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 A B S T R A C T

With the development of generative techniques, sketch-driven 3D reconstruction has gained substantial 
attention as an efficient 3D modeling technique. However, challenges remain in extracting detailed features 
from sketches, representing local geometric structures, and ensuring generated fidelity and stability. To address 
these issues, in this paper we propose a multi-spectral channel cross-attention model for sketch reconstruction, 
which leverages the complementary strengths of frequency and spatial domains to capture multi-level sketch 
features. Our method employs a two-stage diffusion generation mechanism, additionally, a Sparse Feature 
Enhancement Module (SFE) replaces traditional down-sampling, reducing feature loss and enhancing detail 
preservation and noise suppression through a Laplace voxel smoothing operator. The Wasserstein distance 
introduced and integrated as part of the loss function, stabilizes the generative process using optimal transport 
theory to support high-quality 3D model reconstruction. Extensive experiments verify that our model surpasses 
state-of-the-art methods in terms of generation accuracy, local control, and generalization ability, providing 
an efficient, precise solution for transforming sketches into 3D models.
1. Introduction

3D models lay an important foundation for the construction of 
digital world, which is widely applied in virtual reality, meta-universe, 
digital entertainment and other industries. Rapid and efficient 3D 
model automatic generation technology, as an important research di-
rection, has been drawing increasing attention. As an intuitive and 
concise approach, sketch-based generation offers a highly creative 3D 
model generation research field, which focuses on generating imag-
inative sketches drawn by designers or unprofessional users into 3D 
models. It significantly lowers the barrier to 3D modeling, users only 
need to simply sketch the outline of the object to generate a creative 
and personalized 3D model. By capturing the user’s intuitive design 
intent, sketch-based 3D modeling technology not only simplifies the 
generation process but also makes the design process more efficient and 
intuitive. Therefore, it serves as a pivotal tool in broadening access to 
3D design practices.

In recent years, with the rapid development of artificial intelligence 
technologies, generative tasks have made significant progress. Deep 
learning models, particularly Generative Adversarial Networks [1], 
Variational Auto-Encoders [2], Diffusion models [3], and Flow-based 
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models [4], have demonstrated remarkable capabilities in tasks such 
as image, audio, and 3D model generation. However, sketch-based 3D 
model generation is a challenging task. The inherently abstract and 
information-sparse nature of hand-drawn sketches, which lack critical 
information such as depth, surface texture, and high-frequency geomet-
ric details, poses substantial difficulties in the precise reconstruction 
of complex three-dimensional features. Additionally, when sketches 
contain intricate details or complex intersections, these models often 
fail to segment and extract key features effectively, resulting in poor 
generation quality.

Early approaches struggle to represent models with intricate geo-
metric structures effectively. Tanaka et al. [5] restricted the sketch to 
straight lines, ellipses, and elliptical arcs drawn using 2D Computer 
Aided Design (CAD) systems, meaning that the reconstructed 3D models 
were mainly suitable for regular cubic shapes. On the other hand, the 
sketch retrieval methods [6–8], overlooked the variability in individual 
sketching styles and user creativity, which often resulted in out of 
accordance with the user’s design intent. Models [9,10] learn latent 
representations of the input sketch using encoder–decoder architectures 
to generate and optimize 3D meshes during inference according to the 
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user’s design intent to a certain extent. However, these methods are 
mainly dependent on the contour information of the sketch and the 
results generated are often rough or lack internal details, producing 
significant discrepancies compared to real-world objects.

To address the above problems, we propose a method named 
Sketch123, which represents 3D models with a signed distance field, 
and design a 3D model reconstruction architecture based on cross-
attention of multiple spectral channels. The framework takes sketch 
information as constraints and interacts with a 3D diffusion model with 
learned attention to achieve local controllability and better generaliza-
tion, generating highly smooth 3D models. The main contributions of 
this work are as follows.

1. We design a sketch reconstruction architecture of a two-stage 
diffusion model based on optimal transport (OT) guidance to effectively 
measure the generated 3D data distribution and the real 3D model dis-
tribution. This combination ensures that the generated model maintains 
a high degree of consistency and fidelity of details and global structures. 
We achieve a stable and accurate sketch reconstruction effect.

2. We propose a multi-spectral channel cross-attention mechanism 
to adeptly capture hierarchical features across diverse spectral ranges. 
This mechanism maximizes the complementary strengths of spatial and 
frequency-based representations by optimizing feature extraction via 
the synergistic interplay of spatial and frequency characteristics.

3. We introduce a Sparse Feature Enhancement Module (SFE) to re-
place traditional down-sampling, effectively reducing feature loss. This 
module balances model performance and feature integrity by preserv-
ing crucial information while incorporating Laplace voxel smoothing to 
maintain detail and reduce noise, ensuring seamless voxel boundaries. 
Extensive experiments verify the effectiveness of our method.

The rest of the paper is organized as follows: Section 2 reviews 
related work. Section 3 proposes a sketch-based 3D model genera-
tion method named Sketch123. 3D data representation and two net-
work architectures of Sketch123 are introduced, respectively. Section 4 
presents experiments and discussion, and Section 5 concludes.

