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Abstract

For large-scale point cloud processing, resampling takes the
important role of controlling the point number and density
while keeping the geometric consistency. However, current
methods cannot balance such different requirements. Partic-
ularly with large-scale point clouds, classical methods often
struggle with decreased efficiency and accuracy. To address
such issues, we propose a weighted Poisson-disk (WPD) re-
sampling method to improve the usability and efficiency for
the processing. We first design an initial Poisson resampling
with a voxel-based estimation strategy. It is able to estimate
a more accurate radius of the Poisson-disk while maintaining
high efficiency. Then, we design a weighted tangent smooth-
ing step to further optimize the Voronoi diagram for each
point. At the same time, sharp features are detected and kept
in the optimized results with isotropic property. Finally, we
achieve a resampling copy from the original point cloud with
the specified point number, uniform density, and high-quality
geometric consistency. Experiments show that our method
significantly improves the performance of large-scale point
cloud resampling for different applications, and provides a
highly practical solution.

Introduction
With the development of 3D scanning technology, 3D point
clouds are widely collected and gradually become a popular
data representation in 3D vision tasks. Compared to 2D im-
ages, 3D point clouds possess comprehensive geometric in-
formation, enabling precise spatial data analysis. Although
point clouds possess many outstanding properties, there are
still some limitations that constrain their usage. Specifically,
point clouds scanned from large-scale scenes often entail
substantial data volumes, which reduce computational ef-
ficiency in related applications. In addition, the density of
a raw point cloud is typically non-uniform, which signifi-
cantly impairs the performance of certain downstream ap-
plications that are highly sensitive to the quality of point
distribution. Therefore, a resampling step is necessary.
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Figure 1: The pipeline of the proposed WPD on Urban-
BIS (Yang et al. 2023).

The resampling step aims to control the number of points
while optimizing their distribution. Currently, the main-
stream solutions include Poisson-disk resampling (Corsini,
Cignoni, and Scopigno 2012) and variants of the farthest
point sampling (FPS) (Schlömer, Heck, and Deussen 2011;
Lv, Lin, and Zhao 2021). The former has been selected
as a standard function of the well-known software Mesh-
Lab (Cignoni et al. 2008). It can effectively improve the dis-
tribution of point clouds while reducing the data volume.
The drawback is that the radius estimation of the Poisson-
disk is not accurate. It cannot precisely control the number
of output points. For the variants of FPS, the advantage lies
in their ability to precisely control the number of points with
simple implementation. Such methods are widely used in
point cloud-based deep learning methods (Qi et al. 2017;
Zhao et al. 2021). However, they have lower efficiency for
large-scale point clouds, and their optimization capability
for local neighborhoods is also limited.

To address the above-mentioned issues, we propose a
weighted Poisson-disk (WPD) resampling method for large-
scale point cloud processing. It contains two parts: initial
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Poisson resampling and weighted tangent smoothing. The
initial Poisson resampling is an improved version based on
the traditional Poisson-disk resampling. Based on a voxel-
based analysis, it estimates a more accurate Poisson-disk ra-
dius according to the specified number of points. A weighted
tangent smoothing is used to further control the point num-
ber while optimizing the local neighborhoods. It efficiently
establishes the isotropic distribution for point clouds. Ad-
ditionally, we provide an optional function for preserving
sharp features. With a sharp feature detection (Jiao et al.
2023), WPD resampling effectively balances varying re-
quirements across downstream applications, including visu-
alization and semantic feature learning. In Figure 1, we show
the pipeline of the proposed WPD resampling method. The
contribution of this paper is three folds:

• We design an initial Poisson resampling step that is an
improved version of the traditional Poisson-disk resam-
pling. It utilizes a voxel-based estimation to improve the
accuracy of Poisson-disk radius according to the speci-
fied point number.

• We present a weighted tangent smoothing to further opti-
mize point distributions. Combined with the initial Pois-
son resampling step, it can implement isotropic resam-
pling for large-scale point clouds with high efficiency and
better geometric consistency.

• We provide an optional function for sharp feature preser-
vation during the resampling. It combines robust sharp
feature analysis with different sampling rate settings, to
ensure compatibility with WPD resampling.

Related Work
For point cloud resampling, related solutions can be summa-
rized into three categories: local uniform optimization, geo-
metric feature-based and semantic feature-driven methods.

