward toward planting troughs or positioned near infrastruc-
ture, are automatically excluded. The relative positions of sur-
rounding trusses are also analyzed to ensure the selected target
lies within the safe operational space of the robotic arm. This
heuristic evaluation ensures that only low-risk, high-success-rate
targets are prioritized for harvesting. Fig. 8 demonstrates how
the system evaluates ripeness and pose suitability to identify
manipulable targets.

2) Trajectory Design Phase: Once a low-risk target is iden-
tified, the trajectory of the robotic arm is planned based on the
geometric structure of the peduncle. Specifically, the center of
the circular end-effector moves sequentially along the pedun-
cle’s curved path. The success of the harvesting process relies
on precise trajectory execution, which minimizes the risk of
entanglement and avoids contact with the fruit-bearing regions
of the truss. Fig. 9 illustrates the sequential steps of the trajectory
design and execution process.
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Fig. 10.
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Sample images and annotations from the DetectRipen and PedunclePos datasets. (Up): The DetectRipen dataset was collected to capture diverse tomato

trusses under varying lighting conditions, truss densities, and maturity stages. The camera’s yaw, pitch, and roll angles were adjusted to simulate the robot’s mobile
vision. Four fruit maturity stages were annotated with bounding boxes: green fruit stage (green boxes), where the fruit is fully grown but white-green; breaker
stage (yellow boxes), where ripening begins at the apex; turning stage (orange boxes), where over 75% of the surface is red or yellow; and full-ripe stage (red
boxes), where the entire surface is red. All visible targets larger than 10 x 10 pixels were annotated, with bounding box alignment errors limited to within 5
pixels. (Down): The PedunclePos dataset focuses on the structural geometry of mature, harvest-ready tomato trusses. Images were captured at close range (within
50 cm) to emphasize peduncle details, with seven structural keypoints annotated (SP, CP, FP, QP, MP, TQP, and EP) to capture peduncle curvature and positional
relationships. Each truss is marked with a distinct rectangular region using color-coded boxes, and the black circles represent annotated keypoints. The connections

between keypoints approximate the peduncle’s curvature and structure.

TABLE |
STATISTICAL INFORMATION OF THE DATASETS
Dataset Number of | Number of Annotation details
1images targets
DetectRipen 2000 112,000 Bounding boxes,
maturity classification
PedunclePos 1051 5432 Seven p ed_uncle,
key points

To represent the peduncle’s natural curvature, a quadratic
fitting process is applied to the detected keypoints, including
seven peduncle points (from SP to EP) and multiple fruit points.
This fitting process removes noise and outliers, resulting in a
smooth peduncle skeleton that serves as a geometric reference
for trajectory planning. The peduncle skeleton is divided into
the following two functional segments.

1) SP-CP segment (cutting region): This region guides the
end-effector to position its cutting tool precisely at the SP,
ensuring clean separation of the truss from the vine. Note
that the CP, denoting the cut point, is defined as the ideal
cutting location for scissor-type end-effectors. However,
in the proposed method, the actual cutting process does not
occur precisely at the CP but rather at a position between
the SP and CP.

2) CP—EP segment (fruit-bearing region): This segment rep-
resents the main body of the truss and is avoided during
motion planning to prevent contact with the fruits.

The trajectory is generated to follow the peduncle skeleton,
ensuring a smooth path that adheres to its natural curvature. This
minimizes interaction with surrounding trusses and reduces the
likelihood of entanglement or fruit displacement. Volume-based

adjustments are incorporated to avoid contact with nontarget
objects, further enhancing safety and precision.

V. TDFNET EXPERIMENTS AND VALIDATION
A. Dataset Collection and Annotation

Two specialized datasets, DetectRipen and PedunclePos, were
collected from commercial greenhouses in Beijing to train
and evaluate TDFNet for tomato truss pose estimation. These
datasets were designed for distinct tasks: DetectRipen focuses
on tomato maturity classification, while PedunclePos captures
the structural geometry of peduncles in harvest-ready trusses.
Annotations for both datasets were performed by experts with
agricultural backgrounds and engineers specializing in precision
agriculture in greenhouses.

Detailed statistical information, including the number of im-
ages, annotated targets, and annotation details, is provided in
Table I. The DetectRipen dataset simulates the robot’s mobile
vision under varying environmental conditions, while the Pedun-
clePos dataset provides high-resolution peduncle annotations to
support pose estimation tasks. Fig. 10 illustrates representative
samples and corresponding annotations from both datasets.