2. Related works

2.1. Single-view 3D reconstruction

Single-View 3D Reconstruction (SV3D) has been a hot research topic 
in both computer graphics and computer vision. With the emergence of 
3D model datasets like ShapeNetV1 [11], deep learning-based methods 
for 3D reconstruction have become mainstream [12–15]. In particu-
lar, [16–20] based on autoencoder structures train models using 2D 
images and voxel models as inputs. [19,20] stack two autoencoders and 
introduce a perceptual fusion module to fuse multi-view information for 
3D reconstruction. Other methods [21–23] leverage differentiable ren-
dering techniques. [24,25] build on these approaches by incorporating 
2D observations like depth maps, surface normals, and object contours. 
Furthermore, Duggal et al. [26] uses a depth encoder to predict an 
initial encoding and applies a depth discriminator for regularization.

The above methods mainly focus on generating 3D models from 2D 
color images, which have many advantages, such as rich color textures 
and higher information density. These features provide more clues and 
details for inference and generation. However, these advantages do not 
exist in the sketch. Sketch-based 3D reconstruction faces the challenges 
of lack of geometric perspective reference and information sparsity.

2.2. Sketch-based shape reconstruction

Early research is focused mainly on geometry-based modeling meth-
ods [27,28], using operations such as inflation and extrusion to gen-
erate 3D models. Optimization-based methods [29–31] further im-
prove the quality of generation and realize interactive operation, but 
can only represent regular shapes. With the rapid advancement of AI 
technologies, deep learning-based 3D reconstruction techniques have 
2 
become a research hotspot. Retrieval-based methods [6–8,32,33] are 
inherently influenced by training data, resulting in suboptimal gener-
alization capabilities. Generation-based methods [34–40] are becom-
ing mainstream. Chen et al. [34,35] proposed the Deep3DSketch and 
Deep3DSketch+ methods, which use adversarial learning to reconstruct 
3D models from sparse sketch information by randomly sampling 3D 
shapes and 2D contours. However, GAN models are susceptible to mode 
collapse. Sketch2Mesh [36] designed an encoder/decoder architecture 
to convert sketches to 3D models. However, it focuses on matching 
the external contours of the sketch without paying much attention 
to the internal details. Sketch3D [40] obtains the image through the 
control [41] and indirectly generates the mesh. Implicit representation 
methods [42–44] can be applied to large resolution scenes. Sketch-
Dream [44] proposed a text-driven 3D content generation method to 
generate NeRF from a given sketch. While these methods offer a range 
of innovative approaches for sketch-to −3D reconstruction, the inherent 
information sparsity in sketch remains a challenge that needs further 
exploration.

We propose a novel method for sketch-based 3D model reconstruc-
tion that effectively addresses the issue of insufficient information in 
a single sketch. Combining spatial and frequency domain informa-
tion, our method efficiently extracts sketch features and reconstructs 
high-quality 3D mesh, providing an accurate and efficient solution for 
converting sketches into 3D models.

3. Method

3.1. Overview

Our approach treats the sketch reconstruction task as a conditional 
generation problem, where a diffusion model is used as the generation 
component, and sketch features extracted using multi-spectral channel 
cross-attention are used to guide model generation. To accurately rep-
resent the details and shapes of objects, we introduce a high-resolution 
voxel grid based on the Discrete Signed Distance Function (DSDF). 
In order to generate a more detailed 3D model, we adopt a two-
stage diffusion generation process. The first stage is named the ‘Rough 
Prediction Diffusion Module’, which predicts a rough shape shell from 
a voxel grid initialized with Gaussian noise. The second stage is called 
the ‘Detail Refinement Diffusion Module’, which acts as a refinement 
generator, converting the shape shell obtained in the first step into 
a high-resolution SDF. Fig.  1 illustrates the overall framework of our 
sketch-based 3D reconstruction.

3.2. 3D shape representations based on DSDF

The discrete signed distance function (DSDF) is used to represent 
3D model in our method. Given a 3D model 𝛺 ⊂ 𝑅3, the DSDF encodes 
the closest distance from each point to the model’s surface and uses a 
sign to indicate whether the point lies inside or outside.

According to the properties of DSDF, 3D data represented by DSDF 
can be converted into a 3D model shell according to the SDF Boundary 
Function (SBF). It can be defined as: 

𝑇 (𝑧) =
{

1, |𝑑(𝑧)| ≤ 𝛤 ,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(1)

here, 𝛤  is a threshold, 𝑑(𝑧) is the discrete signed distance function. So 
the set 𝛺𝑜 = {z𝜖∶ 𝑇 (z) = 1} represents voxel whose center points are 
within 𝛤  from the surface. Therefore 𝛺𝑜 serves as an approximation of 
a thin shell surrounding the 3D model.