Local uniform optimization attempts to improve the
quality of point distribution based on local distances.
The representative methods include farthest point sampling
(FPS) (Moenning and Dodgson 2003; Schlömer, Heck,
and Deussen 2011; Lv, Lin, and Zhao 2021), consolida-
tion (Lipman et al. 2007; Huang et al. 2009), Poisson-
disk resampling (Corsini, Cignoni, and Scopigno 2012),
Voronoi diagram optimization (Liu et al. 2009; Chen et al.
2018), and Laplace graph (Luo, Ge, and Wang 2018a;
Chen et al. 2017; Qi, Hu, and Guo 2019; Zeng et al.
2019). FPS-based schemes have been widely used for point
cloud pre-processing. The various modified versions of
FPS (Schlömer, Heck, and Deussen 2011; Lv, Lin, and
Zhao 2021) achieved improvements in both geometric con-
sistency preservation and feature enhancement. For point
cloud-based consolidation, Huang et al. (Huang et al. 2009)
proposed a weighted locally optimal projection (WLOP) op-
erator to optimize local point distributions. Poisson-disk re-
sampling (Corsini, Cignoni, and Scopigno 2012) is a practi-
cal resampling solution that has been integrated into Mesh-
Lab as a standard function. The proposed WPD resampling
is inspired by the solution.

Geometric feature-based methods implement point
cloud resampling while balancing geometric feature preser-

vation. Some classical solutions include DSO (Discrete
Shape Operator) feature-based simplification (Lee and
Huang 2011), normal vector-driven simplification (Shi,
Liang, and Liu 2011), sharp feature keeping (Huang et al.
2013; Benhabiles et al. 2013), curvature adaption (Liu et al.
2013; Lv, Lin, and Zheng 2022), and saliency-based resam-
pling (Ding et al. 2019). They consider geometric feature
keeping in resampling, which can improve the quality of
the geometric consistency. For manifold distribution prop-
erty keeping, some methods design the intrinsic resampling
schemes based on geodesic distance, including intrinsic re-
sampling (Lv, Lin, and Zhao 2022) and geodesic Voronoi
diagrams(Wang et al. 2015; Liu et al. 2017). Such a method
can output high-quality resampling results with better con-
sistency to the original 3D surface. However, the drawback
of these methods is the excessively huge time cost for fea-
ture analysis, which limits their application for large-scale
point clouds.

Semantic feature-driven methods consider the seman-
tic analysis during resampling. Their greatest advantage lies
in the ability to reconstruct missing local geometric infor-
mation from the raw point cloud. The representative solu-
tions include FoldingNet (Yang et al. 2018), KCNet (Shen
et al. 2018), PU-Net (Yu et al. 2018), SampleNet (Dovrat,
Lang, and Avidan 2019)(Lang, Manor, and Avidan 2020),
PAT (Yang et al. 2019), CPL (Nezhadarya et al. 2020),
MOPS-Net (Qian et al. 2020), PIE-NET (Wang et al. 2020),
PointASNL (Yan et al. 2020), SK-Net (Wu et al. 2020), etc.
These methods resample the points with sensitive character-
istics to facilitate effective semantic-based analysis. How-
ever, the performance of these solutions depends heavily on
the sample distribution of the training dataset, which can
lead to potential instability. Furthermore, semantic-driven
sampling often fails to achieve a consistently reliable uni-
form distribution. In practice, similar approaches still re-
quire FPS strategy to improve the density. Benefiting from
the sharp feature keeping, our WPD resampling method can
enhance the geometric details that correspond to the seman-
tic features. In the following parts, we introduce the imple-
mentation details.

Methodology
Overview. In this paper, we aim to develop a resampling
method that resamples a large-scale input point cloud into
a new one with a specified number of points and optimized
point distribution. Our proposed WPD resampling method
consists of two stages: the initial Poisson resampling and
weighted tangent smoothing. The initial Poisson resampling
employs a voxel-based estimation to improve the accuracy
of point control while keeping the uniform distribution and
sampling efficiency. The weighted tangent smoothing fur-
ther enhances the point distribution to approach isotropic re-
quirement and output resampling results with an accurate
number of points. As an option, we offer a sharp feature-
sensitive dynamic resampling scheme that enhances the pro-
portion of edge points in the resampling results with dy-
namic densities, thus reinforcing sharp features. In the fol-
lowing parts, we illustrate the implementation details.
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Figure 2: Voxel-based radius estimation and its correspond-
ing initial resampling result for a large-scale scene. Left:
original point cloud; middle: voxelization; right: initial Pois-
son resampling result.