B. Model Training

We utilized the MMPose [41] framework and PyTorch for
model training and experimentation. Due to the lack of a pub-
licly available tomato cluster keypoint dataset, we performed
pretraining on the COCO human pose estimation dataset. During
this pretraining phase, the input layer of the knowledge branch
in TDFNet was modified to accept RGB images as input. Once
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the pretrained model was obtained, training on the PedunclePos
dataset commenced.

At this stage, the MT-YOLO model had already been trained
on the DetectRipen dataset, equipping it with the ability to
detect targets and assess ripeness. To accelerate the training
process and eliminate the influence of upstream detection model
variations on downstream pose estimation, TDFNet adopted
an offline training strategy. During this process, MT-YOLO
was excluded from training, with its parameters kept frozen.
Instead, it was utilized to perform inference on all images in
the PedunclePos dataset, generating feature map files for each
sample. These feature maps, along with the corresponding RGB
images, were loaded by the Dataloader for training the pose
estimation component of TDFNet. During this process, common
data augmentation techniques for pose estimation tasks, such
as scaling, rotation, and flipping of RGB images, were applied.
The same transformations were also applied to the input features
from the tomato detection model, which were then processed by
the CFR module.

The PedunclePos dataset was divided into a training set with
820 images and a validation set with 231 images. The validation
set was reused for testing purposes, serving both as a validation
and test set. The batch size was set to 12. The initial learning
rate was set to 0.005 and optimized using the Adam algorithm.
The learning rate was reduced to 20% of its original value after
the 40th and 80th epochs. To reflect the varying importance
of different keypoints, specific weights were assigned to each
keypoint, with joint_weights wp, set to [3.5, 4.5, 2.0, 0.5, 0.5,
0.5, 0.5]. Data augmentation included a rotation range of +20°,
scaling between 85% and 150%, and a translation ratio range
of £ 10%. Training was conducted over 100 epochs, with
validation performed after each epoch. Only the model with the
highest accuracy was retained.

C. Metric

Similar to the COCO human keypoint dataset [21], the accu-
racy assessment for peduncle keypoints is based on the object
keypoint similarity (OKS) metric

d
OKS = —
exp ( 2820j2>

(17)

where d; represents the Euclidean distance between the pre-
dicted and ground truth keypoint, s is the object scale factor,
and oj is the standard deviation of the jth keypoint.

The parameter o is calculated by determining the standard
deviation of multiple annotations for the same target compared
to the expert-annotated ground truth. Unlike human keypoint
detection, the importance of the seven keypoints on the peduncle
varies in harvesting tasks: the accuracy requirements for the first
two keypoints (SP and CP) are the highest. If these keypoints are
not detected precisely on the peduncle, the harvesting process is
likely to fail. The remaining points are primarily used to fit the
curve of the tomato truss, reducing the potential for collisions
with the end-effector. To account for these differences, the o
values for SP and CP were manually adjusted to impose stricter
accuracy constraints, ensuring that the overall OKS metric better
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TABLE Il
EXP. 1: PERFORMANCE COMPARISON OF MODELS ON THE VALIDATION SET
UNDER THE FULL TRAINING DATASET

Model | Inputsize | Params(M) | GFLOPs | AP (%)
Top—down

Hrnet-w32 256 x 192 28.54 7.65 71.23
Hrnet-w32 384 x 288 28.54 17.29 74.77
ResNet-50 256 x 192 35.92 6.71 73.44
ResNet-50 384 x 288 35.92 15.09 74.08
MobileNetV2 256 x 192 9.57 1.57 66.56
MobileNetV2 384 x 288 9.57 3.54 69.79
ShuffleNetV2 256 x 192 7.55 1.36 57.63
ShuffleNetV2 384 x 288 7.55 3.06 58.86
Lite-HRNet-18 256 x 192 1.13 0.27 60.61
Lite-HRNet-18 384 x 288 1.13 0.60 70.41
Lite-HRNet-30 256 x 192 1.76 0.42 63.06
Lite-HRNet-30 384 x 288 1.76 0.95 71.77
One-stage

RTMO-s 640 x 640 9.53 5.10 55.23
RTMO-tiny 416 x 416 6.57 3.38 43.49
YOLOxpose-s 640 x 640 10.72 18.30 58.66
YOLOxpose-tiny 416 x 416 6.04 4.39 44.52
Our method

TDFNet-18 256 x 192 1.21 0.41 73.74
TDFNet-18 384 x 288 1.21 0.83 76.10
TDFNet-30 256 x 192 1.85 0.58 74.48
TDFNet-30 384 x 288 1.85 1.21 76.71

reflects the precision of these critical keypoints. In addition, the
OKS threshold was set to 0.75 to align with the high accuracy
requirements of the robotic harvester for target pose estimation.