For each 3D data, we first normalize the data to lie within the 
spatial range of [−0.8, 0.8]3. Then, within the space range of [−1, 1]3, 
we compute a discrete SDF function at a resolution of 1283 referencing 
the algorithm in [45]. In order to adapt to the first stage of training, 
we downsample it to obtain data with a resolution of 643. In the 643
voxel grid, each voxel inherently contains eight sub-voxels from the 
1283 grid. To achieve a balance between spatial resolution and surface 
reconstruction precision, we define 𝛤 = 1∕32.
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Fig. 1. Pipeline Overview. Sketch123 model includes two sub-processes: ‘‘Rough Prediction Diffusion’’ and ‘‘Detail Refinement Diffusion’’, which share similar structures and the 
detailed information is in the gray area. Rough Prediction Diffusion incorporates sketch features into the network through multi-spectral channel cross-attention, enabling interaction 
with voxel data to generate a coarse voxel grid. The voxel positions are then refined using the Laplacian voxel smoothing operator while introducing random noise. This processed 
voxel grid serves as the input for Detail Refinement Diffusion, which ultimately predicts the SDF values. In this process, Sparse Feature Enhancement Module (SFE) is employed 
in place of conventional downsampling to minimize feature loss. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)
] 
3.3. Sketch-based 3D model generation by diffusion model with OT-guidance

We employ the diffusion model as the core framework to generate 
high-quality 3D models from sketch. The diffusion models consist of the 
forward process and the reverse process. The forward process gradually 
adds Gaussian noise to the 3D data, transitioning it to noise. For a 3D 
model 𝑋0 represented by DSDF, the forward process is simulated by 
perturbing the recorded SDF values, which is described as a Markov 
chain. At each time step t, Gaussian noise is added to the 3D model 
data: 
𝑞(𝑋𝑡|𝑋𝑡−1) = 

(

𝑋𝑡;
√

1 − 𝛽𝑡𝑋𝑡−1, 𝛽𝑡I
)

. (2)

Here 𝑋𝑡 is the noisy voxel at time step t, and 𝑋𝑡−1 is the noisy voxel 
at the previous moment. 𝛽𝑡 is the noise scheduling parameter, I is the 
identity matrix, and   denotes the Gaussian distribution. Following the 
configuration proposed by [46], we define 𝛽𝑡 = 𝑒−10𝑡2−10−4 . By recur-
sively applying the above transition probabilities, the joint distribution 
from 𝑋0 to 𝑋𝑇  can be expressed as: 

𝑞(𝑋𝑇 |𝑋0) =
𝑇
∏

𝑡=1
𝑞(𝑋𝑡|𝑋𝑡−1). (3)

This process ultimately converts 𝑋0 into standard normal distribu-
tion noise. The reverse process aims to reconstruct the SDF values of the 
3D data from the noise 𝑋𝑇 . This process is also modeled as a Markov 
chain: 
𝑝𝜃(𝑋𝑡−1|𝑋𝑡) =  (𝑋𝑡−1;𝜇𝜃(𝑋𝑇 , 𝑡), 𝛴𝜃(𝑋𝑡, 𝑡)). (4)

Here 𝜇𝜃 and Σ𝜃 denote the mean and covariance, respectively, which 
are typically predicted by a neural network model. To ensure the 
predicted model converges toward the target 3D model, we incorpo-
rate optimal transport theory to quantify the discrepancy between the 
predicted and real 3D data distributions. The ‘‘transport cost’’ between 
two distributions is evaluated using the Wasserstein distance. Details 
are provided in Section 3.5.2.

Our proposed sketch-based 3D model generation network is con-
structed based on the optimal transport-guided diffusion model as the 
core and consists of the Rough Prediction Diffusion and the Detail 
Refinement Diffusion. Implementation details will be introduced below.

3.4. Rough prediction diffusion module

The rough prediction diffusion module is aimed at generating a 
coarse shape shell of the object from a Gaussian-distributed voxel grid. 
The detailed implementation is given below.
3 
3.4.1. Network architecture
We employ the U-Net [47] architecture to implement the diffusion 

model. The U-Net architecture is designed based on a standard 3D 
convolutional neural network, comprising five layers and incorporating 
residual connections. Model training is performed using Eq. (4). The 
specific network architecture is detailed in Fig.  2.

Network Inference: Initially, a 643 voxel grid is initialized with 
Gaussian noise, and the Denoising Diffusion Implicit Models (DDIM) [48
sampling strategy is employed to remove noise over a finite number 
of steps. In this process, the diffusion model gradually approaches the 
target 3D model by denoising. To ensure the accuracy of the generated 
results, a voxel with predicted surface occupancy values greater than 
0.5 is retained and then subdivided to achieve a resolution of 1283.

3.4.2. Sparse feature enhancement of voxel
The downsampling process in U-Net often leads to the loss of feature 

information, which brings more challenges to the voxel features after 
combining them with a sketch. To tackle this challenge, we propose 
a novel Sparse Feature Enhancement Module (SFE) to replace classical 
downsampling operations. The SFE leverages the strengths of depthwise 
separable convolution and dilated convolution to effectively compress 
input features while retaining important local and global information.

