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Abstract

Recent advances in large language model assistants have made
them indispensable, raising significant concerns over manag-
ing their safety. Automated red teaming offers a promising
alternative to the labor-intensive and error-prone manual prob-
ing for vulnerabilities, providing more consistent and scalable
safety evaluations. However, existing approaches often com-
promise diversity by focusing on maximizing attack success
rate. Additionally, methods that decrease the cosine similarity
from historical embeddings with semantic diversity rewards
lead to novelty stagnation as history grows. To address these
issues, we introduce DiveR-CT, which relaxes conventional
constraints on the objective and semantic reward, granting
greater freedom for the policy to enhance diversity. Our ex-
periments demonstrate DiveR-CT’s marked superiority over
baselines by 1) generating data that perform better in various
diversity metrics across different attack success rate levels, 2)
better-enhancing resiliency in blue team models through safety
tuning based on collected data, 3) allowing dynamic control of
objective weights for reliable and controllable attack success
rates, and 4) reducing susceptibility to reward overoptimiza-
tion. Overall, our method provides an effective and efficient
approach to LLM red teaming, accelerating real-world de-
ployment. £h WARNING: This paper contains examples of
potentially harmful text.

Project Page — https://andrewzh112.github.io/diver-ct

1 Introduction

Deploying large language model (LLM) assistants often re-
quires extensive testing on its output behavior to meet societal
standards. One de facto paradigm to validate model integrity,
robustness, and safety is using red teaming, where a group of
experts (the “red team”) proactively identify and mitigate po-
tential issues of LLMs (the “blue team”) to prevent harmful
responses, €.g., provide private information or instructions to
make a bomb. Additionally, red teaming data is often used to
further adapt LLM chat assistants using safety tuning (Gan-
guli et al. 2022). In particular, extensive stress testing LLMs
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with red teaming focuses on a diverse set of scenarios. While
traditional red teaming (Ganguli et al. 2022) has been effec-
tive in uncovering flaws, it often requires extensive manual
effort from highly skilled experts, making it labor-intensive,
error-prone, and inherently subjective. In response, automatic
red teaming (Perez et al. 2022; Samvelyan et al. 2024; Hong
et al. 2024; Deng et al. 2023; Ge et al. 2023; Beutel et al.
2024; Zhang et al. 2024) has emerged as a preferred alterna-
tive to manual efforts. These methods harness LLMs as the
red team, using iterative algorithms to generate effective at-
tacks automatically. Through continuous interaction with the
blue team, these methods amass data for analysis, identify-
ing vulnerabilities, and areas for improvement. Additionally,
these interactions provide valuable training data, enhancing
the robustness and safety protocols of the blue team model.

Existing works on automatic red teaming treat the problem
as an optimization task aimed at maximizing the expected
attack success rate (ASR), achieved by optimizing the unsafe
proxy score against the blue team model, as detailed in Sec-
tion 2. However, this emphasis on ASR overshadows another
crucial aspect of red teaming: generating a semantically
rich set of diverse test queries. Such diversity is essential for
exhaustive testing of robustness and reliability across a broad
spectrum of scenarios, accurately reflecting the wide range
of use cases encountered upon deployment (Radharapu et al.
2023). Furthermore, employing adversarial safety training
or Reinforcement Learning from Human Feedback (RLHF)
on these comprehensive red teaming datasets allows LLMs
to improve their performance by fortifying their defenses
against potential exploits and enhancing their ability to
generalize effectively. This comprehensiveness promotes in-
terpolation within known scenarios rather than extrapolation
in unknown situations, ultimately increasing their reliability
in real-world situations (Ouyang et al. 2022; Bianchi et al.
2023; Ganguli et al. 2022; Ge et al. 2023). In Figure 4, we
demonstrate empirically that increasing diversity among red
teaming prompts enhances safety tuning, resulting in safer
models when using our generated prompts.

We contend that @ the prevalent approach to red team-
ing by maximizing unsafe reward misrepresents its broader
objective, leading to compromised data diversity and qual-
ity. Ideally, the red team should remain impartial during
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Figure 1: Main Framework of DiveR-CT. The key components of DiveR-CT, focusing on: (@) casting automatic red teaming as
a constrained policy optimization problem, allowing our policies greater flexibility by relaxing the maximization objective; and
() the revamped dynamic semantic reward. For a generation at time ¢ + 1 that is close to the last, CRT (Hong et al. 2024) assigns

a high reward, while DiveR-CT assigns a low k-NN reward, encouraging the policy to discover novel generations.

the data collection phase to gather a comprehensive spec-
trum of unsafe data with varying degrees of toxicity. This
ensures the goal is not skewed towards eliciting the most
egregious responses, encouraging the collection of any red
teaming query that triggers the blue team model to exceed a
predefined safety threshold, including less severe but equally
critical responses. @ Maximizing the expected ASR through
increasing the unsafe response score inherently reduces di-
versity by confining policies to restricted search spaces. ©
Since reward models are learned proxies, this setting tends to
exacerbate overoptimization (Gao, Schulman, and Hilton
2023), potentially obscuring the true objective (Hoskin 1996;
Taylor 2016; Armstrong, Sandberg, and Bostrom 2012; Si-
mon 1956). In Figure 3, we demonstrate that putting more
emphasis on attack success rate maximization indeed leads to
a greater risk of overoptimization across various ASR levels.