D. Benchmarking Experiment

1) Experiment 1. First, we trained representative models of
common paradigms in the field of pose estimation (top—down
and one-stage) using the complete training set of PedunclePos
and evaluated their accuracy, parameter count, and GFLOPs.
Detailed results are shown in Table Il and Fig. 11(a).

Experimental results indicate that models with more param-
eters and larger input sizes achieve higher accuracy, consis-
tent with neural network scaling laws. Larger models, such as
HRNet-w32 [42] and ResNet-50 [36], outperform lightweight
models, such as Lite-HRNet [33] and MobileNetV2 [43],
in terms of accuracy. However, this improvement comes at
the expense of significantly increased computational costs,
posing challenges for deployment in resource-constrained envi-
ronments. For instance, with an input resolution of 384 x 288,
the GFLOPs of HRNet-w32 reach as high as 17.29.

Notably, TDFNet demonstrated remarkable advantages by
maintaining low parameter and computation costs while achiev-
ing performance comparable to or even exceeding standard
models with larger parameter counts. For example, with an input
resolution of 256 x 192, TDFNet with widths of 18 and 30 only
increased GFLOPs by 0.142 and 0.155 compared to Lite-HRNet
of the same size, while improving AP by 8.58% and 9.52%,
respectively. At a resolution of 384 x 288, the GFLOPs of
TDFNet-30 are approximately 7% and 8% of HRNet-w32 and
ResNet-50 at the same resolution, yet its AP surpasses both
models. This demonstrates that TDFNet achieves an optimal
balance between accuracy and computational cost, making it
well suited for real-time and resource-constrained scenarios in
automated harvesting tasks.
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Fig. 11.
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Comparison of model complexity and accuracy. (a) and (b) Accuracy results and computational complexity of models across different input sizes on

the full dataset. (c) AP of models across different input sizes on the few-shot dataset. Top—down methods are evaluated at input resolutions of 256 x 192 (lower
resolution) and 384 x 288 (higher resolution). One-stage methods are evaluated at 416 x 416 (lower resolution, “-t(iny)” models) and 640 x 640 (higher resolution,
“-s” models). HR-w32 = HRNet-w32, RES-50 = RESNet-50, MBV2 = MobileNetV2, LHR = LiteHRNet, RTMO-s/t = RTMO-s, RTMO-tiny, and YOLOXx-s/t

= YOLOxpose-s, YOLOxpose-tiny.

It is worth noting that among the tested models, top—down
models generally achieve higher accuracy on the validation
set compared to one-stage models (RTMO [44] and YOLOx-
Pose [45]). One-stage models jointly learn both bounding box
detection and keypoint estimation, enabling them to perform
detection and output keypoints simultaneously. We believe this
performance gap is caused by the specific characteristics of the
PedunclePos dataset. Not all objects in the images are labeled, as
illustrated in the examples in Fig. 10. The reasons for this dataset
inconsistency have been previously discussed in Section Ill.
The varying requirements and costs of different tasks lead to
discrepancies in dataset labeling. This inconsistency introduces
additional challenges for training one-stage models, especially
when they need to simultaneously learn detection and regression
tasks. Moreover, the total size of the PedunclePos dataset, even
in its complete form, is not large enough to support the training
of multitask one-stage models effectively.

2) Experiment 2: To enhance the applicability of the experi-
ments and provide references for further research on harvesting
robots, we adjusted the experimental conditions. We trained
and evaluated models with potential for deployment in robotic
harvesting applications under conditions of limited training
samples. During the training phase, only 25% of the samples
from the training set were used, while the validation set size
remained unchanged. This setup was designed to test the models’
generalization abilities under limited data conditions.

In the preliminary experiments, we observed that multiple
tomato clusters often appeared simultaneously in the scenes.
Models, such as HRNet-w32 and ResNet-50, exhibited insuf-
ficient computational speed, which negatively impacted the
real-time performance of the robotic perception system. RTMO
and YOLOxPose showed poor accuracy in our test greenhouse
scenarios and were consequently excluded. Therefore, in Experi-
ment 2, only lightweight top—down methods were evaluated, and
inference speeds were tested on a CPU with a batch size of 10.
The experimental results are shown in Table Il and Fig. 11(b).