In the generation process, the voxel 𝑓𝑉  is processed in parallel 
by two branches for feature fusion, followed by feature compression 
through a Max pooling layer, thereby effectively preserving the sparse 
features of the voxel. Eq. (5) describes the processing process, DSConv
represents depthwise separable convolution, DConv represents dilated 
convolution, MaxPooling represents maximum pooling processing, and 
⊕ represents summation. Fig.  3 illustrates the structure of the SFE 
module in detail. 
𝑉 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝐷𝑆𝐶𝑜𝑛𝑣(𝑓𝑉 )⊕𝐷𝐶𝑜𝑛𝑣(𝑓𝑉 )). (5)

3.4.3. Multi-spectrum channel cross attention of sketch and 3D shape
A fundamental challenge in 3D model reconstruction from sketch 

lies in the sparsity and abstractness of sketch information. Sketch typ-
ically contains only contour information, lacking detailed texture and 
depth information. As a result, the model must efficiently extract core 
geometric features from the sketch. Unlike previous methods focusing 
solely on spatial and channel attention, we propose a novel approach 
exploring feature extraction from the frequency domain. Specifically, 
we introduce multiple frequency components of the Discrete Cosine 
Transform (DCT) into channel attention to enhance the expressive 
power of sketch feature compression, which we call the Multi-Spectral 
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Fig. 2. U-Net architecture. (a) For a noise voxel with a resolution of 64, the output resolutions after each layer are 643, 323, 163, 83 and 43. The corresponding feature dimensions 
for each layer are 32, 64, 128, 256 and 256. (b) The attention mechanism we proposed is used at the bottom layer of U-Net.
Fig. 3. Sparse Feature Enhancement Module (SFE). The SFE consists of two branches: Depthwise separable convolution to extract local features of the voxel, and Dilated convolution 
to capture global structural information by expanding the receptive field.
Channel Cross-Attention (MSCC-Attention). As shown in Fig.  4, for 
any voxel feature 𝑓𝑉 , its center point is projected into the camera 
coordinate system based on the sketch view information. To eliminate 
ambiguities in projection point, a perspective projection normalization 
operation is applied, guided by voxel depth information enabling the 
interaction between 3D voxel features and 2D pixel features. The 
proposed Multi-Spectral Channel Cross-Attention Mechanism consists 
of three core components:

Sketch Spatial Attention Module. This module is used to accu-
rately extract location information. Focus the model’s attention on 
the most important areas in the sketch. The spatial attention can be 
formulated as: 
𝑎𝑡𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

(

𝑐𝑜𝑛𝑣(𝑆)
)

, (6)

where att is the spatial attention vector, S represents the sketch, which 
are resized to 224 × 224 pixels before input, 𝑐𝑜𝑛𝑣(∙) denotes the 
convolution operation, and 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(∙) is the Sigmoid function. We input
S into the module. After obtaining the attention vector, S is scaled by 
the corresponding attention value, result in the scaled output 𝑆: 
𝑆̃ = 𝑎𝑡𝑡 ⋅ 𝑆. (7)

Spectral Channel Attention Module. This module aims to capture 
the response components of various channels to the salient regions of 
the sketch feature. As demonstrated in [49], Global Average Pooling 
(GAP) is, in fact, a special case of the DCT, with its output proportional 
to the lowest-frequency components of a 2D DCT. Therefore, the GAP 
operation used in conventional channel attention utilizes only the 
lowest frequency component of DCT. We compress information from 
the sketch through multiple frequency components of the 2D discrete 
cosine transform. This module is designed to capture the characteristic 
4 
response components in salient areas at different channel frequencies. 
The basis function of 2D DCT is: 
𝐵𝑖,𝑗
ℎ,𝑤 = 𝐶𝑂𝑆

(𝜋ℎ
𝐻

(

𝑖 + 1
2

))

𝐶𝑂𝑆
(𝜋𝑤
𝑊

(

𝑗 + 1
2

))

. (8)

Then the 2D DCT can be written as:

𝐷𝐶𝑇 (𝑆) =
𝐻−1
∑

𝑖=0

𝑊 −1
∑

𝑗=0
𝑆 ⋅ 𝐵𝑖,𝑗

ℎ,𝑤;

𝑠.𝑡. ℎ ∈ {0, 1,… ,𝐻 − 1} ; 𝑤 ∈ {0, 1,… ,𝑊 − 1}; (9)
𝑖 ∈ {0, 1,… ,𝐻 − 1} ; 𝑗 ∈ {0, 1,… ,𝑊 − 1}.

Where H and W  are the height and width of the input sketch S, i, j
represent the pixel positions in the image space, and h, w represent 
the frequency indices of the basis functions, respectively. S is divided 
into multiple parts along the channel dimension, each part will be 
assigned a DCT frequency component, and the calculated result is used 
as the attention of the channel. The Spectral Channel Attention can be 
described as: 
𝑆𝐶𝐴(𝑆) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐿𝑖𝑛𝑒𝑟(𝑅𝑒𝐿𝑈 (𝐿𝑖𝑛𝑒𝑟(𝐷𝐶𝑇 (𝑆)))))⊗𝑆, (10)

where sigmoid is the Sigmoid function, Liner represents the linear layer,
ReLU is the ReLU activation function, and DCT  is the 2D DCT.