To address the score maximization bias and the eclipsed
significance on diversity in automatic red teaming, we
propose Diversity-enhanced red teaming with Relaxing
ConstrainTs (DiveR-CT), shown in Figure 1. Unlike prior
works that maximize every reward, DiveR-CT recasts
maximization-biased terms into a constrained optimization
framework (Equation (3)). Specifically, by treating unsafe
rewards as threshold constraints rather than strict maximiza-
tion targets, the policy gains more freedom to optimize for
diversity metrics. Moreover, we further enhance semantic di-
versity by introducing a progressive reward based on nearest
neighbors from generated history’s embeddings. This reward
uses dynamic targets to foster adaptive updates, ensuring thor-
ough coverage of the semantic space. Previous efforts, e.g.,
Curiosity Red Teaming (CRT) (Hong et al. 2024), have at-
tempted to tackle the diversity issue using a semantic reward
that encourages the red team policy to increase the semantic
distance between the newly generated output and the history.
However, as training progresses, the efficacy of reward sig-
nals in guiding the policy diminishes. In contrast, DiveR-CT
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dynamically adjusts nearest neighbor targets, providing a re-
active and adaptive signal for the policy to cover the semantic
space uniformly. We illustrate their PCA projection dynamics
in Figure 2.

In Section 5, experimental results firstly validate the effec-
tiveness of DiveR-CT in enhancing diversity across various
settings with controllable attack success rate levels. Secondly,
we show that our approach not only alleviates reward overop-
timization issues but also enhances blue team models’ re-
silience to attacks with superior data (Bianchi et al. 2023;
Ge et al. 2023). Lastly, by attacking more resilient L1ama
safety-aligned models, we demonstrate that the static coef-
ficients for safety in CRT cause drastic degradation in ASR,
highlighting another strength of our method’s dynamic ad-
justment of the safety coefficient to achieve steerable ASR
while generating diverse attacks simultaneously.

2 Related Works

Automatic red teaming methods emerged to replace manual
red teaming, with three main lines of work. Reinforcement
learning (RL) pioneered by Perez et al. (2022), used RL to
train red team agents to minimize blue team response safety,
though at the cost of reduced diversity and near-deterministic
policies (Puterman 2014). To counter these limitations, Hong
et al. (2024) developed a curiosity-driven (CRT) method to
enhance diversity (Tevet and Berant 2021) by incorporating
historic generations to calculate novelty rewards (Pathak et al.
2017). Another line of work (Samvelyan et al. 2024), used
quality diversity algorithms and prompting methods to gather
red teaming prompts. Last line of work, (Lee et al. 2024),
used amortized inference to tackle the red teaming problem.

We utilize RL for optimizing the discovery of red teaming
prompts due to its efficacy in finding high reward (Sutton and
Barto 1998), particularly in the vast and sparse search spaces
of LLMs exacerbated by model safety features. Studies like



those by (Lee et al. 2024) suggest using foundational datasets
of manually curated attacks (3,003 toxic prompts from the
SafetyDataset and AdvBench) to predict unseen modes of
reward, emphasizing the need for an initial dataset to mo-
tivate exploration. However, this attempt to align trajectory
probabilities proportional to rewards, fail to incentivize on-
line searching for new initial modes, presenting a “chicken
and egg” dilemma. Additionally, works like (Samvelyan et al.
2024) use quality-diversity algorithms but require prompt
engineering for mutator and judge prompts, as well as human
expert-designed features for archives. Furthermore, like (Lee
et al. 2024), they needed human curated red team samples
(Anthropic Harmless) to initialize their Map-Elites archive.
In contrast, RL approaches minimizes human intervention/-
expertise, allowing for training from scratch and efficiently
discovering red teaming prompts, representing a streamlined
and effective approach to automatic red teaming for LLMs.

Although proficient at eliciting unsafe responses from the
blue team, current RL methods focus on maximizing toxicity,
which might not address all defensive needs. This emphasis
overlooks subtler harmful outputs and restricts the diversity
of attacks. Furthermore, existing semantic rewards incorpo-
rating history can initially encourage diversity but degrades
as optimization progresses.