The results demonstrate that TDFNet maintains significant
advantages under limited sample conditions. For instance, with
an input resolution of 256 x 192, TDFNet with widths of 18

TABLE 1l
EXP. 2: DETECTION ACCURACY AND REAL-TIME PERFORMANCE COMPARISON
FOR ROBOTIC APPLICATIONS UNDER LIMITED TRAINING DATA

AP (%) under limited

Model Input size e FPS*
data condition

MobileNetV2 256 x 192 35.78 2.0
MobileNetV2 384 x 288 44.05 1.5
ShuffleNetV2 256 x 192 27.51 3.4
ShuffleNetV2 384 x 288 29.53 2.6
Lite-HRNet-18 256 X 192 27.10 8.7
Lite-HRNet-18 384 X288 35.40 32
Lite-HRNet-30 256 X 192 28.62 5.4
Lite-HRNet-30 384 X 288 36.69 2.2
Our method

TDFNet-18 256 X 192 46.38 5.6
TDFNet-18 384 X 288 52.36 2.4
TDFNet-30 256 X 192 50.91 3.9
TDFNet-30 384 x 288 53.62 1.5

*Inference time and FPS tested under CPU AMD Ryzen5 3600 x 4.25 GHz, batch size = 10.

and 30 outperformed Lite-HRNet in accuracy by 19.21% and
19.62%, respectively. When the training set size was reduced
from 100% to 25%, TDFNet’s accuracy dropped by 27.36 per-
centage points at an input resolution of 256 x 192, whereas Lite-
HRNet exhibited a larger decline of 33.51 percentage points.
This result partially reflects the robustness of the models when
encountering environmental changes, with TDFNet demonstrat-
ing stronger adaptability.

E. Ablation Study

To evaluate the effectiveness of the proposed TDFNet archi-
tecture, we conducted a comprehensive ablation study by incre-
mentally integrating key components into the baseline model
and analyzing their impact on pose estimation performance. The
baseline model was Lite-HRNet-18, with an input resolution of
256 x 192. The AP at 0.75 metric was used to quantify model
accuracy. We adopted the same two training conditions as in the
previous experiment: the complete training set and the limited
training set. Experimental results are summarized in Table IV.

First, the knowledge branch was added to the baseline model,
while only using RGB images as input. Under both the complete
and limited training set conditions, this intermediate model
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TABLE IV
ABLATION STUDY RESULTS ON TDFNET USING AP AT 0.75
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TABLE V
THREEFOLD CROSS-VALIDATION RESULTS OF TDFNET

Variants Components | Input AP (%) Fold Complete dataset AP (%) Limited dataset AP (%)
Full Limited Fold 1 71.13 46.10
Baseline RGB 7 60.61 27.10 Fold 2 7191 45.08
+ KB RGB 7 64.45 30.87 Fold 3 71.17 46.92
TDFNet | + KB + CFR | RGB Z, DF F 7374 | 4638 Average =140 76.03
KB: Knowledge Branch, CFR: Correspondence Feature Region, DF: Detection Features. Std. Dev. 0.32 0.76

achieved improvements of 3.84% and 3.77%, respectively, com-
pared to the baseline. These gains were attributed to the opti-
mized and expanded network structure. Subsequently, the model
leveraged features from the tomato detection model and used
the CFR module to precisely extract target-relevant regions, en-
abling upstream-downstream fusion inference. Under the com-
plete and limited training set conditions, this approach achieved
improvements of 13.13% and 19.28%, respectively, compared
to the baseline. These results indicate the complementary nature
of RGB and detection knowledge, and demonstrate that the
proposed fusion method significantly enhances accuracy and
the model’s learning capability.

F. Conclusion on TDFNet

The results of benchmarking and ablation experiments jointly
validate the effectiveness of the TDFNet architecture, particu-
larly the advantages of its top—down fusion design. The exper-
imental findings confirmed the initial hypothesis: for datasets
with limited sample sizes, models with fewer parameters strug-
gle to efficiently train on raw images and fail to serve as effective
feature extractors, while models with more parameters, despite
their stronger feature extraction and prediction capabilities,
suffer from low real-time performance. The key challenge lies
in how downstream models can extract sufficient features to
support high-precision predictions. By leveraging knowledge
generated from upstream tasks, TDFNet provides a promising
solution to this challenge, reducing the difficulty of directly
learning from target images.

By utilizing knowledge learned from upstream tasks, TDFNet
significantly improves the accuracy of downstream tasks, partic-
ularly under limited dataset conditions. The features extracted
by the upstream model indirectly leverage multiple potentially
related datasets. TDFNet transforms data from various tasks
into “knowledge” usable for specific tasks while maintaining
the advantages of the top—down paradigm, enabling modularity
between upstream and downstream models. In the agricultural
domain, where annotated data are scarce and task scenarios are
diverse, the ability to independently enhance or replace upstream
models or datasets becomes particularly important.