Perceptual Feature Cross Attention. This module aims to combine 
the outputs of the two preceding sub-modules into the final sketch fea-
ture representation. We employ a multi-head attention mechanism [50] 
to facilitate interaction between the voxel features and the sketch image 
patch features based on the known view projection relationship. We 
consider that the SDF value recorded at any voxel position is only 
affected by a small range of the corresponding sketch image, so during 
the interaction, the image features are divided into feature blocks with 
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Fig. 4. Illustration of our Multi-Spectrum Channel Cross Attention mechanism. Each voxel corresponds to a specific image feature region, and the proposed attention mechanism 
facilitates interaction between voxel and image features.
a patch width of 14. The combined sketch features can be expressed as: 

𝑓𝑆 = 𝑆̃ ⊕ 𝑆𝐶𝐴(𝑆). (11)

Finally, we compute the query Q, key K, and value V  as follows. The 
voxel features 𝑓 𝑛𝑒𝑤

𝑣  are obtained through Eq. (13), where M denotes the 
mask for attention computation introduced by view projection. 
𝑄 = 𝑓𝑉 𝑊

𝑄, 𝐾 = 𝑓𝑆𝑊
𝐾 , 𝑉 = 𝑓𝑆𝑊

𝑉 , (12)

𝑓 𝑛𝑒𝑤
𝑣 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ,𝑀). (13)

3.5. Detail refinement diffusion module

The detail refinement diffusion module focuses on refining the 
rough model generated in the first stage. Its structure is similar to 
that of rough prediction diffusion. The process begins from initializing 
the rough prediction diffusion output with Gaussian noise. Next, the 
DDIM sampling strategy is applied to iteratively denoise the voxel 
data. After completion of the denoising process, the Marching Cubes 
algorithm [51] is used to convert the voxel representation into a mesh 
output.

3.5.1. Laplace operator smoothing of voxel model
Laplace smoothing is applied to voxel data. This reduces noise 

and irregularities by smoothing the SDF values. Given a vertex 𝑣𝑖, its 
Laplace voxel smoothing operator 𝛥𝑣𝑖  can be defined as: 

𝛥𝑣𝑖 =
∑

𝑗∈𝑁(𝑖)

1
|𝑁(𝑖)|

(𝑣𝑗 − 𝑣𝑖), (14)

where N(i) represents the set of one-neighboring voxel vertices of 𝑣𝑖, 𝑣𝑗
is a neighboring voxel vertex, and |𝑁(𝑖)| is the number of neighboring 
voxel vertices, the size of the set N(i).

The Laplace voxel smoothing operator calculates the average differ-
ence between a voxel vertex and its neighbors. Similar to smoothing 
on 3D meshes, this operator smooths the voxel space by adjusting 
each vertex’s position toward the average of its neighbors, effectively 
reducing noise while preserving the geometric consistency of the voxel 
model.

3.5.2. Wasserstein distance constraint of generated shape
As introduced in Section 3.3, We regard the predicted SDF and the 

true SDF as two distributions 𝑋, 𝑌 ⊂ 𝑅3, with probability densities 𝜇
and 𝜈 respectively, and the total measure is equal: 

∫X
𝜇 = ∫Y

𝜈. (15)

By defining a cost function 𝑐(𝑥, 𝑦), 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 , we hope to find 
a transport mapping that minimizes the cost of transport. That is the 
optimal transport mapping T ∶ X → Y: 
𝑇 = 𝑚𝑖𝑛 𝐸 𝑐(𝑋, 𝑇 (𝑋)), (16)
T#𝜇=𝜈 𝑋∼𝜇

5 
here, T#𝜇 = 𝜈 indicates ∫𝑋 𝜇(𝑥)𝑑𝑥 = ∫𝑇 (𝑋) 𝜈(𝑦)𝑑𝑦 for every measurable
X, Y. We choose the cost as 𝑐(𝑥, 𝑦) = ‖𝑥 − 𝑦‖2, then the Wasserstein 
Distance is defined as: 
𝑊 (𝜇, 𝜈) = [𝑖𝑛𝑓𝛾∈𝛱(𝜇,𝜈) ∫𝑋×𝑌

𝑐(𝑥, 𝑦)𝑑𝛾(𝑥, 𝑦)]
1
2 , (17)

here, 𝛾 ∈
∏

(𝜇, 𝜈) represents the joint probability density of 𝜇 and 𝜈. We 
use the Sinkhorn Algorithm [52] to calculate the Wasserstein Distance. 
First, the transition matrix 𝑃  is initialized using a uniform distribution. 
The row and column scaling factors 𝑎 and 𝑏 are updated alternately. 
Finally, the transition matrix is updated by 𝑃 = 𝑑𝑖𝑎𝑔(𝑎)𝑀𝑑𝑖𝑎𝑔(𝑏) until 
convergence or the predetermined number of iterations is reached, here 
𝑀 = 𝑐(𝑥, 𝑦), 𝑑𝑖𝑎𝑔() indicate as Diagonal Matrix. Then the Wasserstein 
loss can be defined as: 
∑

∀𝑖,𝑗
𝑀𝑖𝑗𝑃𝑖𝑗 + 𝜆𝑃𝑖𝑗 log𝑃𝑖𝑗 , (18)

here 𝜆 is the Entropy regularization parameter, we set 𝜆 = 7. The 
introduction of Wasserstein Distance enables the network to consider 
the prediction of SDF from a global perspective.

