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General 3D Vision-Language Model With
Fast Rendering and Pre-Training

Vision-Language Alignment
Kangcheng Liu , Member, IEEE, Yong-Jin Liu , Senior Member, IEEE, and Baoquan Chen , Fellow, IEEE

Abstract—Current prevailing vision-language models have
achieved remarkable progress in 3D scene understanding while
trained in the closed-set setting and with full labels. The major
bottleneck for the current robot 3D scene recognition approach for
robotic applications is that these models do not have the capacity to
recognize any unseen novel classes beyond the training categories
in diverse real-world robot applications such as robot manipulation
as well as robot navigation. In the meantime, current state-of-
the-art 3D scene understanding approaches primarily require a
large number of high-quality labels to train neural networks, which
merely perform well in a fully supervised manner. Therefore, we
are in urgent need of a framework that can simultaneously be
applicable to both 3D point cloud segmentation and detection,
particularly in the circumstances where the labels are rather scarce.
This work presents a generalized and straightforward framework
for dealing with 3D scene understanding when the labeled scenes
are quite limited. To extract knowledge for novel categories from
the pre-trained vision-language models, we propose a hierarchical
feature-aligned pre-training and knowledge distillation strategy to
extract and distill meaningful information from large-scale vision-
language models, which helps benefit the open-vocabulary scene
understanding tasks. To leverage the boundary information, we
propose a novel energy-based loss with boundary awareness bene-
fiting from the region-level boundary predictions. To encourage la-
tent instance discrimination and to guarantee efficiency, we propose
the unsupervised region-level semantic contrastive learning scheme
for point clouds, using confident predictions of the neural network
to discriminate the intermediate feature embeddings at multiple
stages. In the limited reconstruction case, our proposed approach,
termed WS3D++, ranks 1st on the large-scale ScanNet benchmark
on both the task of semantic segmentation and instance segmen-
tation. Also, our proposed WS3D++ achieves state-of-the-art data-
efficient learning performance on the other large-scale real-scene
indoor and outdoor datasets S3DIS and SemanticKITTI. Extensive
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experiments with both indoor and outdoor scenes demonstrated
the effectiveness of our approach in both data-efficient learning
and open-world few-shot learning.

Index Terms—3D scene understanding, data-efficient learning,
region-level contrast, energy function, 3D vision-language model.

I. INTRODUCTION

THE typical 3D scene parsing problem, which usually
encompasses several important downstream tasks: point

cloud semantic segmentation, instance segmentation, and object
detection, becomes increasingly important with the wide deploy-
ment of 3D sensors, such as LiDAR and RGB-D cameras [1],
[2], [3], [4], [5], [6]. Point clouds are raw sensor data obtained
from 3D sensors and the most simple and common 3D data
representation for understanding 3D scenes of robot navigation,
robot grasping, and manipulation tasks. Despite significant suc-
cess in deep neural networks applied to 3D visual perception,
two major challenges hinder the construction of more scalable
visual perception systems in 3D worlds. One is the closed-set
assumption, which means the model only performs well while
recognizing the categories that appear in the training set and
struggles in recognizing the novel unseen object categories or
concepts. Another is the heavy reliance on large amounts of
high-quality labeled data. Large-scale 3D scenes are very la-
borious to label, which also makes it very hard for deep network
models to perform well with very limited annotations.

Close-set assumption: One of the major bottlenecks in scaling
up visual perception systems is the poor generalization capac-
ity while encountered with diverse novel semantic classes or
severe domain shifts. To endow the model with the capacity
for adapting the learned representation and make it conform to
different data distributions as well as recognize diverse novel
categories, pioneer researches such as CLIP [7], Flamingo [8],
and Otter [9] have demonstrated the great potentials in learning
well-aligned visual linguistic representation from large-scale
image-text pairs on the Internet for improving the model gen-
eralization capacity. To this end, subsequent approaches have
been proposed in establishing abundant vision-language associ-
ations for different visual recognition tasks including detection
and segmentation using the large-scale vision-language model
(VLM) [10], [11], [12]. The paired visual-linguistic feature rep-
resentation can enable the recognition of a large number of novel
objects or concepts with natural language supervision because
the visual and the lexical language features are well-matched
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in their shared semantic feature space. Despite the remarkable
performance achieved in developing diverse vision-language
foundation models such as SAM [13] and SEEM [14] for
image-based scene understanding, it remains very difficult for
CLIP [7] to benefit downstream 3D scene understanding because
it is difficult to raise the feature dimension to 3D and establish
explicit correlations or find clear alignments between large-scale
scene/object-level 3D point clouds as well as linguistic semantic
concepts. Moreover, it is even harder to transfer the informa-
tive knowledge to various downstream 3D scene understanding
tasks. These limitations severely restrict the scalability of VLM
to handle diverse unseen 3D scenes containing diverse novel 3D
object categories.