3 Background and Problem Statement

Let X denote the set of all natural language strings. Consider
a black-box (Papernot et al. 2017, 2016) language model
chat assistant g yg (the blue team model), which can be
queried a fixed number of times N. The task of automatic
red teaming involves identifying a subset X.g C & such that
for any prompt ;g € Xieq, the response y ~ TBLUE(Zred)
meets specific unsafe criteria C. This subset is defined as
Xeed = {.%‘ e X | 1C(7TBLUE(' | .T)) = 1}, where C' is typi—
cally assessed by a safety classifier threshold. While straight-
forward optimization for successful attacks achieves the auto-
matic aspect, they do not ensure the diversity of the resulting
set Xieq, often leading to mode collapse (Hong et al. 2024;
Kirk et al. 2024). Therefore, our objective is also aimed at
maximizing the diversity of the set Xieq.

Previous red teaming approaches, RL Perez et al. (2022)
and CRT have the following objectives, respectively:

RRL(’LU, €, y) é *BsafeBsafe (xa y)
— B log(mg (z|w) /Trer (x| w)) M

A
Rerr(w, 2,y) = RrL—Bent log mo (z|w) — Bgibb Beivb ()
+ﬁsemBsem(x)+ﬁngramBngram(-r); 2

where, 7y is the red team language model we are optimiz-
ing, and 7 is the reference model used in standard RLHF
(Ouyang et al. 2022). w € W is the eliciting prompts used
to generate red team prompt x ~ mp(-|w), while y is the
generated reply of LLM chat assistant y ~ mpLyg(+|2). The
coefficients § weight different objectives: KL divergence be-
tween the policy and reference model (KL), token entropy
(ent), gibberish (gibb), semantic distance (sem), and n-gram
dissimilarity (ngram). The Bs are the classifier outputs.

26023

Red-teaming vs. Jailbreaking/Adversarial Attack Adver-
sarial methods, such as jailbreaking and adversarial attacks,
primarily focus on attack success rate (Ganguli et al. 2022;
Yi et al. 2024; Chowdhury et al. 2024). Jailbreaking typically
involves finding specific token sequences that can be added
to any instruction to induce harmful outputs from an Al sys-
tem, akin to gaining sudo access to a LLM assistant. These
sequences often utilize fixed or templated parts of prompts
designed to trigger the desired unsafe outputs. In contrast,
adversarial attacks aim to manipulate an Al system into pro-
ducing incorrect outputs, often through sequences of usually
illegible tokens. While these methods prioritize achieving a
successful attack, they do not address the need for diver-
sity within the attack strategies, which is a key focus of red
teaming approaches.

4 Diversity-enhanced Red Teaming with
Relaxing Constraints

The strict maximization of unsafe scores by current RL meth-
ods overemphasizes optimizing ASR, sacrificing diversity.
This issue is exacerbated by the semantic reward becoming
stagnant as training steps increase, further inhibiting the dis-
covery of novel prompts. Based on these observations, in Sec-
tion 4.1, we present how we utilize constrained RL to relax
the conventional objective of minimizing safety Bg.f. (Perez
et al. 2022; Hong et al. 2024), allocating the policy with
more capacity to maximize novelty rewards. Furthermore, in
Section 4.2, we refine the existing semantic reward By, by
incorporating dynamic targets to better cover the semantic
space of red teaming queries. We illustrate the schematic of
our proposed framework, Diversity-enhanced red teaming
with Relaxing ConstrainTs (DiveR-CT), in Figure 1.

4.1 Constrained Objectives to Relax Constraints

Constrained Search. Constrained optimization settings
typically requires policies to satisfy certain constraints c;,
narrowing the space of possible policies (Achiam et al. 2017).
However, we counterintuitively use constrained policy opti-
mization to relax the conventional constraint of maximizing
unsafe score, allowing the policy to focus more on diversity.
This is justified in automatic red teaming, where the pref-
erence for data points with slightly different toxicity scores
(e.g., 0.96 vs. 0.83) is minimal. We treat these attacks equally
to collect a broader and more realistic spectrum of unsafe
queries. Additionally, since classifiers are imperfect proxies,
human might judge lesser-scored attacks more toxic. Further-
more, since classifier scores often represent confidence levels,
we can establish a humanly interpretable threshold for the
resulting set of attacks. Thus, we frame red teaming as the
search for diverse attacks that exceed a certain safety thresh-
old. By using constrained policy optimization, we effectively
enhance the capability of automatic red teaming to identify a
wider range of unsafe queries.

Objective. Previous approaches, like Hong et al. (2024),
included gibberish penalties, ensuring generated queries re-
mained comprehensible. We propose integrating this reward
as a constraint, setting a confidence level for output fluency
that the policy should not violate. Importantly, our method is



flexible and not limited to constraining the policy on safety
and gibberish; any sensible target not requiring maximization
can similarly be cast as a constraint in our framework.