3.6. LOSS function

To obtain a realistic 3D model, we designed a novel loss function 
that consists of three components:

SDF Loss: This loss directly constrains the generation of SDF values. 
To ensure that the generated model closely aligns with the expected 
geometry, we define the SDF loss in Eq. (19), where MSE refers to the 
Mean Squared Error between the 𝑝𝑟𝑒𝑑𝑠𝑑𝑓  and the 𝑡𝑟𝑢𝑒𝑠𝑑𝑓 . 

𝑆𝐷𝐹𝑙𝑜𝑠𝑠 = 𝑀𝑆𝐸
(

𝑝𝑟𝑒𝑑𝑠𝑑𝑓 , 𝑡𝑟𝑢𝑒𝑠𝑑𝑓
)

. (19)

Wasserstein Loss: This loss is based on Optimal Transport. As de-
scribed in Section 3.5.2, minimizing the Wasserstein distance between 
the SDF distributions of the target and source domains enhances the 
global consistency and fidelity of the generated 3D model. It effectively 
removes connectivity issues inherent in voxel-based generation. We 
implement it in the network, we define: 
𝑊 𝑎𝑠𝑠𝑒𝑟𝑠𝑡𝑒𝑖𝑛𝑙𝑜𝑠𝑠 = 𝑠𝑖𝑛𝑘ℎ𝑜𝑟𝑛

(

𝑝𝑟𝑒𝑑𝑠𝑑𝑓 , 𝑡𝑟𝑢𝑒𝑠𝑑𝑓 ,𝑀, 𝜆
)

. (20)

Boundary Loss: A key property of SDF is that zero values indicate 
the surface of the object. To reinforce this characteristic, we designed a 
boundary loss to improve prediction accuracy near the object’s surface. 
The values within 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.1 are considered part of the surface 
boundary. We define: 
𝑚𝑎𝑠𝑘 = 𝐴𝐵𝑆

(

𝑡𝑟𝑢𝑒𝑠𝑑𝑓
)

< 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, (21)

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑙𝑜𝑠𝑠 = 𝑀𝑆𝐸
(

𝑝𝑟𝑒𝑑𝑠𝑑𝑓 (𝑚𝑎𝑠𝑘) , 𝑡𝑟𝑢𝑒𝑠𝑑𝑓 (𝑚𝑎𝑠𝑘)
)

. (22)

The overall loss for the model is a weighted combination of the three 
components: 
𝑙𝑜𝑠𝑠 = 𝜆 𝑆𝐷𝐹 + 𝜆 𝑊 𝑎𝑠𝑠𝑒𝑟𝑠𝑡𝑒𝑖𝑛 + 𝜆 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 . (23)
1 𝑙𝑜𝑠𝑠 2 𝑙𝑜𝑠𝑠 3 𝑙𝑜𝑠𝑠
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Fig. 5. The evaluation of loss weight coefficients is conducted based on the generation quality, which is measured using the IoU metric. The color intensity is positively correlated 
with the generation quality.
To set the loss weight coefficients reasonably, we employed a grid 
search strategy to define the value sets for the 3 weights as 𝜆1 ∈
{0.6, 0.8, 1.0}, 𝜆2 ∈ {0.1, 0.2, 0.3}, and 𝜆3 ∈ {0.1, 0.2, 0.3}, generating 
27 combinations. We compared the generated quality one by one and 
selected the best weight combination. The results are shown in Fig.  5. 
Therefore, we set 𝜆1 = 0.6, 𝜆2 = 0.2, and 𝜆3 = 0.2.

4. Experiments

In this section, we exhibit and validate the capability of Sketch123 
for sketch-conditioned shape generation.

Data Preparation: We use ShapeNetV1 [11] and our craniofacial 
dataset to train Sketch123. The following four categories are incor-
porated into the analytical framework: chair, car, table, and rifle. For 
each data, we rendered projection images from five predefined different 
viewpoints and used a Canny edge detector [53] to extract contours, 
which served as the synthetic sketch. The viewpoints are set at five 
angles around the model’s center on a horizontal plane: −90◦, −45◦, 
0◦, 45◦ and 90◦.

Training Details: For the Rough Prediction Diffusion, we used a 
learning rate of 1.25 × 10−4 and trained for 300 epochs. For Detail 
Refinement Diffusion, we used the AdamW optimizer [54] with a fixed 
learning rate of 10−4 over 500 epochs. The data split followed a ratio 
of 7:1:2 for training, validation and testing, respectively.

Inference Efficiency: Experimental measurements conducted on 
an NVIDIA GeForce RTX 4090 demonstrate that the implemented De-
noising Diffusion Implicit Models (DDIM) sampling strategy with 50 
iterative steps achieves an average inference time of 10 s.