Reliance on large-scale labeled data: A critical prerequisite
for fully exploiting the capacity of the fully supervised deep
learning approaches is the accessibility to large-scale well-
annotated high-quality training data. Most point cloud under-
standing methods rely on heavy annotations [15], [16], [17].
However, the annotation of large-scale 3D point cloud scenes
is rather time-consuming and labor-intensive. For instance, it
requires around thirty minutes to label a single scene for Scan-
Net [18] or S3DIS [19] with thousands of scenes. Though
existing point cloud understanding methods [15], [16], [17]
have achieved decent results on these datasets, it is difficult
to directly extend them to novel scenes when the high-quality
labeled data is scarce. In the meanwhile, it is often the case
that a limited number of scenes can be reconstructed in real
applications [20]. Therefore, developing methods that can be
trained with very limited labeled scenes, termed data-efficient
3D scene understanding with limited scene-level annotation,
becomes in high demand. Data-efficient semantic and instance
segmentation [21], [22], [23] is a vehement research topic for
image-level scene understanding. Some simple but successful
methods have been proposed, such as contrastive learning [24],
[25] which learns a meaningful and discriminative representa-
tion, and conditional random field (CRF) [26], [27] for pseudo la-
bel propagation. However, there still exist four main challenging
unsolved issues while scaling up these approaches to 3D scene
understanding. First, the widely adopted energy function-based
conditional random field segmentation [27] relies on handcrafted
feature similarities and does not consider explicit boundary
information. It attaches equal importance to pixels on semantic
boundaries and within same semantic objects, which can cause
vague and inaccurate predictions in pixel-level segmentation at
object boundaries. And how to leverage boundary information
has been explored in 2D but rarely explored in 3D data efficient
learning [28]. Second, the computation costs are both very high
when applying point-level contrastive learning or point-level
energy-based segmentation in a dense point cloud scene for
every point pair [29], [30]. Furthermore, large-scale point cloud
scenes even contain billions of points, making point-level con-
trastive learning intractable in computational costs. Third, the ex-
isting unsupervised contrastive learning-based pre-training for
point clouds [20], [25], [31], [32] only considers geometrically
registered point/voxel pairs as the positive samples, while it does
not explicitly consider explicit regional information, let alone the
hierarchical alignments.

Fig. 1. The final overall illustrative diagram of our proposed WS3D++. We
integrate language-3D feature associated pre-training and data-efficient fine-
tuning as a general scene parsing vision-language model to achieve effective
data-efficient as well as open-vocabulary 3D scene understanding for 3D scenes.

Driven by the above motivations in terms of both generaliza-
tion capacity and data efficiency, we propose an effective two-
stage framework, involving unsupervised hierarchical vision-
language pre-training and label-efficient fine-tuning to boost
the label/data-efficiency in 3D scene understanding. As shown
in Fig. 1, in the pre-training stage, we leverage the rendering
techniques to construct well-aligned 2D views for large-scale 3D
scenes to establish more accurate coarse-to-fine vision-language
associations. Then, we leverage the off-the-shelf object detector
and the pre-trained large-scale vision-language model CLIP [7]
to construct the hierarchical feature representations from both
the global scene level to the local object level. We also propose
an effective knowledge distillation strategy that distills the in-
formative visual-language-aligned representation of the image
encoder in CLIP [7] to the 3D backbone network. As is demon-
strated by our extensive experiments, the open-vocabulary scene
parsing performance can be also enhanced.

During the fine-tuning stage, as shown in Fig. 1, we propose a
unified WS3D++ framework that simultaneously solves the 3D
scene understanding problem under the data-efficient setting.
We first use the over-segmentation [33] to obtain regions and
use a boundary prediction network (BPN) as an intermediate
tool to obtain boundary region labels. Then, high-confidence
boundary region labels serve as the guidance for our pro-
posed region-level energy-based loss. Meanwhile, we propose
a region-level confidence-guided contrastive loss to enhance
instance discrimination. Specifically, our WS3D++ includes two
innovative designs to address the very challenging label scarcity
issues and to enhance performance. Firstly, to encourage latent
instance discrimination and to guarantee efficiency, an efficient
region-level feature contrastive learning strategy is proposed to
guide network training at multiple stages, which realizes the
unsupervised instance discrimination. Also, to leverage bound-
ary information as labels for the final semantic divisions, an
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energy-based loss with guidance from the semantic boundary
regions is proposed to take the maximized advantage of the
unlabeled data in network training. Combined with supervised
loss, the labeled data can also be leveraged to boost the final
downstream 3D scene understanding performance.

WS3D++ is a significant extension of the preliminary ver-
sion of the conference work WS3D [4], where basic ideas of
boundary awareness and contrastive instance discrimination are
introduced to tackle the data-efficient 3D scene understanding
during fine-tuning stage. In summary, we extensively enriched
previous works in the following aspects:

First, we propose a generalized pre-training approach for data-
efficient learning, which establishes accurate alignments be-
tween language and 3D point cloud in terms of both object-level
and scene-level semantics in a hierarchical manner. Second, we
propose to leverage the rendering technique that makes explicit
associations between image and point cloud to facilitate 2D-to-
3D matching and subsequent language-to-3D matching. Third,
we visualized the language-queried activation maps directly on
the 3D scenes, which demonstrates that the proposed approach
learns better visual-linguistic alignment between the language
descriptions and the visual object-level information. Finally,
we evaluate our proposed approach comprehensively in diverse
data-efficient and open-world learning settings for both the 3D
semantic segmentation and 3D instance segmentation tasks.

The contributions of our work are highlighted as follows:
1) During the pre-training stage, we first propose an effective

design which distills rich knowledge from the large-scale
vision-language model into the 3D point cloud modality.
Specifically, we propose leveraging rendering to obtain
explicit scene-level and object-level 2D-3D feature as-
sociations, establishing a more accurate vision-language
association hierarchically than the original CLIP encoder.
We have demonstrated by extensive experiments that our
proposed approach can realize superior compatibility with
prevailing weakly supervised approaches.

2) During the pre-training stage, we first propose a global
scene-to-sentence matching and then propose a local
object-to-word matching approach, respectively, to estab-
lish the well-aligned vision-language feature representa-
tions at both the scene level and the object level, which
largely facilitates the subsequent effective contrastive
learning with the mostly matched visual-language con-
trastive pairs. The proposed designs have both enhanced
the data-efficient learning and the knowledge-transfer ca-
pacity of the model, as demonstrated by our extensive
experiments on both the 3D object detection and the 3D
semantic/instance segmentation tasks.

3) During the fine-tuning stage, we propose a region-aware
energy-based optimization approach to achieve the region-
level boundary awareness, which utilizes the boundary
as additional information to help assist the 3D scene
segmentation and understanding. Furthermore, we pro-
pose the unsupervised region-level semantic contrastive
learning strategy for multi-stage feature discriminations.
The energy-based loss and the contrastive loss are jointly
optimized for pre-training the backbone network in a

complementary manner, which take full advantage of the
unlabeled data.