Overall, we have the following general optimization objec-
tive for diverse generations,

max By oW g () y~mue-lo) [R(W, 7, y)]
e 3
st. Ci(z,y) <d;,i=1,..,m, Vax,y,

where C; represents one of the m constraints, each associated
with its corresponding threshold d;. Following previous work,
all the utilities used for optimization remain in our objective;
however, they are either retained as rewards or newly cast as
constraints. For rewards, our method employs
A
Rpiver-ct(w, 2, y) = — Bk log(mo(2|w) /Trer(z|w))
—Bent log g (33 ‘ w) +Bsem Bsem (x)+ﬁngram Bngram (JU),
“

where (s are fixed hyperparameters, using the default 3 val-
ues from previous works (Hong et al. 2024). For constraints,
we have gibberish, Cgipp, and safety, Cq,te, with their corre-
sponding predetermined thresholds, dgat and dg;pb. To con-
vert the original classifier scores from CRT into costs, we use
negative rewards as costs, i.e., C = —B.

We optimize for the expected constraint satisfaction over
the generated responses y, because red teaming does not
have strict output requirements, unlike real-life scenarios
(Garcia and Fernandez 2015). The slack variable C’f, with its
corresponding thresholds d;, is defined as follows:

JAN
Czd(xv Y)=E w-w
xre (-|w)
y~mpLue(-|T)

[ci(x,y)] — di, 5)

where ¢ € {safe, gibberish} and ¢; are cost functions instan-
tiated by neural network classifiers.

Given the primal form of Equation (3), our unconstrained
dual objective can be written as (Yurkiewicz 1985; Boyd and
Vandenberghe 2010):

: d d
max min E |:RDiveR-CT — Asafe * Caape — Agibb * Cipp | -

T Asafe >0
Agibb >0

(6)
We use gradient descent ascent combined with PPO (Schul-
man et al. 2017) to solve the optimization problem in Equa-
tion (6). It is crucial to emphasize that our A values dynami-
cally adjust based on whether the expectation of constraint
1 is met. Unlike previous works that utilize a fixed coeffi-
cient (Perez et al. 2022; Hong et al. 2024), our method offers
the weights to dynamically update. This adaptability allows
for rapid adjustments in response to whether constraints are
satisfied or not.

4.2 Dynamic Semantic Diversity Reward

We used constrained RL to relax the maximization objectives
for safety and gibberish. The remaining rewards convention-
ally used are semantic and n-gram to promote novelty, which
should be maximized (Hong et al. 2024). The n-gram reward,
calculated as 1— BLEU score, effectively promotes novelty
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by dynamically selecting the most appropriate reference for
each n-gram. This reward ensures flexibility and encourages
the generation of novel queries by not fixing the policy’s ob-
jective to a particular point in terms of n-grams. In contrast,
the semantic reward mechanism, which relies on the average
cosine similarity between the hypothesis embedding and all
past history of reference embeddings Aoy, faces scalability
issues. As the reference set expands, new generations have
diminishing impacts on the semantic reward, permitting the
policy to pathologically repeat outlier solutions (observed in
Figure 2). This stark difference highlights the need for adap-
tive measures in handling semantic rewards, similar to the
flexibility afforded by the n-gram approach. To mitigate this
issue, instead of comparing the hypothesis with all reference
embeddings, we focus on the nearest k neighbours by cosine
similarity (Liu and Abbeel 2021; Zhao et al. 2022)

I o) o)
Bsem(z) = —— T T (D
k w’ENk,%,Xmsmy) [o(2)[l2llP(2")]l2

where N, (2, Xhistory) represents the k-nearest neighbors (k-
NN) of z in Xjisiory, determined by cosine similarity using the
embedding function ¢. This adjustment relaxes the red team’s
objective by dynamically shifting the semantic target instead
of a relatively fixed point. It also prevents the agent from
exploiting a single outlier solution, as the history reference
immediately updates with each step.

5 Experiments

This section introduces the data, models, and baselines used
in this study. We then present our main results, followed by
analytical experiments that involve modifying settings and
components to gain a deeper understanding of our method.

5.1 Setup

We adopted a similar experimental setup as CRT (Hong et al.
2024), with minimal changes to maintain consistency. We
used identical hyperparameters used by CRT, enabling fair
comparisons. We optimize all methods the same number of
steps for three seeds. Note that by using the same number
of gradient updates across different methods, we allow a fair
comparison of the time complexities of different methods.
Baselines. To thoroughly evaluate DiveR-CT’s perfor-
mance, we incorporate a variety of baseline methods, in-
cluding RL and CRT introduced in Section 3 and zero-shot
sampling at temperature=1.0.

Quality Metrics. The quality of a method is mainly mea-
sured by the attack success rate (ASR), the percentage of
attacks generated by the red team 7y that elicited a response
y from 7y yg with a predicted unsafe probability exceeding
a threshold 7. We set 7 = 0.5 for all experiments.