Initial Poisson Resampling
Preliminaries on Poisson-disk Resampling. The tra-
ditional Poisson-disk resampling (Corsini, Cignoni, and
Scopigno 2012) implemented by MeshLab is based on an
intuitive assumption that relates surface area to the number
of points. Based on the accumulation of the local area cor-
responding to each point, we can estimate the radius of each
point that controls the number of points while maintaining
uniformity. Let P represents the input point cloud, and n
represents the specified number of resampling points. Then,
the mentioned assumption can be formulated as:

SP = λnπr2, (1)

where SP represents the surface area of P , and r is the ra-
dius of a local region. We accumulate a local region con-
sisting of n points, such that the sum of these points equals
to S. Since each small region overlaps with others, a decay
factor λ is introduced. By reversing this assumption, if we
know the surface area corresponding to the point cloud, then
by controlling the sampling radius, we can accurately con-
trol the resampling point number while keeping the uniform
distribution.

The original Poisson-disk resampling estimates the SP by
the area of bounding box, which is represented as:

SP ≈ lh+ wh+ lw, (2)

where l, h, w are the length, width, and height of the bound-
ing box, and SP is estimated as half the surface area of the
bounding box. Clearly, it is a rough estimation. Especially
when the point cloud exhibits significant curvature changes,
the resampling cannot output results with an accurate point
number. To address this issue, we propose a voxel-based ra-
dius estimation to improve the accuracy.

Voxel-based Radius Estimation. The key to enhancing
the accuracy of the radius estimation is providing an efficient
estimation of the surface area of the original point cloud.
The most intuitive solution is to reconstruct a mesh from the
point cloud and then calculate its surface area. However, this
significantly increases the computational overhead. We in-
troduce a more efficient solution that estimates surface area
based on accumulated voxel-based surfaces.

Specifically, we first implement the voxelization for input
point cloud, the voxel length lv is set to 0.05×max{l, h.w}
by default. Then, we estimate SP as

SP ≈ ml2v, (3)

Figure 3: Tangent space mapping for a local region of an
input point cloud.

where m is the voxel number, ml2v means that we accumu-
late each face area from related voxel to represent the SP .
Since most voxels have only one face corresponding to the
region of the point cloud. Based on the Eq. (1) and Eq. (3),
we achieve the new radius computed by

r = lv
√
m/(λnπ), (4)

where λ is set to 0.68 according to the experimental results.
The voxel-based radius estimation more effectively consid-
ers the morphology of the point cloud, thereby enhancing
the accuracy of surface area computation. Consequently, the
accuracy of radius estimation is improved, which indirectly
improves the ability to control the number of points. Once
the radius is defined, a more accurate Poisson-disk resam-
pling can be implemented.

Iterative Refinement. Although the voxel-based radius
estimation improves the accuracy of the resampling, there
is still a discrepancy between the number of output points
and the specified number. To facilitate subsequent process-
ing, we design an iterative refinement step to further opti-
mize the number of resampling points. We iteratively adjust
the radius based on the error between the number of sam-
pling points and the specified number, ultimately producing
a more accurate result, i.e., the resampling error is controlled
under 5%. The implementation of iterative refinement can be
formulated as:

Rn = 1− |P ′|/n, (5)

r′ =

{
r(1− 1

θ1
Rn), Rn > 0

r(1− 1
θ2+µRn), Rn < −0.05

(6)

where |P ′| represents the number of resampling points. We
iteratively refine the radius r by scaling parameters θ1, θ2,
and µ (θ1 = 1.8, θ2 = 3.0, µ = (|P ′|−n)/2). By fine-tuning
the sampling radius, we can further optimize the number of
sampling points while maintaining the uniform point distri-
bution. Since the process does not involve complex tangent
space mapping or distance optimization, it only performs the
original Poisson-disk sampling in each iteration, making the
method highly efficient.

Weighted Tangent Smoothing
Benefiting from the initial Poisson resampling, the input
point cloud is optimized with uniform distribution and a
relatively accurate number of points. To ensure the num-
ber of points is strictly equal to the specified one and to
further optimize the distribution into an isotropic result, we
propose a weighted tangent smoothing step that is inspired
by the isotropic remeshing (Lv, Lin, and Zheng 2022). In
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Figure 4: As a closed Voronoi cell (green), the related point
position is optimized based on the central displacement. For
the boundary point with an unclosed Voronoi cell (blue), its
position should not be changed. The red lines and related
labels represent the cotangent weight instance.

short, it calculates the Voronoi cells for all points and utilizes
cells’ areas to weigh the central displacement. To balance
the preservation of sharp features, we introduce an adaptive
edge resampling option to meet the requirements of corre-
sponding applications.