G. k-Fold Cross-Validation Experiment

To further validate the stability and generalization capability
of TDFNet, we conducted a threefold cross-validation experi-
ment on the complete training set. Results are given in Table V.
The average AP on the complete training set was 71.40%,
with a standard deviation of only 0.32, indicating stable and
consistent performance across different data partitions. These

results demonstrate that the training effectiveness of TDFNet is
not dependent on a specific data partitioning, further enhancing
the credibility and applicability of the model in agricultural
scenarios.

In addition, a supplementary cross-validation experiment was
conducted under a limited dataset condition. The results, also
presented in Table V, show that the average AP under lim-
ited data conditions dropped to 46.03%, with a slightly higher
standard deviation of 0.76. Although performance declines with
less training data, TDFNet still maintains reasonable detection
accuracy. The primary focus of this study, however, remains on
the results obtained using the complete dataset, as they better
reflect the model’s potential for practical applications.

VI. HARVESTING EXPERIMENTS

To validate the effectiveness of the proposed method in per-
ception, path planning, and execution, we designed a series
of experiments. These experiments comprehensively analyze
and evaluate the impact of perception on action outcomes,
single-target harvesting tests under controlled conditions, and
autonomous continuous harvesting performance.

A. Validation Experiment on the Impact of Pose Estimation
Accuracy on Harvesting Success Rate

The performance of the visual perception module, particularly
pose estimation, is typically evaluated independently of the sub-
sequent harvesting operation. However, this isolated evaluation
limits the assessment of the perception module’s contribution
to overall system-level harvesting success. To address this is-
sue, this experiment was designed to validate the relationship
between pose estimation accuracy and the harvesting success
rate under different precision thresholds.

The experiment was conducted in a high-fidelity simulation
environment, NVIDIA Isaac Sim, to ensure reproducibility and
strict control of variables. In natural environments, the unique-
ness of each target and the changes in pose after a harvesting
attempt make it difficult to restore initial conditions for compar-
ative experiments. By contrast, the simulation environment al-
lowed for the digital modeling of 42 tomato clusters, replicating
real-world tiltangles and curvatures, as illustrated in Fig. 12. The
same model (TDFNet) was used, with different versions saved
during the training process, each exhibiting varying pose esti-
mation accuracies on the validation dataset. All other processing
steps, including grouping and 3-D pose estimation, remained
unchanged to isolate the impact of pose estimation accuracy.

A harvesting attempt was considered successful if the end-
effector gradually enveloped the tomato cluster from the bottom,
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Fig.12.  Builtthe basic greenhouse structure in Isaac Sim and conducted pick-
ing experiments on virtual tomato clusters replicated from real-world scenarios.

Fig. 13. Relationship between pose estimation accuracy (AP50 and AP75)
and harvesting success rate. The results demonstrate strong positive correla-
tions, with rapsp = 0.9009 and rap7s = 0.9438. AP75 exhibits slightly higher
explanatory power, as indicated by R2,,. = 0.8907 compared to R, =
0.8116.

with the fruit stem ultimately aligning with the guiding slot of the
end-effector. Failure was defined as any collision that displaced
the target by more than 1 cm. To facilitate the detection of
collisions, targets were set to a zero-gravity state, making them
more responsive to external forces.

To evaluate the contribution of pose estimation accuracy
to harvesting success rate, two standard precision thresholds,
AP50and AP75, were analyzed. Pearson correlation coefficients
(r) and coefficients of determination (R?) were calculated to
quantify the relationships between these variables. The analysis,
shown in Fig. 13, revealed that AP50 and AP75 are both strongly
positively correlated with harvesting success rate, with rapsg =
0.9009 and rap75 = 0.9438. The corresponding coefficients of
determination, R2p5, = 0.8116 and R2p,5 = 0.8907, indicate
that AP75 provides a slightly stronger explanatory power under
simulation conditions.

These results suggest that while both thresholds are effective
predictors of harvesting success, AP75 offers stricter evaluation
criteria, making it more suitable for model selection during
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training. However, in real-world conditions, where environ-
mental disturbances, such as occlusions, lighting variations,
and mechanical noise, are prevalent, AP50 may provide more
robust performance by mitigating failures caused by overly strict
thresholds. This tradeoff highlights the importance of leverag-
ing different precision thresholds in simulation and real-world
applications to balance precision and robustness.

B. Automated Harvesting Experiment

The proposed method was integrated into a robotic system,
and two types of experiments were conducted in a greenhouse.
The first experiment evaluated the performance of pose esti-
mation using TPFNet, the effectiveness of end-effector path
planning based on pose estimation, and the functionality of
the end-effector under controlled conditions. The second ex-
periment assessed the system’s autonomous capability in an
environment without human intervention.