Diversity Metrics. The diversity of the generated attacks is
evaluated following Tevet and Berant (2021); Hong et al.
(2024) on the set of successful generated attacks X, =
{z € X | cute(x,y) < 7}, where y is the elicited response
from 7 yg. For lexical diversity, we use the SelfBLEU score
(Zhu et al. 2018) and a n-gram kernel Vendi score (Fried-
man and Dieng 2022), both based on the overlap of n-grams.



To measure semantic diversity, we leverage the cosine dis-
tance among the sentence embeddings and a cosine similarity-
based kernel Vendi score.

5.2 Main Results

We first outline the main results of our proposed method. We
then qualitatively compare the red teaming queries gener-
ated by our method and baseline methods. Then, we explore
the practicality of the generated queries from our method
compared to baselines in safety fine-tuning.

Numerical Results. Since our method can flexibly control
the balance between diversity and unsafe objectives through
the constraint threshold dg,g, we present the main results us-
ing three different thresholds: dg,p. € {—0.5, —0.7,—0.9} in
Section 5.1. We compare DiveR-CT with other reinforcement
learning methods, namely Perez et al. (2022) and CRT (Hong
et al. 2024), and with zero-shot. We group the different RL
runs into three main ASR categories. Conveniently, we found
that the original S, = 1.0 associated with CRT, Perez et al.
(2022), and our method with dg,se = —0.9 fall into the same
high ASR bucket. To make a fair comparison for the medium
and low ASR brackets, we tuned the CRT Si,s. coefficient to
match the ASR levels of our other thresholds. We empirically
found that g = 0.4 matched the ASR of dge = —0.7
and By = 0.3 matched dg,e = —0.5. Lastly, we group the
zero-shot results in their own bracket due to their extremely
low ASR, ensuring completeness.

The first trend is the presence of a clear trade-off between
achieving high ASR and high diversity. RL does not priori-
tize diversity; its objective solely maximizes the unsafe score,
hence only retaining a handful of distinct high-scoring attacks.
CRT outperforms RL in the high ASR scenario regarding di-
versity, but DiveR-CT outperforms CRT on all metrics across
all three ASR settings. Another interesting finding is that
our method’s ASR is controllable since the resulting ASRs
of the produced attacks follows the chosen thresholds. CRT
can also use the coefficient to control its ASR, but the exact
correlation is inconsistent. It could depend on the task set-
ting, as observed in Section 5.2, where a more robust blue
team does not yield a consistent ASR/ [, pair for CRT, but
does hold with ASR/dy,¢. pair for DiveR-CT. This strength al-
lows fine-grained control over ASR and diversity in budgeted
situations.

Qualitative Results. We visualized the PCA of the se-
mantic embeddings of the experiments with two principal
components in Figure 2. Our semantic embeddings demon-
strate a more uniform coverage across the space, contrasting
with the CRT runs, which predominantly extend in one di-
rection—coinciding with previously discussed pathological
outcomes. Furthermore, our method adopted more persua-
sive tactics against the blue team model, employing spe-

» o«

cific phrases “use humor and exaggeration”, “use satirical
lyrics”, “use witty jokes”, “stereotype”, or “use sarcasm”.

Finding I: DiveR-CT Mitigates Overoptimization.
Overoptimization is a known issue in the RLHF setting (Gao,
Schulman, and Hilton 2023) or when using proxy rewards.
Methods like CRT and Perez et al. (2022) maximize the proxy
unsafe score of blue team responses, making them susceptible

to overoptimizing for specific nuances of the safety classifier.
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In contrast, our method explicitly forgoes maximizing the
safety score if it exceeds a certain threshold. We hypothesize
that our approach mitigates overoptimization.

To investigate this, we score all the red teaming
queries generated during optimization using both the
training/task classifier and a separate test classifier
(DaNLP/da-electra—hatespeech-detection)
that the red team has not encountered during optimization.
The resulting ASRs are presented in Figure 3. We observe
that Perez et al. (2022), which solely maximizes the unsafe
classifier score, exhibits a much lower ASR on the test clas-
sifier, demonstrating overoptimization. Additionally, when
grouping by the train classifier ASR, a significant drop is ob-
served when targeting a higher ASR. While targeting a more
moderate train ASR, the drop in test ASR is reduced (even
increased in the lower bracket). Our method consistently
achieves higher test ASR while maintaining comparable train
ASR across all three brackets, demonstrating its effectiveness
in alleviating overoptimization.

CRT

DiveR-CT

Figure 2: Comparison of Embeddings using PCA: Per-
step Mean and Cumulative Mean of Embeddings. This
figure highlights the evolution of generations in the embed-
ding space by showing the cumulative average (gradient line)
and the per-step average (scatter points) of the embeddings.
DiveR-CT demonstrates more uniform coverage of attacks.