Voronoi Central Displacement. According to the Cen-
troidal Voronoi Tessellation (CVT) (Du, Faber, and Gun-
zburger 1999), the isotropic property can be obtained by
Voronoi cell optimization. An implementation has been pro-
vided in (Chen et al. 2018). However, the drawback lies in its
poor computational efficiency. Usually, it takes more than 20
iterations to achieve satisfactory isotropic property (Lv, Lin,
and Zhao 2022). To utilize the advantage of the CVT strat-
egy while improving efficiency, we design a Voronoi cen-
tral displacement method that can be regarded as a weighted
point adjustment on the local tangent space.

At first, we delete excessive number of points based
on a specified number of points. We calculate distances
of all points to their nearest neighbors, and then sequen-
tially delete the required number of points starting from the
smallest distances. Then, we propose the implementation of
Voronoi central displacement. Let p represent a point of P ,
we map the point and its k neighbors onto the local tangent
space, as shown in Figure 3. Since such points are mapped
onto the 2D plane, computing related 2D Voronoi cell and
updating centers becomes extremely convenient. We intro-
duce the cotangent weight to guide the central displacement,
represented as

wij = (cotα+ cotβ)/2, wi =
∑

pj∈Ni

wij , (7)

p′i =
∑

pj∈Ni

wij

wi
pj , (8)

where α and β are angles between adjacent points (Fig-
ure 4), Ni is the adjacent point set of point pi, p′i is the new
position of pi after the weighted central displacement. We
iteratively update point positions by Eq. (7) and Eq. (8), and
the distribution can be optimized with the isotropic property.

Since the displacement is implemented on the tangent
space, some points may not have closed Voronoi cells (blue
cell labeled in Figure 4), which could cause their positions to
deviate from reasonable ranges. Therefore, we detect these

Figure 5: Sharp feature keeping in large-scale point cloud.
Left: uniform resampling result; Right: uniform resampling
result with sharp feature enhancement.

Algorithm 1: The pipeline of WPD

1: Input: Raw point cloud P
2: Output: Resampled point cloud P ′

3: Implement voxelization for P
4: Compute Poisson-disk radius r by Eq. (4)
5: Set re = r/2 for edge points if used
6: while |P |/n > 1.05 and |P | < n do
7: Update r by Eq. (6)
8: Poisson-disk resampling for P
9: end while

10: for each pi ∈ P do
11: Extract k neighbors of pi
12: if pi is an edge point and its neighbors have normal

points then
13: continue
14: end if
15: Map k neighbors and pi onto local tangent plane
16: Compute Voronoi cells for all points
17: Update pi by Eq. (8)
18: end for
19: Output resampled P

points that correspond to unclosed Voronoi cells and keep
their positions unchanged to prevent them from escaping
from the tangent space. It is noteworthy that the above oper-
ation relies on a relatively uniform point cloud. Otherwise,
during cotangent weight calculation, the convergence speed
may decrease, and the weights may become abnormal (e.g.,
negative values). Benefiting from the initial Poisson resam-
pling, the prerequisite of the displacement can be well met
to form the basic pipeline of WPD, as shown in Algorithm 1.

Sharp Feature Preservation. For downstream tasks of
the resampling, preserving or enhancing sharp features of
the point cloud is of significant value for obtaining struc-
tural information and conducting high-precision semantic
analysis. We provide an optional sharp feature-keeping mod-
ule for the resampling. Firstly, we utilize the SOTA solution
MSL-Net (Jiao et al. 2023) to detect edge points. It can han-
dle point clouds with low-level noise, thereby enhancing its
practicality. Then, the point cloud is categorized into nor-
mal points and edge points. According to the WPD struc-
ture, we set different radii for the two kinds of points. To
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Figure 6: Comparison with different resampling methods on
indoor models of RGB-D dataset. The specified resampling
point number is 20,000.

enhance the edge points, we halve their corresponding ra-
dius. In this way, the adaptive densities are generated during
the initial Poisson resampling. By the step of Voronoi central
displacement, we assess all edge points and keep their posi-
tions if their neighborhood includes normal points. In Fig-
ure 5, we visualize the sharp feature keeping for large-scale
point cloud. Although limited by noise, the enhanced sharp
features still reveal the structural boundaries in the scene, es-
pecially for small-scale semantic objects, which better main-
tain their semantic information. In experiments, we compre-
hensively evaluate the performance of WPD.