1) Experiment 1—Single-Target Harvesting Test in Con-
trolled Conditions: We intentionally adjusted the environmental
conditions to ensure the safety and controllability of the experi-
ment. Specifically, the target tomato peduncle was not occluded
by other similar fruits, and no other greenhouse structures or
vines, apart from the vine connected to the target, interfered
with the process. Each stage of the experiment was manually
verified for correctness. The accuracy of pose estimation was
evaluated by manually annotating keypoints on the target pe-
duncle in real time by an operator. Unlike the model prediction
accuracy tests described in the previous section, we calculated
the OKS between the 3-D virtual peduncle curve generated by
the perception system and its 2-D projection on the image against
the ground truth.

In natural scenes, the accuracy of the perception model is often
affected by factors, such as lighting conditions and crop texture,
leading to most predictions being considered failures under
the default 0.75 threshold, thereby preventing the perception
structure from being output. As a result, the threshold had to
be lowered to 0.5. Since the success rate of the end-effector’s
cutting operation is highly dependent on the accuracy of SP point
prediction, manual evaluation was further introduced. If the
end-effector contacted the target without causing a displacement
of more than 1 cm, the contact was considered successful. Each
pose target category contained 20 items, with a maximum of
three attempts per target.

The experimental results are summarized in Table VI. They
demonstrate that the perception method based on TDFNet
performs effectively in greenhouse environments. The overall
accuracy of pose estimation reached 91.25%, with SP point
determination achieving an accuracy of over 86.25%. The results
reveal a strong correlation between the orientation of the crops
and the difficulty as well as the success rate of harvesting. Targets
oriented directly toward the robot were the easiest to harvest,
followed by those oriented to the right. Conversely, targets facing
away from the robot posed the greatest challenge. The primary
factor contributing to reduced keypoint detection accuracy was
the occlusion of the peduncle by crop vines, which subsequently
affected the motion planning of the robotic arm.
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TABLE VI
SUCCESS COUNTS AND RATES IN CONTROLLED SCENARIOS
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TABLE VII
RECORD OF CONTINUOUS AUTONOMOUS HARVESTING EXPERIMENTS

Harvesting failures were categorized into three main causes:
1) extreme target poses, 2) inaccuracies in pose estimation, and
3) performance limitations of the end-effector. During the trials,
it was observed that the end-effector often made contact with
either the target or the surrounding vines, causing displacement.
This was primarily due to vine occlusion and interference,
compounded by the absence of vine perception capabilities. For
instance, the net of the end-effector might lift the target by con-
tacting its bottom, displace the target by touching the fruit’s edge,
or make unintended contact with crop vines, preventing proper
alignment of the peduncle with the cutting blade. However, when
harvesting was limited to targets oriented toward the front or
right, the success rate of peduncle cutting increased significantly
t092.5%. This observation highlights the importance of focusing
future experiments on these two orientations to further optimize
performance.

In summary, successful harvesting relies heavily on precise
path planning and pose-based adjustments to minimize unin-
tended contact with the target. Using the proposed method,
the final separation rate was improved by 31.25%. Notably,
the fault-tolerant design of the end-effector played a crucial
role: once the target was enveloped, successful harvesting was
highly likely. Even when there were slight deviations in SP point
predictions, the peduncle could still fall into the guiding slot and
be successfully cut.

2) Autonomous ContinuousHarvesting Evaluation: This ex-
periment aimed to evaluate the robot’s capability for autonomous
and continuous harvesting in a commercial greenhouse envi-
ronment. Unlike previous tests, this experiment required no
manual intervention or pruning, with the robot autonomously
selecting harvesting targets based on its perception of the
environment.

The robot moved at a constant speed along a predefined
track, continuously scanning for harvestable targets that met
predefined criteria. Upon detecting a target, the robot stopped,
re-estimated the phenotype and posture of the target, planned its
actions, and attempted the harvesting process. Each target was
attempted only once, and the robot proceeded to the next target
regardless of success. The experiment was halted only in cases
of safety concerns.

A section of the greenhouse planting area was divided into
five blocks, with the robot traversing approximately 200 m to

Direction Pose Sp Bottorq—Up Detach Experiment ID Number of Successful harvests Success rate
Estimation Judgment Wrapping attempts
Based on SP and 6DOF bounding box 1 16 14 87.50%
Left - 19, 95% 8, 40% 3, 15% 2 22 20 90.90%
Front 18, 90% 17, 85% 16, 80% 3 14 13 92.85%
Right 19, 95% 12, 60% 10, 55% 4 26 23 88.46%
Back 14, 70% 4, 20% 1. 5% 5 18 16 88.89%
All - 70, 87.5% | 41,51.25% | 30, 37.5%
Based on proposed method
Left 19, 95% 20, 100% 13, 65% 10, 50% complete the harvesting. Human operators recorded the number
Front 19, 95% 17, 85% 19, 95% 18, 90% - .
Right 19, 95% 19.95% 19, 95% 19, 95% of harvesting attempts and successful harvests in each block, as
Back 16, 80% 13, 70% 9, 45% 8, 40% summarized in Table V1. The results show an average harvesting
All 73,9125% | 69, 86.25% 60. 75% 35, 68.75% success rate of 89.58%.