4.1. Model evaluation

Both the qualitative and quantitative assessment protocols were 
systematically employed. The evaluation metrics used include Chamfer 
Distance (CD), Normal Consistency (NC), F1 Score, voxel-Intersection 
over Union (IoU), and Contrastive Language-Image Pre-training Score 
(CLIP-Score) [55]. Here, we employ CLIP-Score to evaluate the co-
sine similarity of sketch features. For the sketch 𝑆𝑖𝑛, we render the 
sketch 𝑆𝑜𝑢𝑡 from the same perspective using the mesh obtained from 
it. Consequently, it can be expressed as follows: 
CLIP-Score = 𝐶𝐿𝐼𝑃 (𝑆𝑖𝑛, 𝑆𝑜𝑢𝑡). (24)

4.1.1. Evaluation details
We compared our method with the following approaches:

Sketch2Model [56], Sketch2Mesh [9], SketchSampler [57], LAS-
Diffusion [39] and SENS [38]. To ensure accurate evaluation, the 
predicted mesh was scaled to align with the size of the target mesh. 
Sketch2Model, Sketch2Mesh and SENS were provided with appropriate 
sketches that match their respective training style. LAS-Diffusion was 
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Table 1
Quantitative evaluations on chairs and cars. The units of CD, NC, F1 Score, and IoU 
are 10−3, 10−2, 10−2, and 10−2, respectively.
 Method Chairs

 CD↓ NC↑ F1 Score↑ IoU↑ CLIP-Score↑ 
 Sketch2Model [56] 20.5 62.3 45.7 30.6 85.5  
 Sketch2Mesh [9] 48.7 54.1 63.2 47.2 91.5  
 SketchSampler [57] 32.0 59.5 53.9 48.7 92.4  
 LAS-Diffusion [39] 13.1 77.8 63.0 49.2 94.6  
 SENS [38] 11.0 63.6 46.6 32.2 87.9  
 ours 10.7 76.3 68.2 58.4 96.3  
 Cars

 Sketch2Model [56] 18.1 66.5 47.3 49.9 88.3  
 Sketch2Mesh [9] 54.1 58.6 69.4 53.1 88.7  
 SketchSampler [57] 38.6 57.2 59.7 51.6 94.7  
 LAS-Diffusion [39] 12.7 72.6 67.4 49.8 96.4  
 SENS [38] 11.4 67.9 44.5 38.6 85.0  
 ours 11.1 82.4 72.6 57.0 97.1  

given accurate sketch viewpoint information. Since SketchSampler 
only generates point clouds, its output was converted to mesh using 
Shape-As-Points [58] for evaluation.

As quantitatively demonstrated in Table  1, the proposed method 
exhibits superior performance across multiple evaluation metrics. It 
is noteworthy that the normal consistency metric in chairs remains 
suboptimal compared to LAS-Diffusion. This limitation is attributed to 
the Laplacian voxel smoothing Operator’s inherent trade-off: it perturbs 
surface normal vectors through a smoothing kernel. The qualitative 
assessment in Fig.  7 provides visual validation of these findings. When 
reconstructing chair geometries, our framework demonstrates preser-
vation of structural integrity while achieving superior detail fidelity. 
Fig.  6 presents a computational efficiency analysis to complement these 
results. Our proposed method achieves an inference time of approxi-
mately 10 s, in the middle range among the compared models. Notably, 
despite its moderate inference time, our method consistently generates 
high-fidelity 3D models.

4.1.2. Detail controllability test
Our method demonstrates excellent detail extraction capabilities 

through the proposed multi-spectral channel attention mechanism. This 
mechanism shows a strong adaptability to small structural changes in 
the input sketch. Fig.  8 specifically demonstrates this effect, where even 
subtle modifications in the sketch lead to corresponding adjustments 
in the generated 3D model. The results emphasize the robustness of 
our approach in accurately reflecting intricate sketch details while 
maintaining overall structural consistency.

4.1.3. Model generalization test
In this test, the generalizability of the model is evaluated from two 

perspectives: hand-drawn sketch and sparse sketch.
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Fig. 6. Time Comparison. The proposed method demonstrates the capability to synthesize realistic 3D models while maintaining computational efficiency. Notably, the computational 
time metric for Sketch2Model incorporates both the iterative optimization and the mesh generation.

Fig. 7. Generation result quality comparison. From left to right are: Sketch, Sketch2Model, Sketch2Mesh, SketchSampler, LAS-Diffusion, ours(voxel), ours(mesh), and the ground 
truth. Ours(voxel) represents the voxel data without post-processing.

Fig. 8. Detail controllability test. (a) Our method can generate good results for easily overlooked and complex lines in sketch. (b) Adding different lines to a table sketch, our 
results demonstrate the accuracy of detail changes.
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Fig. 9. Our Sketch123 has the ability to adapt to hand-drawn sketch. The first two rows of hand-drawn sketches are from the manual collection and the rest are from the TU 
Berlin Sketch Dataset [59].
Fig. 10. Sparse Sketch test. The test samples feature simplified lines, and our results demonstrate minimal deviation from those generated with the original sketch.
Hand-drawn Sketch: Through our proposed multi-spectral channel 
cross-attention mechanism, features in the frequency domain and spa-
tial domain are extracted, which effectively reduces the dependence on 
line smoothness and enables the generation of satisfactory 3D models 
from hand-drawn sketch. Fig.  9 illustrates the results generated for the 
hand-drawn sketch.