4) Integrating the above two stages as a whole, we pro-
pose a unified framework termed WS3D++. State-
of-the-art performance has been achieved by it with
extensive experiments conducted on ScanNet [18] and
other indoor/outdoor benchmarks such as S3DIS [19],
SemanticKITTI [16] and NuScenes [36] in diverse exper-
imental settings without bells and whistles. Finally, our
proposed approach achieves pioneer performance on the
very large-scale ScanNet [18] dataset in diverse down-
stream tasks of 3D scene understanding, including tasks
among 3D semantic segmentation, 3D instance segmen-
tation, and 3D object detection.1

To the best of our knowledge, this is the pioneer work which
comprehensively evaluates across diverse 3D label-efficient
scene understanding downstream tasks with our proposed 3D
open-vocabulary recognition approach termed WS3D++. Our
endeavor is orthogonal to the 3D backbone network designs
and thus can be seamlessly integrated with the prevailing 3D
point cloud detection or segmentation models. Our comprehen-
sive results provide solid baselines for future researches in the
data-efficient 3D scene understanding.

II. RELATED WORK

Learning-based Point Cloud Understanding: Deep-network-
based approaches are widely adopted for point cloud under-
standing and the learning-based approaches have wide industrial
applications. Fully supervised approaches can be roughly cate-
gorized into voxel-based [37], [38], [39], [40], [41], projection-
based [42], [43], [44], [45], [46], [47], and point-based ap-
proaches [48], [49], [50], [51], [52], [53], [54], [55], [56], [57],
[58], [59]. The voxel-based approaches [60], [61], [62] which
are built upon SparseConv [60] and voxelize the point cloud for
efficient processing have achieved remarkable performance in
3D scene parsing. Therefore, we use SparseConv [60] as our
backbone architecture for downstream semantic understanding
tasks because of its high performance in inferring 3D semantics.

Pre-training for 3D Representation Learning: Many recent
works propose to pre-train networks on source datasets with
auxiliary tasks such as low-level point cloud geometric registra-
tion [25], 3D local structural prediction [63], the completion of
the occluded point clouds [64], and the foreground-background
feature discrimination [30], with effective learning strategies
such as contrastive learning [25] and masked generative mod-
elling [65], [66]. Then the finetune the weights of the trained
networks for the downstream target tasks to boost the robot scene
parsing performances. However, several major challenges still
exist. First, the above pre-training approaches all rely on the
closed-set assumption, which means that the model can barely
be transferred to recognize novel categories that do not appear
within the training data. Second, the above methods require
accessibility to the well-registered augmented point cloud [20],
[25], [31], [32] to construct the pre-training contrast views,

1http://kaldir.vc.in.tum.de/scannet_benchmark/data_efficient/
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which are very hard to obtain for large-scale 3D scenes. Third,
a large number of computational power is required in the pre-
training stage. Therefore, the designed pre-training approaches
need to be very simple and lightweight, thus making it easier to
directly transfer the model to large-scale point clouds.

Recently, with the development of large-scale vision-
language models such as CLIP [7] and Flamingo [8], we can
largely benefit the recognition capacity of 3D scene understand-
ing models by distilling informative knowledge from large-scale
vision-language models. For example, some pioneer works such
as PointCLIP [67], [68] and ULIP [69] successfully transfer
the knowledge from vision-language models to boost the down-
stream 3D shape classification tasks. The 3D CAD shapes are
transferred to multi-view depth maps, thus they can be fed into
the CLIP visual encoder and used the image representations
paired with the corresponding point cloud as a bridge to obtain
the correlations between the 3D and textual features. Moving
beyond object-level recognition tasks, pioneer works also ex-
plore how to establish alignment among images, language, and
3D point cloud scenes for the task of open-vocabulary 3D scene
understanding [70], [71], [72], which target localizing, detect-
ing, and segmenting novel object categories that do not exist
in the annotation. Compared with them, our proposed simple
but effective framework can be both applicable to data-efficient
learning and open-vocabulary scene understanding.

Label/Data-Efficient Learning for 3D: Recent studies have
produced many elaborately designed backbone networks for
3D semantic/instance segmentation [35], [46], [73], [74], [75],
as well as for 3D object detection [76], [77], [78]. However,
they rely on full supervision. Directly applying current SOTAs
(State-of-the-art) methods for training will result in a great
decrease in performance [79] for WSL, if the percentage of
labeled data drops to a certain value, e.g., less than 30%.
Recently, many works have started to focus on point cloud
semantic segmentation with partially labeled data. Wang [80]
et al. choose to transform point clouds to images, but pixel-level
semantic segmentation labels are required for network training.
Sub-cloud annotations [81] require extra labor to separate the
sub-clouds and to label points within the sub-clouds. Liu [82]
proposed a robust data-efficient 3D scene parsing framework.
It leverages the complementary merits of the superior general-
ization capacity of the traditional 3D descriptors and the strong
feature description capacity learned 3D descriptors to learn very
robust local features. Then using the descriptor guided learned
region merging [3], superior performance can be achieved on
downstream tasks. Liu et al. [83], [84] proposed self-training
techniques to tackle scene understanding in weak supervision,
which design a two-stage training scheme to produce itera-
tively optimized pseudo labels from weak labels during training.
Despite satisfactory results, these approaches still have not
learned generalized representation applicable to diverse tasks.
Xu et al. [85] adopt a weakly-supervised training strategy, which
combines training with coarse-grained information and partial
points using 10% labels. However, their tested cases are limited
to object part segmentation, and it is difficult to uniformly choose
points to label. The convex decomposition [86] is conducted
in an approximate manner to perform 3D scene parsing on

the object parts. More approaches [87] have been proposed
recently, which utilize class prototypes and masked point cloud
modeling [66], [88], [89] to learn informative representations for
downstream 3D scene understanding. Conceptfusion [90] has
also been proposed to alleviate the labelling burden via rendering
with the proposed CLIP-driven queryable 3D point cloud maps.
To sum up, although approaches have been proposed to alleviate
the data efficiency problem, the models for weakly supervised
learning lack the capacity to recognize novel categories beyond
the labeled training set. Our framework tackles open-set and
data-efficient learning problems and is widely applicable to
diverse 3D scene understanding downstream tasks.