1.0 = 1 1
o A T "
n 0.5 l : : -
< I 1 ! I !
0.0 I I
Higher ASR Medium ASR  Lower ASR
Figure 3: Overoptimization Eval. with Test

Safety Classifierr We evaluate the extent of
overoptimization by using a test safety classifier,
DaNLP/da-electra-hatespeech-detection,

comparing side by side with the ASR of the traing task
classifier we used to train the red team policies. Light/dark
color is train/test ASR, respectively. Our method (blue)
reliably reduces overoptimization across all ASR budgets
compared to baselines (RL in green and CRT in orange).



Lexical Semantic

Method ASR™ Self-BLEU T Vendi-Ngram™  Semantic Mean”  Vendi-Semantic™
RL (Perez et al. (2022)) 0.885(£0:014)  ( g37(£0.014) g 4(£0.000) 0.031(£0-007) 0.010(%0-000)
CRT, Bate = 1.0 0.868(F0:013) (9 570(F0-056) g 506(£0.154) 0.360(+0-024) 0.076(+0-012)
Diver-CT, dete = —0.9 (ours) ~ 0.869(E0:007) g 746(£0-047) o 72g8(£0.106) o 37g(£0.012) 0.110(£0-011)
CRT, o = 0.4 0.692(+0.028) 0.802(£0-021) 0.559(+0.149) 0.363(+0-008) 0.084(£0-004)
Diver-CT, dge = —0.7 (ours) ~ 0.686(E£0:005) 9 834(+0-024) g gg4q(+0.014) g 397 (+0.022) 0.123(£0.012)
CRT, Bt = 0.3 0.444(F0:055) (9 g99(+0.020) g 7g7(£0.113) 0.355(+0:040) 0.083(£0-017)
Diver-CT, dge = —0.5 (ours) ~ 0.485(F0:003) 0 843(F0.016) g ggg(£0.010) g 402(+0.010) @ 12g(+0.005)
Zero-shot 0.001 (£0-000) 0.533(£0-003) 0.659(£0-004) 0.018(£0-001) 0.010(£0-000)

Table 1: Main Results Grouped by ASR. We present the lexical and semantic diversity metrics of baseline compared to
DiveR-CT. We group the experiments by their Attack Success Rates.

Finding II: DiveR-CT Generates Better Safety Fine-
tuning Data. After presenting the results of the red team-
ing queries generated by DiveR-CT and baseline methods,
we focus on how these queries can be used to mitigate
the blue team’s unsafe behaviors. We followed a simple
approach close to Samvelyan et al. (2024). We first fil-
ter and retain only the queries generated by the red team
that have an unsafe score higher than 0.5. We then prompt
gpt-4-turbo to generate a list Liessc0f S0 refusal re-
sponses. For each unsafe query xypsfe, We sample a ran-
dom refusal response Yreruse ~ Lrefuse from the list. To
prevent the model from degrading in general capabilities,
we use the whole tat su-lab/alpaca instruction tuning
dataset (zaip., Yaip.) € Daip., augmented with a subsample
of the toxic dataset we constructed (Zred, Yrefuse) € Diaety-
We maintain a ratio of 2:1 for the alpaca and toxic refusal
data. Finally, with this mixed data, Dgypervised = Dalp. U
Diafery, We supervise fine-tune the original blue team model
vicgalle/gpt2-alpaca—-gpt4.

For each method — RL (Perez et al. (2022)), CRT
Bsafe = 0.4, and DiveR-CT dg e = —0.7 — we construct
the safety dataset Dy,fery from three different seeds and fine-
tune three different instruction-following models. We then
evaluate the resulting models on the Open LLM Leader-
board benchmarks (Hellaswag, ARC-Challenge, TruthfulQA,
and Winogrande (Zellers et al. 2019; Clark et al. 2018; Lin,
Hilton, and Evans 2022; Sakaguchi et al. 2021)) and red
teaming benchmarks: AART, SAP, and AdvenBench (Rad-
harapu et al. 2023; Deng et al. 2023; Zou et al. 2023) using
redteaming-resistance-benchmark. We present
the performance of the resulting models in Figure 4.

First, we observe that augmenting models with mixed data
generally does not harm their general capabilities. Second,
safety tuning with (Zreq, Yrefuse) pairs enhances the safety ro-
bustness of the blue team models. Furthermore, models fine-
tuned with CRT generated data outperform those finetuned
with data generated from RL (Perez et al. (2022)). Lastly, and
importantly, we find that the queries generated by DiveR-CT
outperform those from CRT and Perez et al. (2022), likely
due to our approach’s broader coverage of red team attacks.