Experiments
We evaluate the performance of the proposed resampling
method. All experiments are processed on a computer
equipped with an AMD Ryzen 7 5800H, 16GB RAM,
RTX3060, and with Windows 11 as its running system and
Visual Studio as the development platform. The experiments
include the following parts: (1) we introduce the selected
datasets for the measurement and comparison; (2) we evalu-
ate the geometric quality for different resampling methods;
(3) we show some downstream applications based on the re-
sampling method; (4) we illustrate the computational effi-
ciency and some other details of our methods for different
levels of resampling tasks. The project is released1.

Datasets
The target of our scheme is to implement efficient resam-
pling while considering geometric feature preservation on
large-scale point clouds. The data we typically handle are
scene data, rather than traditional simple models. Based on
the target, we collect indoor and outdoor scenes from rel-
evant datasets, including RGB-D dataset (Lai et al. 2013),
BuildingNet (Selvaraju et al. 2021), SensatUrban (Hu et al.
2021), S3DIS (Armeni et al. 2016), UrbanScene3D (Lin
et al. 2022), and UrbanBIS (Yang et al. 2023). The RGB-
D dataset contains a collection of indoor scenes, including
point clouds along with their corresponding RGB values.
The number of points in the dataset ranges from 10K to
400K. To verify the effectiveness of our method on large-
scale models, we select models with more than 300K points
in the experiment. The BulidingNet includes various types
of architectural point clouds such as hotels, castles, muse-
ums, etc. The number of points in each of these is pre-
cisely controlled at 100K. The SensatUrban is an urban-
scale point cloud dataset, which contains some large areas

1github.com/vvvwo/Weighted-Poisson-disk-Resampling

Figure 7: Comparison of different resampling methods for
sharp feature keeping based on architectural models of
BuildingNet.

from three UK cities. The S3DIS is a classical large-scale in-
door dataset for the semantic segmentation study, which in-
cludes 13 types of labeled segments such as walls, windows,
chairs, etc. We evaluate the performance of some down-
stream applications on S3DIS models. In the following parts,
we show the detailed experimental results.

Geometric Quality
For geometric quality measurement of the resampling, ge-
ometric consistency serves as an important indicator. The
reason is that the resampling may change point positions.
Such potential impact could disrupt geometric consistency,
resulting in a resampled point cloud that cannot accurately
represent the original one. We conduct a comparison of dif-
ferent resampling methods using an RGB-D dataset. The
selected metrics include Hausdorff and mean distances,
which represent the quality of the geometric consistency.
We employ different comparison methods, including Clus-
tering (Low and Tan 1997), WLOP (Huang et al. 2009),
Poisson (Corsini, Cignoni, and Scopigno 2012), Lapla-
cian (Luo, Ge, and Wang 2018b), PU-Net (Yu et al. 2018),
and AIVS (Lv, Lin, and Zhao 2021). In Table 1, we report
the results. Although clustering and Poisson methods can
achieve better results on some point clouds, neither of them
can precisely control the resampling point number. In con-
trast, our method achieves relatively stable quality of geo-
metric consistency in test samples.

Another important indicator of geometric evaluation is the
point-based uniformity or isotropic property. It is worth not-
ing that defining the neighborhood structure of point clouds
is a fundamental issue in point cloud analysis. Uniform dis-
tribution in the neighborhood allows the point cloud to cover
larger continuous areas with fewer points while facilitating
the definition of accurate adjacent regions. To evaluate the
uniformity of the point cloud, we employ two kinds of mea-
surement: local and Voronoi density errors. The local density
is based on the analysis of neighbor point densities, which
are represented as

dlocal = max{D} −min{D}, di ∈ D,

di =
∑

pj∈K(pi)

d(pi, pj)/k,
(9)