III. PROPOSED METHODOLOGY

We propose a general WS3D++ framework to tackle weakly
supervised 3D understanding with limited labels, as demon-
strated in Fig. 1. Our framework consists of both the vision-
language pre-training stage shown in Fig. 2 and fine-tuning
stage illustrated in Fig. 4. During the pre-training stage, we first
propose the hierarchical contrastive learning strategy with the
help from rendering for more accurate vision-language align-
ments at both the scene level and object level. Then we also
design a distillation strategy to distill point-language-aligned
representations from 2D image network to 3D point-cloud net-
work to endow 3D networks with the open-vocabulary recogni-
tion capacity. Finally, during the fine-tuning stage, we directly
propose a weakly supervised approach, we perform fine-tuning
with regional boundary awareness and region-aware instance
discrimination, which significantly improve model discrimina-
tion capacities when the labeled data are rather scarce.

A. Hierarchical Vision-Language Knowledge Associations
and Distillations for Pre-Training

We propose a hierarchical alignment strategy in pre-training,
which employs the rendering approach as a bridge to effec-
tively align 3D vision and language embeddings, thus capturing
coarse-to-fine associations for visual-linguistic synergized rep-
resentations from the global scene level to local object level. It
enables extracting more accurate 3D-language associations in a
hierarchical manner.

Multi-view rendering: To obtain paired 2D-3D representa-
tions, we propose leveraging multi-view rendering to obtain
paired 2D views from 3D point cloud scenes. The pairing
process consists of two steps, the first is to convert point cloud
scenes into meshes and the second is to render 2D images based
on the different views of the 3D meshes. In terms of point-
to-mesh transformation, we utilize the Delaunay triangulation
approach [94], [95] to convert the point cloud into meshes,
which is demonstrated as a very effective method for surface
reconstruction. It connects the points in point cloud scenes
by forming triangles that satisfy the Delaunay criterion which
guarantees no point lies inside the circumcircle of any triangle.
This method generates a triangle mesh that approximates the
surface of the point cloud [96]. In terms of mesh-to-image
transformation, we leverage the rendering pipeline including the
vertex transformation, projection, and rasterization, as well as
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Fig. 2. The pre-training paradigm of our proposed WS3D++. We propose the hierarchical global to local feature alignments to establish the hierarchical
vision-language aligned feature representations during the pre-training. This proposed paradigm helps to learn more powerful visual-linguistic aligned feature
representation during the pre-training stage. We have further shown the final visualizations and comparisons with CLIP text presentations ranging from both the
global view level to the local object category level. The results have further demonstrate the vision-language aligned feature representation for 3D scene parsing.

Fig. 3. The feature matching visualization of our proposed WS3D++. We
propose hierarchical global to local feature alignments to establish hierarchical
vision-language aligned feature representations during pre-training from both
the global view level to the local object level. This kind of paradigm helps to learn
more powerful visual-linguistic matched representations ranging from both the
global view-level to the local object category-level. In the above figure, we have
shown the matching at the global view on the left and the matching at local
object level on the right. It can be demonstrated that our proposed approach can
establish matched feature representation at both the global room feature level
and the local object feature level.

shading. We directly use the rendering library OpenGL [97] to
render images from meshes. The process involves projecting the
3D vertices onto a 2D image plane based on camera parameters
and applying shading and lighting calculations of 3D meshes
to determine the specific color of each pixel. By our simple
rendering design, the world-to-camera extrinsic transformation
matrix Te containing both rotation and translation information
between the 2D pixels and 3D points can be easily obtained.

2D to 3D Alignment: After multi-view rendering, the strict
2D-3D alignment can be easily established if the camera’s
intrinsicTi is obtained from the standard calibration [98] and the
extrinsic Te is obtained from the rendering. To be more specific,
given the 3D point p3D ∈ R3 as well as its 2D correspond-
ing pixel coordinate p2D = (u, v), if we consider the pin-hole

camera model, the transformation can be represented as p̂2D =
Ti · Te · p̂3D. The p̂2D and p̂3D are represented within the ho-
mogeneous coordinates, and they are strictly paired. Therefore,
we can strictly determine the correspondence between p̂2D and
p̂3D. Moreover, we can find an explicit association between each
element of the textual feature FT and the 3D feature F3D while
passing through the backbone network.

United 2D and 3D Proposal Generation: As shown in Fig. 6,
according to our experiments, we found that it is difficult to
directly find the object-level information based on the 2D pro-
posals merely due to the large information loss while rendering,
the proposals provided by the 2D region proposal network
(RPN) [100] can not effectively capture the 3D object infor-
mation within the holistic scene. On the other hand, merely
relying on the 3D proposals provided by the 3D RPN [101]
still can not guarantee accurate proposal generation for the fact
that some objects are too adjacent in their geometry. To this
end, we propose to leverage the union of 2D and 3D RPN to
capture intact and all-inclusive holistic proposals within the 3D
scenes. Denote the region proposals as R2D and R3D respec-
tively, the final holistic proposal generation RH is formulated as
RH = R2D ∪R3D. According to our experiments, this simple
design can considerably boost the performance for the fact that
the objects are more clustered and closely distributed within
the indoor 3D scenes. Taking the union of 2D and 3D object
proposals into consideration also guarantees that the optimiza-
tion merely considers the regions where the object really exists
and prevents the models from taking the pure background into
consideration during the optimizations. According to our pre-
vious experiments, although the average precision and recall
can merely achieve 38.7/45.9% and 47.6/56.8% for 2D and 3D
object proposal generation, respectively, the 3D scene parsing
performance can still be well-maintained. By combining the 2D
proposal with the 3D using the union operation while omitting
the duplicated 2D proposals, the object proposal generation
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Fig. 4. The fine-tuning paradigm of our proposed WS3D++. WS3D++ [4] consists of three proposed modules: 1. The unsupervised region-level energy-based
optimization guided by boundary labels; 2. The unsupervised multi-stage region-level contrastive learning with high confidence; 3. The supervised region-level
semantic contrastive learning with labeled data. The backbone network adopts encoder-decoder structures. The weights of the backbone network are shared in
the supervised and unsupervised branches. Integrated with the proposed pre-training paradigm illustrated in Fig. 2, by our proposed hierarchical feature aligned
pre-training and regional fine-tuning, more effective label-efficient learning as well as open-vocabulary learning is realized.

precision and recall can achieve a very high score of 65.2%
and 76.8%, respectively, which demonstrates the superior effec-
tiveness of them in generating region proposals.