The experimental results demonstrate that the proposed au-
tonomous decision-making and harvesting method, integrating
phenotype and posture estimation, enables the robot to achieve
continuous, safe, and efficient harvesting. The primary failure
causes, including perception and mechanical limitations, have
been discussed in detail in the dedicated failure case analysis
section. Notably, despite occasional positioning errors or op-
erational challenges, no safety incidents occurred during the
experiment. This can be attributed to the fault-tolerant design
of the end-effector, which ensured secure operation even under
challenging conditions.

VII. DiscussioN

A. System-Level Integration and Failure Analysis

In this study, we adopt a system-level approach to analyze and
validate the harvesting robot, integrating perception, planning,
and execution as a cohesive framework. This is in contrast
to prior research, which often evaluates these components in
isolation. While our approach provides a holistic understanding
of the system, it also introduces challenges in quantifying the in-
dividual contribution of each module to the overall performance
of autonomous harvesting.

The proposed harvesting system demonstrated high success
rates during experiments; however, specific failures were ob-
served, attributed to perception errors, end-effector limitations,
target properties, and environmental obstacles.

Perception errors were a primary source of failure. Occlusion,
dense fruit arrangements, and lighting variations frequently
caused detection inaccuracies. Furthermore, errors in depth esti-
mation led to misalignments between the reconstructed tomato
cluster and its actual position, resulting in unintended collisions
between the end-effector and the target. These issues often
displaced the target, preventing the end-effector from properly
applying pressure on the peduncle, as illustrated in Fig. 14((D)-
@).

End-effector design limitations also impacted performance.
Flexible or thick peduncles introduced additional movement,
making precise alignment and cutting more difficult. Large or
irregularly shaped clusters often failed to fit into the end-effector,
leading to incomplete cuts or displacement. Overripe fruit was
particularly prone to detachment or damage during collection,
especially when falling into the net pouch.
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Fig. 14.
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Examples of harvesting failures. In ()—(4), perception errors caused collisions between the harvesting action and the target, leading to displacement.

Although the tomato cluster accidentally fell into the end-effector, the robot failed to complete the cutting operation along the designed path. In (), the end-effector
collided with the vine in the scene, posing a potential risk of damage if the action proceeded. In (6), the peduncle of the target was too long, and due to its flexibility
and additional movement allowance, it could not be severed when pressure was applied. In (7), the end-effector grazed the vine, causing target displacement.
Consequently, the peduncle did not align with the end-effector blade, leading to a cutting failure.

TABLE VIII
PERFORMANCE COMPARISON OF ROBOT AND HUMAN OPERATORS IN
HARVESTING TASKS

Harvesting step
Movement and Decision-Making
Harvesting Planning

Robot time (s) | Human time (s)
Robot <Human
Robot <Human

Arm Movement 6 2
Cutting (Separation) Action 6 0.5
Placement and Reset 20 4

Environmental obstacles, such as intertwined leaves and
vines, further complicated the harvesting process. Collisions
with these elements posed risks of damaging the robot or sur-
rounding plants, occasionally requiring human intervention to
ensure safe operation.

These findings highlight the need for further advancements
in three key areas: perception algorithms to improve target
detection and depth estimation, end-effector design to enhance
adaptability and precision, and motion planning to mitigate
environmental interference and ensure reliable operation.

B. Efficiency Comparison Between Robot and
Human Operators

The proposed autonomous harvesting system supports con-
tinuous operation, but its speed and adaptability remain lower
than those of human workers. The harvesting process is divided
into the following five stages:

1) movement and inspection, where the robot scans for ripe

tomato clusters;

2) target identification, where it identifies targets and plans

the harvesting operation;

3) arm movement, where the arm positions itself to prepare

for cutting;

4) cutting and separation, where the peduncle is severed; and

5) placementand reset, where the harvested fruitis deposited,

and the robot prepares for the next cycle.

Table VIII compares the time consumption of robots and
humans for each step.