where di represents the average distance between the point
pi and its k-nearest neighbor set K(pi) (k = 6 to fit isotropic
property), D is the set of average distances based on the
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Methods Clustering WLOP Poission Laplacian PU-Net AIVS Ours
Model Haus↓ Mean↓ Haus↓ Mean↓ Haus↓ Mean↓ Haus↓ Mean↓ Haus↓ Mean↓ Haus↓ Mean↓ Haus↓ Mean↓
scene645 1930.4 43.093 772.12 44.850 421.62 44.353 1555.9 59.497 3744.1 255.68 515.78 70.523 421.61 42.757
scene646 2212.6 42.566 1465.5 54.077 313.19 42.748 1777.7 69.543 4502.8 183.93 681.54 79.500 390.36 44.512
scene653 992.23 39.394 1692.7 48.695 317.60 41.903 1743.5 67.682 3987.2 186.36 557.56 83.955 402.47 41.818
scene667 3291.5 43.773 776.10 52.826 376.51 43.083 1860.6 69.390 3858.4 251.52 672.25 41.464 327.42 43.415
scene673 7764.0 54.146 1155.3 48.889 440.06 52.059 2168.1 71.644 3576.4 258.24 787.73 75.335 432.34 51.803

Table 1: Geometric consistency analysis of different resampling methods on an urban dataset. All reported Hausdorff (Haus)
and mean distances are divided by 1e+5 for normalization. Bold labels indicate the best results.

Methods Clustering WLOP Poission Laplacian PU-Net AIVS Ours
Model Local↓ Voronoi↓ Local↓ Voronoi↓ Local↓ Voronoi↓ Local↓ Voronoi↓ Local↓ Voronoi↓ Local↓ Voronoi↓ Local↓ Voronoi↓
scene645 43.09 33.96 44.85 18.47 44.35 37.14 69.54 71.67 255.6 78.76 70.52 40.17 42.75 5.015
scene646 42.56 27.42 54.07 15.96 42.74 33.76 67.68 51.23 183.9 55.10 79.50 28.46 44.51 6.861
scene653 39.39 25.41 48.69 15.42 41.90 33.73 69.39 42.41 186.3 51.76 83.95 27.25 41.81 9.735
scene667 43.77 21.11 52.52 13.41 43.08 24.13 71.64 40.10 251.5 43.11 41.46 25.75 43.41 6.873
scene673 54.14 36.73 48.88 26.11 52.05 39.75 70.17 60.07 258.2 81.88 75.33 42.12 51.80 10.14

Table 2: Local and Voronoi density analysis of different resampling methods. All reported values are divided by 1e+5 for
normalization. Bold labels indicate the best results.

Input\Methods WLOP Laplacian PU-Net AIVS Ours

2,000K-200K >10min >10min >1min >10min 12.7s
200K-50K >1min >1min 34s >1min 3.7s
<50K 0.25s 23s 2.1s 12s 0.42s

Table 3: Time cost report for resampling methods in large-
scale point clouds. Output point number is set to 10k.

point cloud. The difference between the maximum and min-
imum values of D roughly reflects the uniformity of point
distributions. For accurate neighborhood analysis, we com-
pute the Voronoi region of the k-nearest neighbor set based
on Eq. (9). In Table 2, we report the results of uniformity
measurement for different resampling methods. Our method
significantly achieves better point-based distribution.

Preserving or enhancing sharp features during resam-
pling is an additional metric for geometric quality assess-
ment. Sharp features carry important structural information,
which have significant value for surface estimation and se-
mantic learning. To evaluate sharp feature preservation, we
report the results of a specific experimental evaluation on
BuildingNet. Some methods with sharp feature keeping are
used for comparison, as shown in Figure 7. For the WLOP
scheme, we set the neighborhood scale size to 0.03 based
on the BuildingNet model, which achieves the best perfor-
mance for sharp feature keeping in experience. For the AIVS
scheme, it employs the Voronoi-based feature estimation
(VCM) (Mérigot, Ovsjanikov, and Guibas 2010) to balance
the sharp feature keeping and isotropic resampling. We set
different resampling rates for sharp feature points (0.88) and
normal points (0.12) and output the same point number in
the final results, which are used to balance the feature keep-
ing and uniformity by experience. With the same resampling
point number (17,000), our method keeps more sharp points
for the building’s outlines, doors, and windows, while re-

Figure 8: Comparison of mIoU values with different resam-
plings based on 10 randomly selected S3DIS models.

taining fewer but evenly distributed points for flat areas such
as walls and ground. To some extent, our method achieves
sharp feature enhancement with the dynamic resampling
strategy. In Figure 9, we show more resampling results based
on urban models of SensatUrban, UrbanScene3D, and Ur-
banBIS. Most existing resampling methods cannot achieve
results with acceptable time cost (> 1 minute in Table 3).
As the most efficient method currently, Poisson-disk resam-
pling implemented by MeshLab takes more than 30% aver-
age error rate in controlling sampling points. In contrast, our
method has significant advantages in controlling the number
of points and preserving sharp features.