In the next stage, we perform vision-language matched con-
trastive candidate selection at both the object level and the
scene level. The object-level vision-language matching makes
alignment between the individual object and the descriptive
word. While the scene-level vision-language matching make
alignment between the whole scene with the descriptive sen-
tence. In this way, the vision-language matched candidate
can be selected for effective constrastive optimizations taking
both global and local feature representation into account.

Although the accuracy of proposal generation is not that high,
our proposed approach can guarantee the final scene parsing
performance as reported and demonstrated in Table I. The reason
behind the phenomenon can be explained by that as long as the
region proposal can be found, our framework can leverage the
well-aligned representation in the vision language model (CLIP)
to boost the final 3D semantic scene parsing performance, both
in the open-vocabulary and closed-set scenarios. As validated by
the previous experimental results and our qualitative validation
in Fig. 6, the quality of object proposal can be guaranteed, if the
domain gap is not that large.

Global 2D Scene-to-Sentence Matching: In the first place,
we perform the global scene-to-sentence matching. For the
rendered 2D image of the 3D scene, we utilize the GPT-4
to obtain the direct sentence-level description of the holistic
scene. The sentence is given by the most similar descrip-
tion generated by GPT-4. Benefiting from the previous effec-
tive multi-view rendering designs, our proposed approach can
have a holistic multi-view abstraction of the 3D environment.
Denote the extract global scene-level visual feature as Vglobal

and denote the global text-level feature as Lglobal, then we can
evaluate the alignment between visual and linguistic feature
utilizing the similarity between Vglobal and Lglobal.

Local 2D Object-to-Word Matching: At the next step, we
perform local object-to-word matching. In contrast to the global
scene to scentence matching, here we conduct local object-to-
word matching, which establishes and enhances vision-language
association at more fine-grained object level and word level. The
association is established at the object level for visual part and
at the word level for language part. Specifically, we use the
CLIP image encoder to generate a set of local visual feature
embeddings Vlocal and utilize the text encoder to output a set
of local word-level feature embeddings Llocal. In the next step,
we calculate aggregated similarity using the cosine similarity
Gsim between the 3D visually encoded features and the textual
features:

S(V,L) = Gsim

(
V 2D

gobal, L
2D
gobal

)
+ Gsim

(
V 2D

local, L
2D
local

)
(1)

The operation can be interpreted as a bi-directional operation,
which means that for each region proposal image patch, we find
the textual concept that fits best with the semantics of the region.
And for each textual concept, we find the region that has best cor-
respondence with it among multiple regions. We model it as an
optimal transport problem, which finds the most similar visual
feature by formulating it as the differentiable Top-k with respect
to the related anchor textual description [102] both globally
and regionally. The region-to-word pairs with Top-k maximum
activations S(V,L) are finally regarded as the positive pairs in
contrast. It can ultimately ensure learning highly discriminative
representations at both the global scene-to-sentence level and
the local object-to-word level. Finally, it can be demonstrated by
our experiments that the alignments at the local object-to-word
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TABLE I
COMPARISONS OF THE OPEN-VOCABULARY LEARNING PERFORMANCE ON SCANNET

level both have a considerable boost on the final scene parsing
performance, both qualitatively and quantitatively.

2D-3D Visual Feature Distillation: The main purpose is to
conduct 2D-3D Visual Feature Distillation to obtain the aligned
2D-3D visual feature in the 2D-3D-language co-embedded
feature space. We use the global 3D backbone to extract
the 3D visual feature representation V 3D

global, and then utilize
the KL divergence as the distillation loss to further distill the
vision-language aligned informative knowledge from 2D feature
space to 3D. This process can also be interpreted as the 2D-3D
explicit feature alignment/distillation process. Compared with
the mean square error loss such as the L1 or L2 losses, the
KL divergence has improved regression capacity and ensured
smoother gradient, which to some extent overcomes overfitting
problems while distilling knowledge. The KL distillation loss
LDist
KL finally operates on the final two normalized 2D/3D vector

for feature alignment:

LDist
KL = DivKL

(
V2D

global

||V2D
global||

,
V3D

global

||V3D
global||

)
(2)

Contrastive Language-Vision Optimizations: Note that when
conducting contrastive learning, we regard textual features as
anchors because textual descriptions are highly semantic and

contain rich information, whereas the images contain too much
low-level information and pixel-level details. Denote the V3D,+

global

and the L3D,−
global as the positive and the negative feature with re-

spect to the anchor textual feature F a
T , respectively, the designed

contrastive discrimination loss is formulated as follows:

LCtr = − 1

‖H‖
∑

(a,b)∈H

× log
exp(L3D

global · V3D,+
global/τ)∑

(·,c)∈B exp(L3D
global · V3D,−

global/τ))
. (3)

The final pre-training optimization loss is the joint consideration
of contrastive language-vision optimization and 2D-3D visual
feature distillation with the balancing λKL set to 0.5 empirically.
Note that λKL set to range of 0.3-3.0 will not influence the
performance too much according to our evaluation.