Finding III: DiveR-CT Better Red Teams More
Capable Models We further investigate the effi-

OpenLLM Acc. .: DiveR-CT
_— CRT
AdvBench = RL
) Alpaca Onl
AART b P Y
SAP — -
0.0 0.2 0.4 0.6 0.8

Defensive Rate / Accuracy

Figure 4: Red Team Generation Quality Assessment
Through Safety Tuning. We finetune the blue team model us-
ing a mix of successful red team queries and Alpaca dataset.
This figure illustrates the robustness of response rate and
OpenLLM Accuracy, demonstrating that safety tuning with
DiveR-CT generated data better enhances LLM safety.

cacy of our method by switching to more advanced
RLHF-trained chat models for the blue team. Specif-
ically, we compare methods by red teaming more
robust and larger models: Llama-2-7b-chat-hf and
Meta-Llama-3-8B-Instruct. Given our method’s
flexibility in controlling the ASR, we first fix the default
coefficient for the safety reward at Bg,g = 1.0 for CRT and
Perez et al. (2022) (default values from their respective
works). We then adjust DiveR-CT’s threshold value to
match the ASRs of the baselines to make diversity metrics
comparable. Concretely, we applied dg,re = —0.6 to match
the ASR of RL. Figure 5 shows the results when against more
robust models. CRT’s ASR significant dropped under more
resilient blue team conditions, underscoring the critical role
of dynamic online adjustment of reward signal. Our diversity
metrics surpass those of the baselines, demonstrating our
method’s ability to sustain controllable ASR and high
diversity even against SOTA aligned models. In contrast,
methods like CRT sacrificed ASR to maintain diversity.

5.3 Ablations

Since our method contains two main differences from the
CRT method, we evaluate variations of our method by adding
or removing one of the components we introduced. We fixed
dsate = —0.7 for DiveR-CT, and S = 0.4 for CRT and
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Lexical

Semantic

Method ASR™ Self-BLEU " Vendi-Ngram " Semantic Mean”  Vendi-Semantic”
DiveR-CT, dgge = —0.7 (Ours)  0.686(F0-005)  (9.834(£0.024)  ( ggq(£0.014) (397 (£0.022) 0.123(+0:012)
DiveR-CT, gibberish reward 0.681(£0:021)  ( 811(£0.014)  ( gg1(F0.026) (5 385(£0.024) 0.120(F0:015)
DiveR-CT, topk=all 0.692(F0:003) (g 799(+0.025)  ( ggg(+0.055)  ( 411(+0.012) 0.117(+0:009)
DiveR-CT, topk=1 0.682(£0:005)  ( g37(£0.015)  ( 8gg(F0.071) (5 38g(£0.013) 0.113(F0.001)
DiveR-CT, dgge = —0.5 (Ours) ~ 0.485(F0:003) (9 g43(£0.016)  ( ggg(£0.010) 40o(+0.010) 0.128(+0:005)
CRT, Bute = 0.3 0.444(F0.055) 0.829(F0.020) 0.767(£0-113) 0.355(£0-040) 0.083(F0-017)
CRT+top-16, Bare = 0.4 0.481(£0.022) 0.834(%0.017) 0.848(£0.018) 0.387(£0.003) 0.102(£0.003)

Table 2: Ablations Grouped by ASR. We investigated changing the gibberish penalty and the k-NN semantic reward.

Lexical Semantic
Method ASR™ Self-BLEU T Vendi-Ngram " Semantic Mean " Vendi-Semantic’
RL (Perez et al. (2022)) 0.840(+0:015) 0.184(+0:089) 0.003(+0:000) 0.024(+0:007) 0.010(+0-000)
CRT, Buie = 1.0 0.859(+0.007) 0.682(£0.068) 0.497(+0.182) 0.344(+0.023) 0.070(%£0.008)
DiveR-CT, dge = —0.85 0.864(£0:002) g 739(£0.083) g 777(£0.107) g gg7(£0.014) g 770(£0.000)

Table 3: Performance Using Meta-Llama—-Guard—-2-8B as Safety Classifier. We change the safety classifier to a more
robust Meta—-Llama—-Guard-2-8B. Results indicate that DiveR-CT outperforms baselines in diversity metrics, which is

consistent with the trends observed in our primary results.

present all the results of this section in Section 5.2.

First, we investigate if constraining the gibberish reward
is beneficial. We present the case where gibberish is maxi-
mized, denoted as “gibberish reward”. Our findings show that
constraining gibberish, rather than maximizing it, slightly im-
proves performance by reducing the pressure to optimize this
objective, allowing the policy more flexibility.

Additionally, we explore the benefits of using the top-16
semantic neighbors. We compare this approach with two
variants 1) rewards are calculated based on semantic cosine
similarity across all history “topk=all” and, 2) “topk=1". We
observe that “topk=all” significantly sacrifices other diversity
metrics to prioritize the semantic mean, since semantic mean
is the intended objective for this variant. Overall, using the
top-16 semantic neighbors is the most beneficial for the agent.