In tasks requiring perception and decision-making, the robot
is significantly slower than humans due to limitations in real-
time processing speed. While the arm movement speed of the
robot can approach human speed, it is intentionally restricted for
safety reasons. For cutting, humans using scissors can complete
the task almost instantly, whereas the robot requires gradual
application of force to ensure proper separation. Furthermore,
during placement and reset, the robot moves cautiously to avoid
entanglement or damage, resulting in a significant time differ-
ence compared to humans, who complete this task effortlessly. In
addition, the robot foregoes a large portion of extreme targets in
the scene due to strategy constraints, further affecting harvesting
completeness.

Despite these limitations, robots possess unique advantages
in repetitive tasks and harsh environments. Robots are capable of
operating continuously in hot greenhouses without fatigue, unaf-
fected by skill level, weather, or mood. Although human workers
currently outperform robots in terms of speed, precision, and
adaptability, robots have the potential to complement human
labor in the future, especially with advancements in technology
and human-robot collaboration models.

C. TDFNet Limitations and Scalability

The limited sample size and high annotation difficulty of crop
datasets pose significant challenges, as different crops and tasks
require distinct annotation strategies. In this study, completing
the harvesting task based on pose estimation required both
target detection and the annotation of seven peduncle keypoints,
making data collection particularly demanding. To address this,
TDFNet leveraged correlations between detection and keypoint
tasks, significantly improving keypoint detection performance
with limited data.

To evaluate TDFNet’s scalability, experiments were con-
ducted on a publicly available grape cluster dataset [46], which
includes 2-D bounding box annotations and approximately 500
images with manually annotated keypoints. As shown in Fig. 15,
the model can outline the overall trajectory of the target’s main
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Fig. 15.  Illustration of TDFNet applied to grape clusters. The model utilizes
keypoint detection to estimate the main stem’s trajectory, as demonstrated with
limited training data. Increasing the dataset size or applying transfer learning
techniques could further enhance detection precision and robustness.

stem, albeit with limited precision. Under an OKS threshold
of 0.75, Lite-HRNet-18 achieved a keypoint detection accuracy
of 50.5%, while TDFNet-18 achieved 68.4%, demonstrating its
superior performance and generalizability for clustered crops
with similar structural features.

Nevertheless, the limited size of the annotated dataset re-
stricts the full exploration of TDFNet’s capabilities. Future work
should focus on expanding datasets, validating performance
across diverse crops, and exploring domain adaptation and
transfer learning techniques to improve adaptability to different
crop morphologies and environmental conditions. In addition,
establishing quantitative methods to measure task correlations
and determining thresholds for effective knowledge transfer
remain key research directions.

D. Future Directions for Improvement

While TDFNet has shown promising results in detecting
keypoints for tomato cluster harvesting, its reliance on high-
quality annotated datasets limits its scalability, particularly for
crops with diverse morphologies or in data-scarce environments.
Future research should explore transfer learning and domain
adaptation to enhance model adaptability and reduce depen-
dency on extensive annotations.

Beyond TDFNet, the overall system performance must be
improved to address challenges identified in this study. Per-
ception errors, end-effector limitations, and environmental ob-
stacles remain key factors contributing to harvesting failures.
Enhancing the perception module with multitarget recognition
and environmental sensing could enable obstacle detection and
intelligent path planning. Similarly, optimizing the end-effector
design with modular or reconfigurable mechanisms could im-
prove adaptability to different crop structures, reducing failure
rates and increasing efficiency.

The future of robotic harvesting systems lies in achieving
human-level performance and reliability while maintaining scal-
ability across diverse agricultural applications. Advancements
in dynamic path planning, real-time environmental awareness,
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and collaborative robotics are crucial for enabling robots to
operate effectively in unstructured environments. Addressing
these challenges will position robotic harvesting systems as a
sustainable and scalable solution to meet the growing demands
of global food production.

VIIl. CONCLUSION

In this article, we introduced the TDFNet to address the chal-
lenges of phenotyping and pose estimation of tomato trusses in
agricultural environments. By leveraging features learned from
upstream object detection tasks, TDFNet enhances the accuracy,
robustness, and few-shot learning capability of downstream pose
estimation tasks while preserving the independence of upstream
and downstream models. This approach is particularly advanta-
geous in agricultural scenarios where annotated data are scarce.
The results indicate that TDFNet, in comparison to baseline
models, achieves significant performance enhancements with
only a minor increase in parameters, improving accuracy by up
t0 11.42% and 22.29% on complete and limited sample datasets,
respectively.

Building on the capabilities of TDFNet, we developed a
robotic harvesting system that integrates innovative target per-
ception, decision-making, and end-effector path planning meth-
ods. Real-world experiments conducted in greenhouse envi-
ronments demonstrated that our robot, guided by vision-based
posture estimation and equipped with a specially designed end-
effector, achieved a high success rate of 89.58% in harvesting
tasks and showcased the potential for continuous operation.
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