LP retrain = LCtr + λKLLDist
KL (4)

According to our extensive experiments, our simple pre-training
approach provides the well-aligned vision-language-3D aggre-
gated co-embedding. It considerably facilitates vision-language-
associated knowledge transfers from 2D to 3D, boosting both the
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Fig. 5. Qualitative semantic segmentation results of the proposed WS3D++
on SemanticKITTI validation set the with the 5% labeling percentage, compared
with the fully supervised state-of-the-art Cylinder3D [34], and BAAF-Net [35]
with the diverse semantics indicated by different colors. The red circles highlight
the final performance difference between diverse comparative approaches.

final label efficiency and the final recognition capacity of unseen
novel categories.

B. Region-Aware Fine-Tuning

During the fine-tuning stage, our proposed framework con-
sists of three subparts for the network optimization: 1. Un-
supervised energy-based loss guided by boundary awareness
and highly confident network predictions for unlabeled data,
which is discussed in our original ECCV conference work [4]; 2.
Unsupervised multi-stage region-level contrastive learning with
highly confident predictions for unlabeled data. 3. Supervised
semantic contrastive learning for labeled data. The three impor-
tant modules above are integrated jointly into the optimization
function for network training to accomplish the final downstream
detection or segmentation tasks with a very limited labeled data,
with all remaining data unlabeled.

IV. EXPERIMENTS

A. Pre-Training Experimental Settings

For the indoor scene understanding tasks, we pre-train the
network on ScanNet [18]. And for the outdoor scene parsing
tasks, we pre-train the network on NuScenes [36] dataset. For
the dataset partition, we follow the official partition of ScanNet-
V2 [18] using 1,201 scans as the pre-training dataset. The
NuScenes [36] is an outdoor autonomous driving dataset that

Fig. 6. The captured 2D and 3D region proposals. It is demonstrated qualita-
tively clearly that more precise object proposals are captured by proposed united
2D/3D proposal generation approach. It can be demonstrated that clear superior
regional proposal generation performance can be well guaranteed.

contains 7000 training scenes, the dataset provides the camera’s
intrinsic and extrinsic parameters, thus we can obtain the 2D to
3D transformations and alignments very easily from designed
rendering approaches. For the indoor and outdoor pre-training,
we pre-train the network for 500 epochs and then we fine-tune
the network on diverse downstream tasks. The hyper-parameter
k in Top-k is set to 3. The initial learning rate is set to 5 × 10−4

and is multiplied with 0.2 every 50 epochs.

B. Finetuning Experimental Settings

Datasets: During the fine-tuning, to demonstrate the effec-
tiveness for both data-efficient learning and open-world recog-
nition of the proposed WS3D and WS3D++ under the lim-
ited scene reconstruction labeling scheme, we have tested it
on various benchmarks, including S3DIS [19], ScanNet [103],
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TABLE II
BOUNDARY PREDICTION AVERAGE PRECISION (AP) DIVERSE LABEL RATIOS

FOR OUTDOOR SEMANTICKITTI (SKITTI) BENCHMARK AND INDOOR

SCANNET AND S3DIS BENCHMARK

and SemanticKITTI [16] for semantic segmentation, and Scan-
Net [103] for instance segmentation, respectively. Detailed in-
formation on each dataset and training details are put into the
Appendix. The pre-training is conducted on ScanNet training set
for indoor benchmark and on Waymo for outdoor benchmark.

Training Set Partition: Following the typical setting in data-
efficient learning in the limited reconstruction case [20] [104],
we partition the training set of all tested datasets into labeled data
and unlabeled data with various labeling points percentage, e.g.,
{1%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 100%}. For the
limited reconstruction case, noted that to partition the labeled
points into a specific labeling ratio, we probably need to split
a maximum of one scene into two sub-scenes. One of the
sub-scenes belongs to the labeled data and the other sub-scene
belongs to the unlabeled data.

Implementation Details: For the task of semantic segmen-
tation, we fine-tune the network for 500 epochs on a single
NVIDIA 1080Ti GPU with a batch size of 16 during training.
The initial learning rate is set to 1×10−3 and is multiplied with
0.2 every 50 epochs. We implement it in PyTorch and optimize
it with Adam optimizer [110]. We set the hyperparameter γ as
0.8 to ensure that merely highly confident prediction can be used
for network optimization. ε is set to 0.5. We empirically choose
α = β = 1, while λu = 0.1. For instance segmentation, we train
the network for 580 epochs on a single NVIDIA 1080Ti GPU
with a batch size of 8 during training. The other settings are the
same as the semantic segmentation task.

C. Data-Efficient 3D Semantic Segmentation

Overall Experimental Results: For the semantic segmen-
tation, we have tested WS3D++ on versatile indoor and
outdoor benchmarks, including ScanNet [18], S3DIS [19], and
SemanticKITTI [16]. We have done extensive experiments
with limited labeled data, e.g., only {1%, 5%, 10%, 15%, 20%,
25%, 30%, 40%, 100%} data in training set are available as
labeled data. The qualitative results are shown in Fig. 5. In the
meanwhile, the quantitative semantic segmentation performance
is summarized in Table III. As mentioned, we have used the
voxel-based method SparseConv [60] as the backbone. Our
WSL model significantly surpasses the supervised-only model
in GPC that is merely trained with labeled data, showing that our
WSL can effectively make use of the unlabeled data to enhance
the feature discrimination capacity of the model. Also, it can be
observed the increment of performance is more obvious when

TABLE III
COMPARISON OF SEMANTIC SEGMENTATION RESULTS WITH DIFFERENT

LABELING PERCENTAGES ON SCANNET VALIDATION SET, S3DIS VALIDATION

SET (AREA 5), AND SEMANTICKITTI VALIDATION SET (SEQUENCE 08)