Sparse Sketch: Sketch lines are categorized into two types: struc-
tural lines, which define the skeletal framework of the object, and 
non-structural lines, which represent decorative or supplementary el-
ements. Random line removal strategies are considered problematic, as 
they may eliminate critical structural lines that encode essential object 
features. Therefore, we strategically remove non-structural lines to get 
sparse sketches.

To evaluate the robustness of our method under informationally 
constrained conditions, we conducted a controlled study by strategi-
cally removing critical lines from the original sketches. As demon-
strated in Fig.  10, the proposed method exhibits remarkable structural 
preservation capabilities.
8 
4.1.4. Model scalability test
A single sketch123 model was trained on 50 categories, utilizing 

data from the ShapeNetV1 dataset and a custom craniofacial dataset. 
Despite the limited data available in certain categories, the model con-
sistently exhibited robust performance. This indicates that the model 
possesses strong learning and generalization capabilities, even when 
dealing with small sample sizes. As shown in Fig.  11, the generation 
results for several categories highlight the ability of the model to 
maintain high-quality output across diverse and complex 3D model 
types.

4.2. Ablation studies

In this section, in order to more clearly understand the influence of 
different parts of our model on sketch reconstruction. We performed 
ablation studies to validate the effectiveness of the proposed method. 
We successively disabled or replaced key components such as the 
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Fig. 11. Visualization results of some training categories.
Fig. 12. Ablation study of our proposed MSCC-Attention module.
.

Table 2
An ablation study on the impact of different components of our method on generation
 CD↓ NC↑ F1 Score↑ IoU↑ 
 Without MSCC-Attention 13.1 67.8 63.0 49.2 
 Without Laplace 10.7 76.2 67.5 52.2 
 Without SFE 12.7 71.9 66.3 49.9 
 Without Boundary Loss 10.8 68.6 64.3 48.1 
 Without Wasserstein Loss 10.7 76.3 64.1 50.5 
 Full Model 10.7 76.3 68.2 58.4 

MSCC-Attention mechanism, the Laplace voxel smoothing operator, 
and the SFE. Notably, the Laplace voxel smoothing operator analyzed in 
Section 4.1.1 may introduce negative artifacts. As evidenced in Table  2, 
the operator significantly improves the IoU score, indicating its strong 
positive influence on voxel distribution. Laplacian voxel smoothing op-
erator effectively enhances spatial coherence and overall reconstruction 
quality.

In Fig.  12, we report the performance without using MSCC-Attention 
and instead use a normal attention mechanism. The results indicate a 
decline in generation quality. This validates the significant advantages 
of the proposed multi-spectral strategy.

We defined three frequency bands: Low-Frequency Dominance, Mid-
Frequency Dominance, and High-Frequency Dominance. Additionally, 
we replaced the component with GAP to comprehensively evalua-
tion its contributions to model performance across different frequency 
domains. From Table  3 we can see that Low-Frequency Dominance 
achieve the best result, aligning with the principle that GAP func-
tions as a DCT low-frequency information extractor, as described in 
Section 3.4.3.

5. Conclusion

In this paper, we proposed a 3D reconstruction method that in-
tegrates a multi-spectral channel cross-attention mechanism with a 
diffusion model, enabling the generation of 3D models from sketches. 
The multi-spectral channel cross-attention mechanism facilitates the 
extraction of sketch features in both frequency and spatial domains, 
9 
Table 3
The performance of the multi-spectral channel attention mechanism is evaluated by 
configuring different frequency components.
 CD↓ F1 Score↑ IoU↑ 
 Low-Frequency Dominance 10.7 76.2 58.4 
 Mid-Frequency Dominance 11.6 68.2 53.3 
 High-Frequency Dominance 11.3 65.1 50.1 
 GAP 10.7 66.7 50.6 

improving the model’s capacity to interpret abstract sketch information. 
The Sketch123 effectively addresses issues of incomplete sketch infor-
mation and missing details, resulting in high-quality, shape-controllable 
3D model generation. Experimental results indicate that our method 
achieves superior performance across various sketch input tasks, sur-
passing existing mainstream methods in generation accuracy, Sketch 
perception, and generalization capability.

A significant limitation of this study is that the performance of 
the model lies in its dependency on the consistency of the sketch 
style. We argue that optimizing the sketch lines in future work could 
help bridge the gap between the training sketch style and the real-
world sketches. Developing a Style-Invariant Feature Extraction module 
capable of isolating structural primitives (e.g., edge connectivity) while 
suppressing stylistic artifacts (e.g., stroke thickness variations) through 
feature disentanglement is crucial. On the other hand, an implemen-
tation of a bidirectional interface enables real-time user corrections to 
both input sketches and output geometries, thereby iteratively aligning 
the latent space with human perceptual priors.
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