Applications
To further demonstrate the performance of the proposed re-
sampling method, we present two related downstream appli-
cations: mesh reconstruction and semantic analysis.

Mesh Reconstruction. Constructing 3D surfaces from
point clouds is a fundamental challenge in computer graph-
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Figure 9: Comparison of different resampling methods for
urban scenes of SensatUrban. The specified resampling
point number is 100K. Our resampling method (sharp) re-
tains more geometric details.

ics and 3D vision. In explicit surface reconstruction, partic-
ularly when employing Delaunay triangulation, the uniform
distribution of point clouds plays a critical role in mesh gen-
eration. An isotropic distribution can enhance the precision
of neighborhood definition. Based on the S3DIS scenes, we
evaluate the quality of triangulation with different resam-
pling methods. For a fair comparison, we set the resampling
point number to 50,000 for all models. The triangulation is
implemented by Geomagic, which is a commercial mesh
generation software. A comparative example is shown in
Figure 10. Intuitively, the reconstructed mesh exhibits bet-
ter isotropic property by our resampling scheme.

Semantic Analysis. For complex point cloud scenes, uni-
form distributions of points are helpful for semantic anal-
ysis. The reason is that the uniform distribution helps in
learning local geometric and semantic features. The ad-
jacency relationship between points is more easily deter-
mined. To verify the impact of resampling on semantic anal-
ysis, we conducted corresponding experiments. We select
PointNet++ (Qi et al. 2017) to be the backbone and resam-
ple point clouds with different methods, including FPS by
default (Qi et al. 2017), PU-Net (Yu et al. 2018), and WPD.
Based on the indoor models of the S3DIS dataset, we com-
pare their segmentation accuracy. For the quantification of
the performance improvement of our method, we computed
the mIoU metrics for 10 scenes from S3DIS, as shown in
Figure 8. The proposed WPD resampling improves the ac-
curacy of semantic analysis.

Discussion
Compared to the original Poisson-disk resampling method,
our initial Poisson resampling approach enhances the con-
trol accuracy of sampling points without incurring addi-
tional computational overhead. By leveraging weighted tan-
gent smoothing, our resampling method yields isotropic re-

Figure 10: Comparison of reconstructed meshes with statis-
tical histograms of inner angles using original Poisson-disk
resampling and WPD based on S3DIS models. WPD can
achieve better isotropic property.

sults from large-scale point clouds. As demonstrated by its
efficiency and precision across various resampling tasks of
differing scales, our method stands capable of accomplish-
ing them with remarkable accuracy, as shown in Table 3.
Original Poisson-disk resampling cannot precisely control
the point number, which is not reported. Even when the input
point count reaches the order of one million, our method’s
time cost remains manageable, typically around 10 sec-
onds. Conversely, under identical conditions, both WLOP
and AIVS incur time overheads exceeding 10 minutes.

As mentioned in downstream applications, the resampling
is useful. For mesh reconstruction, our resampling method
can optimize local neighborhoods of all points, which im-
proves the accuracy of topological information. For seman-
tic analysis, the resampled point cloud takes uniform den-
sity, which is helpful for semantic feature learning. Such im-
provements benefit from the isotropic property. The above
experiments demonstrate that our method possesses per-
formance comparable to replacing Farthest Point Sampling
(FPS) and Poisson-disk resampling comprehensively. It can
provide accurate point number control and density optimiza-
tion for large-scale point clouds, as shown in Figure 9.

Conclusions

In this paper, we propose a weighted Poisson-disk resam-
pling method for point number control and isotropic opti-
mization on large-scale point clouds. Firstly, we employ a
voxel-based analysis to establish an initial Poisson resam-
pling, which improves the accuracy of Poisson-disk radius
estimation. Then, a weighted tangent smoothing step is used
to optimize the isotropic property while optionally keep-
ing sharp features. The proposed resampling method bal-
ances efficiency and accuracy, which is particularly advan-
tageous for processing large-scale point cloud data. Experi-
ments show that our method can handle various resampling
tasks and improve their performance.
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