TABLE IV
COMPARISON OF EXPERIMENTAL RESULTS ON 20% AND FULLY LABELED CASE

FOR THE TASK OF INDUCTIVE AND TRANSDUCTIVE LEARNING FOR OUR

PROPOSED WS3D++, RESPECTIVELY

the unlabeled data percentage is larger. For example, the perfor-
mance increase on SemanticKITTI is 10.3% for the 1% labeling
percentage, 5.8% for the 40% labeling percentage, and 1.9% for
the 100% labeling percentage. This can be possibly explained
by the fact that for more unlabeled data, our proposed WS3D++
can extract more meaningful semantic information from the
unlabeled data based on our boundary-guided energy-based loss
and confidence-guided region-level contrastive learning design.
In addition, compared with current SOTA GPC, our proposed
WS3D++ also achieves consistently better results in semantic
segmentation performance, especially when faced with very
limited label circumstances (e.g. 1% labeling points). In that
case, WS3D++ outperforms GPC by 3.3%, 7.1%, and 4.2%
for ScanNet, S3DIS, and SemanticKITTI, respectively. Fig. 5
shows that we can provide comparable performance compared
with fully supervised SOTAs BAAF-Net [35] and Cylinder3D
[34] on SemanticKITTI with 5% labels. As shown in Table III,
the performance of our enhanced approach WS3D++ has
remarkably increased performance compared with WS3D++
and previous SOTAs, demonstrating the effectiveness
of our proposed vision-language knowledge-associated
pre-training.
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TABLE V
COMPARISON OF CURRENT STATE-OF-THE-ART (SOTA) APPROACHES IN THE LIMITED RECONSTRUCTION CASE FOR THE 3D OBJECT DETECTION TASKS WITH

DIFFERENT RATIOS OF LABELED DATA

We have reported the experimental results about semantic
boundary prediction as demonstrated in Table I of our revised
manuscript, it is demonstrated that our proposed approach can
provide a very high-quality label at a very low-label regime, and
the boundary prediction average precision can be kept at more
than 50% (50.9% at least). The phenomenon has also been found
at previous research including SQN, Lasermix, and our Weak-
lab3DNet [59]. The reason behind is that: As point clouds are
essentially samples of the 3D world, the distribution of points in
a very close local neighborhood is comparatively homogeneous,
revealing strong semantic similarity/homogeneity. Moreover,
our proposed weakly supervised approach can be regarded as an
amplification of those rather sparse supervision signals, which
largely facilitates ultimate semantic boundary prediction. As we
have demonstrated in Table I, the average precision (AP) of
boundary prediction can still be maintained at a relatively high
value (more than 50.9%). Our proposed approach can realize
promising performance on outdoor benchmark SemanticKITTI
and indoor benchmarks including S3DIS and ScanNet, which
demonstrates the superior effectiveness of our proposed weakly
supervised semantic boundary prediction.

D. Data-Efficient 3D Instance Segmentation

As our method can be integrated seamlessly into various
network backbones and applied to different highly-level un-
derstanding tasks, we have also integrated our method with
Point-Group [74] for the instance segmentation on ScanNet
with results shown in Table VI. Notice that the performance

TABLE VI
COMPARISON OF THE PERFORMANCE OF INSTANCE SEGMENTATION, UNDER

VARIOUS LEVELS OF SUPERVISION ON SCANNET VALIDATION SET

increase is 21.7% when merely 1% data is labeled compared
with the sup-only case. It further demonstrates that our pro-
posed approaches for the unsupervised branch have effectively
exploited the unlabeled data to improve the feature learning
capacity of the model. Our proposed WS3D and WS3D++ both
provide explicit boundary guidance for separating diverse kinds
of semantic classes, and the instance segmentation performance
with the very limited labeling percentage is comparable to those
fully supervised counterparts.

E. Data-Efficient 3D Object Detection

For the data-efficient 3D object detection, following our pre-
vious work [82], we extensively evaluate current approaches
extensively on SUN RGB-D [111] and ScanNet [18] bench-
marks for 3D object detection tasks with the strong 3D object
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Fig. 7. The final ScanNet [18] object detection results and performance.
The comparative differences in detection predictions are highlighted in the
rectangles.

detection backbone VoteNet [115]. It can be demonstrated the
open-vocabulary designs can to some extent boost the 3D object
detection performance, which demonstrate the generalization
capacity of our fundation model. As shown in Table V, we have
also tested the ablated approach WS3D-Open which abandons
our feature-aligned pre-training term Ltotal

Ctr and directly uses
the CLIP [7] feature encoder for the knowledge distillation loss
term with LDist

KL . It can be demonstrated that the performance
degradation can be observed when comparing WS3D-Open with
WS3D++, which demonstrate the effectiveness of our proposed
hierarchical feature aligned pre-training in improving the data
efficiency in downstream scene parsing.

F. Qualitative and Quantitative Results of the Open-World 3D
Recognition Approaches

In this Subsection, we further evaluate the performance of the
open-world recognition capacity of our proposed approach. The
results of open-world recognition are shown in Table I. We have
also compared our work with the previous approach PLA [70]
in establishing the sufficient point-language associations for
the open-world robot learning. The results demonstrate that our

Fig. 8. The object detection comparisons on KITTI [99] validation set. It can
be demonstrated that our proposed WS3D++ can provide very accurate bounding
box predictions qualitatively compared with the previous state-of-the-art merely
using 2D bounding boxes, which demonstrates the effectiveness of using 3D
regional as well as 3D object-level information in facilitating effective feature
representation learning.