Lastly, we tried adding the top-16 semantic neighbor re-
ward to CRT. However, the same [Sg,re = 0.4 yielded a differ-
ent ASR level, closer to Sgre = 0.3 and dgaee = —0.5. This
further demonstrates that the safety coefficient in CRT makes
controlling the outcome ASR difficult, a problem not encoun-
tered with DiveR-CT. Therefore, we appropriately regroup
results based on this modified CRT. We notice that using our
dynamic semantic rewards boosts CRT in all diversity metrics
but still exhibiting lower performance than DiveR-CT.
Changing the Safety Reward Classifier We con-
ducted experiments where we changed the toxic
classifier to a more recent and better-performing
safety classifier, Meta-Llama-Guard-2-8B. The
Meta-Llama—-Guard-2-8B model features finer-grained
categories and covers more topics than the classifier used in
our main results. Again, we fix the default safety coefficients
for RL and CRT and adjust our threshold to match their
ASR. We present the results in Section 5.2. Similar to
our main results, changing the classifier of toxicity does
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not alter the conclusion, where our method was able to
generate a more diverse set of red teaming prompts with
approximately the same ASR. Another interesting finding is
that by changing the safety classifier, our method was able
to identify cybersecurity red team attacks, which were not
observed in experiments from the main results or CRT/RL
using the Met a-Llama—-Guard-2-8B classifier.

5.4 Costs, Lagrange Multipliers, and their
Interplay

Safety Costs. We display the safety cost during optimiza-
tion in Figure 6. Notably, a distinctive “waving” pattern is
identified, previously documented in the constrained rein-
forcement learning literature (Calvo-Fullana et al. 2021),
which signifies that minor adjustments in the weight space
can easily toggle the policy between satisfying and violating
constraints. Although such volatility is typically problematic
in safe reinforcement learning scenarios—where consistent
satisfaction of safety is crucial—counterintuitively, it proves
beneficial in our context. Since the primary output from the
red teaming policy is data rather than the policy itself, we be-
lieve these oscillations act as mini “resets”, encouraging the
policy to pursue diversity rewards and break free from local
safety minima. Upon re-entry into the constraint satisfaction
zone, the policy is more inclined to explore new red teaming
topics, motivated by the need to diversify from its semantic
and lexical history.

Lagrange Multipliers. Since a distinctive waving pattern
is observed in the safety cost, we expect the Lagrange mul-
tipliers to also dynamically adjust. We observe this in our
experiments: an oscillation pattern emerges for safety La-
grange multipliers, with increasing costs due to constraint
violations causing a rise in the Lagrange multiplier values,
thereby exerting more influence on the policy gradient up-
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Figure 5: Metrics of Red Teaming More Capable Blue Team Models. We present the ASR and diversity metrics of
red teaming queries by changing the blue team to more capable chat models: Meta-Llama-3-8B-Instruct (top)/
Llama-2-7b-chat-hf (bottom). By increasing attack difficulty, CRT decreased in ASR dramatically using default safety
coefficient. Despite having higher ASR than CRT, DiveR-CT outperforms their diversity metrics in both settings.

date. An overlapping chart of costs and Lagrange multipliers
in Figure 7 reveals a slight delay in this oscillation pattern;
once the constraint is met, the lambda value decreases, sub-
sequently exerting less influence on the policy gradient. Ad-
ditionally, the Lagrange multipliers for gibberish constraints
during training show a smaller waving pattern, suggesting
that adjustments in the parameter space do not significantly
affect gibberish constraint satisfaction.

6 Discussion

We introduced a novel method, DiveR-CT, which produces
enhanced lexical and semantic diversity over existing red
teaming approaches. We assessed our method under vari-
ous settings, including different ASR levels, varying blue
team models, and safety classifiers, showing that DiveR-CT
consistently outperformed strong baselines. Our experiments
demonstrated that data generated by DiveR-CT significantly
increased the robustness of blue team models and that our
method alleviates overoptimization. Qualitative results also
show our method is able to discover persuasive strategies and
topics like cybersecurity, which were never discovered by
baseline methods.

Limitations. Our study focused on single-turn interac-
tions, but recent works have shown that multi-turn interac-
tions may further increase LLM vulnerabilities (Anil et al.
2024; Cheng et al. 2024). Future work could explore enhanc-
ing contextual diversity through multi-turn histories. Fur-
thermore, DiveR-CT does not incorporate domain knowl-
edge. Integrating fine-grained attack class classifiers, such as
Llama—-Guard-3-8B, could provide more uniform cover-
age across known domain topics when combined with our
method. Finally, while our focus was on red teaming LLM
chat assistants, other Al systems, such as text-to-image and
vision-language models, could also benefit from our method.
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Figure 6: Safety Cost of DiveR-CT during Optimization
with Moving Avg. We present the individual runs with and
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Figure 7: Overlayed Safety Cost and its Lagrange Multi-
plier Values. Overlay of the Lagrange multiplier values and
the safety costs during optimization. At the beginning of the
run, the Lagrange multiplier value rapidly increases to its
maximum capped value. As a result, it is not visible in the
chart for the initial O to approximately 200 steps.
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