proposed approach has superior performance in open-world
recognition. We directly use the settings in the PLA [70] and split
the categories on ScanNet [18] and Nuscene [36] into base and
novel categories. It can also be validated that WS3D-Open, which
abandons our feature-aligned pre-training and directly use the
CLIP [7] feature encoder, provides slightly inferior performance
compared with WS3D++, validating the effectiveness of our
language-3D matching strategy designs. WS3D++ exhibits
superior performance in terms of the open-vocabulary few-shot
learning for diverse partitioning of original and novel classes.
The open-world recognition results are shown in Figs. 9 and 10.
It can be demonstrated that better foreground object awareness
can be effectively capture by our proposed WS3D++ compared
with PLA [70], with superior segmentation performance guided
by the textual prompts. The superior open-world recognition
performance can be achieved while conducting open-world
learning in diverse spliting of based and novel classes, including
B15/N4, B12/N7, B10/N9 for the ScanNet [18] as well as
B12/N3 and B10/N5 for the NuScenes [36]. It demonstrates
robustness of our proposed approach. Also, as demonstrated in
Fig. 11, the WS3D++ language driven-3D scene segmentation
results are very precise as shown qualitatively, which is
corresponding to the object queried by the language, and it
demonstrates that the inference can be done based on the object,
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Fig. 9. Segmentation result comparisons with CLIP prompts for the indoor ScanNet benchmark. It can be seen from our results that clear object-level vision-
language matched information can be captured with the designed visual prompts. It reveals the effectiveness of our designed hierarchical visual linguistic
feature-aligned representation learning approaches.

material, properties, affordance, room type, etc. It demonstrates
that our proposed WS3D++ can enable the scene-level object
recognition based on the semantic language queries. As
further shown in Fig. 13, through our effective rendering
techniques, which establish the explicit 2D-3D association, the
aligned representation of 2D-3D-language co-embeddings can
be learned and the object information can also be enhanced
through finding the similarity among diverse views through
contrastive learning approaches. Also, by combining 2D and
3D region proposals, more complete and apparent object-level
information can be clearly captured both from 2D views and 3D
views. It turns out that in the first place, while initializing other
various weakly supervised approaches, our proposed approach
can realize consistent improvement on the final performance
of weakly supervised scene parsing, which demonstrates the
superior generalization capacity benefiting from our designed
pre-training of our proposed WS3D++ framework. In the
second pace, the performance of our proposed WS3D++ is
comparatively superior compared with the existing weakly
supervised comparative approaches listed above.

G. Instance Discrimination Capacity

We show t-SNE visualizations of the learned latent feature
representations for various semantic classes in Fig. 12. The case
study task is the semantic segmentation on the S3DIS dataset
with a supervision level of 5%. It is demonstrated that more dis-
tinctive and better separated point-wise feature embeddings are
provided by our proposed unsupervised region-level contrastive
learning, which can be attributed to its strong instance dis-
crimination capacity. And more separated feature space can be
provided and maintained with our proposed WS3D++ compared
to WS3D and GPC. This strong instance discrimination capacity
can be explained by more discriminative feature representations
guided by 3D vision-language aligned representations, and is
thus more beneficial to high-level semantic and instance seg-
mentation performances both in terms of data efficiency and
open-world recognition capacity. Also, our proposed hierarichi-
cal feature alignment also provides more separated feature space,
which means that the feature alignment successfully enhances
the final instance discrimination capacity.
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Fig. 10. The segmentation result visualizations and comparisons with CLIP text encoder prompts for the outdoor KITTI benchmark. It can be demonstrated
the final foreground object awareness can be clearly captured as compared with the previous SOTAs approach PLA [70]. Meanwhile, as shown in the last three
columns, we can provide clear segmentation for the corresponding visual objects based on the textual prompts. The results further demonstrate that vision-language
aligned representations can be effectively and sufficiently learnt.

Fig. 11. The final 3D scene-level activations results based on the language query of WS3D++. Better zoom in for details.

Robot Arm Grasping Example: We have deployed our ap-
proach for the task of open-world perception in robot grasp-
ing in our extended robotic research work. We use our pro-
posed approach for segmentation and use the ROS 2 Gazebo-
based framework to implement the other components of
the system, such as kinematics/dynamics modeling, motion

planning, low-level control, point cloud-based pose estimation,
etc. Our proposed approach has robust performance and de-
cent accuracy in grasping, which demonstrates the potential of
our proposed WS3D++ in industrial manipulation applications
in grasping and dropping novel objects beyond the training
set.
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Fig. 12. t-SNE visualization in semantic segmentation of the proposed WS3D under the 5% labeling percentage on S3DIS validation set. The diverse feature
embeddings are indicated by different colors and are normalized into [−1, 1] for better visualization. It has been validated that more discriminative features can be
acquired for diverse semantic classes with our proposed unsupervised region-aware fine-tuning strategy (demonstrated by WS3D) and our proposed hierarchical
vision-language knowledge associated and distilled pre-training (demonstrated by WS3D++).

Fig. 13. The WS3D++ corresponding detection and segmentation projections on six rendered 2D views through our proposed multi-view rendering approach. It
can be demonstrated that our proposed rendering has established an explicit modality association between the final 2D views and 3D views. Also, by combining
2D and 3D region proposals, more complete and apparent object-level information can be clearly captured both from 2D views and 3D views. Best zoom-in for
viewing.

V. CONCLUSION

In this paper, we proposed a general WS3D++ framework
for open-vocabulary and data-efficient 3D scene parsing. The
whole framework involves both the pre-training and the fine-
tuning stages. During the pre-training stage, we propose the

hierarchical feature alignment strategy to acquire accurate re-
gional 3D-linguistic pairs, thus the performance can be enhanced
to a large extent. At the same time, we propose an unsupervised
boundary-aware energy-based loss and a novel region-level
multi-stage semantic contrastive learning strategy, which are
complementary to each other to make the network learn more
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meaningful and discriminative features from the unlabeled data.
The effectiveness of our approach is verified across three diverse
large-scale 3D scene understanding benchmarks under various
experiment circumstances. Our approach can maximally exploit
the unlabeled data to enhance the performance both for 3D
point clouds semantic segmentation and instance segmenta-
tion, and object detection under various labeling percentages
in the limited reconstruction case. Our proposed label-efficient
learning framework, termed WS3D++, provides conprehensive
baselines for future 3D scene parsing methods when the label
is inaccessible or limited. The proposed pre-training as well as
fine-tuning approach can have a significant boost on the final
open-vocabulary and data-efficient semantic scene parsing in
term of efficiency, effectiveness, and robustness.
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